Repairing Damaged PWB/UNIX
-File Systems

P. D. Wandzilak

March 1978

Bell Telephone Laboratories, Incorporated

] 197
L4

Repairing Damaged PwWB/UNIX
File Systems

CONTENTS

1. INTRODUCTION

2. DEVICES—SPECIALFILES . . . + +v v v « o + .

3. CHECKDIAGNOSTICS - . & . v v ¢ v o« o v o &

3.1 Free-List Diagnostics 2

3.2 Block Diagnostics 3

3.3 Inode Diagnostics 4
3.3.1 Type-100 Error.
3.3.2 Type-201 Error.
3.3.3 Type-377 Error.
3.3.4 Type-177 Error.

. REPAIRING FILE SYSTEM DAMAGE
4.1 Free-List Diagnostics 6
4.1.1 Root File System. 6
4.1.2 Non-root File System. 8
4.2 Block Diagnostics 8
4.2.1 “DUP” Diagnostic. 9
4.2.2 An Example of a More Complex **DUP™ Dlagrxosnc 10
4.2.3 “BAD" Diagnostic. 12
4.2.4 “DIN Dragnostic. 13
4.3 Inode Diagnostics 17
4.3.1 Type-100 Ecror. 17
4.3.2 Type-377 Error. 18
4.3.3 Type-177 Error. 19
4.3.4 Type-201 Error. 20

S. ACKNOWLEDGEMENTS

[e UV VW, WV

6. REFERENCES ¢ « +« .0 o o o &

B R

-

Repairing Damaged Pws/UNix File Systems
P. D. Wand-=ilak

Bell Laboratories
Piscataway. New Jersaey 08834

’

1. INTRODUCTION

This document is intendsd (0 help PWB/UNIX" operations personnei repair file sysiem damage. [t
assumes the reader has an understanding of {1.2]. A good understanding of the PWB/UNIX file sys-
tem siructure is also 3 prerequisite: in particular. it is assumed that the reader is familiar with the con-
cept of isize. f5iz2, dist. inode, 1-number, and small and /arge files.

The task of repairing damaged file systems is not an easy or straightforward procsss. A considerable
amount of thought and analysis of the ‘problern must first be applied before any surgery is performed.
Furthermore. situations do occur when 2 definite diagnosis of the problem is impossibie: in such a
situation. only 2xperience and profound courage count.

This document is meant (o de introductory in nature, and will aot cover cases that =xhibit a high degree
of complexity or that require extensive knowledge and experience.

z. DEVICF.S-SPECIAL FILES

Tne PWB/UNIX Operating System distinguishies between two classes of devicas: character devices and
block devices. Characrer devices are basically byte oriented. e.g.. terminals. Block devices are oriented to
transferring larger groups of data, e.g.. disks. magnetic tapes, etc. Each [/O device supported by
PWB/UNIX is assigned a device class and major and minor device numbers. The major number is
associated with the software driver for that devics. The minor number specifies both the physical drive
unit and a designated logical portion of the device. A special file is a PWB/UNIX file that has its major
and minor device numbers recorded in addr{0] of the inode’s control siructure. Examples:

Characrer Devices: Block Devices:

/dev/tty8 /dev/rp3d
/dev/trp24 /dev/rp24
/dev/rrp0 /dev/rp0

 In the above exampies, the devicas /dev/rp0 and /dev/rrpQ both refer to the same physical device, but

they have differant accass protocols.

3. CHECK DIAGNOSTICS

The first step in repairing file sysiem damage is to find the 2xtent of the damage. This is accomplished
by executing the check command. Before the check command is invoked. the PWB/UNIX system
shouid be rebooted and contained within the single-user environment; check(V1ll) examines a file sys-
tem and reports all inconsistencies. The normal output of check consists of the file-system device name
followed by eight lines of summary information:

the number of special files;
- the total number of fles;
the number of large files;
the number of directories;
the number of indirect blocks;
the number of blocks used;
the number of the highest biock used:
the number of fres biocks.

f
The following is an example of the normal check output:

* UNIX is a Trademark of Beil Laboratones.

check /dev/rp0

/dev/rpl:
spcl

files

large
direc
indir
used

last

free

Any additional information not shown above represents diagnostic messages produced by check. Diag-
nostic messages follow the file-system device name and precede the summary information, as shown

below:

check /dev/rp0

/dev/rp0:

diagnestic messages:

spcl
files
large
direc
indir
used
last
free

Each diagnostic message is a single entity. The user must have a thorough understanding of these mes-
sages in order to diagnose the problem and take proper corrective action.

The problem with most of the diagnostic messages is that their explanation is implicit rather than expli-
cit. The following discussion clarifies these messages and advises the reader about their significance and

importance.

‘3.1 Free-List Diagnostics

- These diagnostics are the most common of all the check diagnostic messages. They pertain to areas
within a file system that are designated as free. Each free area is linked together 1o form a chain. called
the free list. The free list is dynamic and therefore sensitive 10 abrupt or abnormal system stops. When
such a stop does occur, the free list can become curdled; this happens when the head of the in-core free
list is not written out to disk. The check command recognizes these conditions and reports them via
various diagnostic messages. - The message *‘bad freeblock® means that a block number in the free list
resides outside the range of available space. The message “dups in free™ indicates duplication of disk
blocks; this occurs when the same block or set of blocks in the free list appears in other files or in an
earlier parnt of the free list. The last message type in this category concerns “‘missing’’ block numbers.
A block is considered missing when it resides neither in the ilist (which contains control blocks for all
files in a file system) nor in the remaining portion of the file system that consists ef directories, ordi-
nary files, and the free list.

When the check command is invoked upon a file system, and if the file system’s free list is not con-
sistent, one or more of these three diagnostic messages will appear. The output of check for a file sys-
tem containing these types of free list errors is shown below:

158
261
90
29
92
3630
6684
2923

158
261
90
29
92
3630
6684
2923

-

Ve

check /dev/rp0

/dev/rpd:

bad fresblock
20 dups in free
2000 missing
spel 158
files 261
large %0
direc 29
indir 92
used 3630
last 6684
free 923

3.2 Block Diagnostics

This section describes diagnostic messages that concern disk blocks of both ordinary files and direc-
tories. An inode is a 32-byte controi block structure that identifies various attributes of each file or
direstory (see File System(V)). All inodes reside in the portion of the file system identified 2s the ifisz.
Each inode in the ifisr is numbered and identified Oy an i-number. An i-number uniquely identifies a fle
in a file system. This type of message is of the form: :

~ b# error; inode = i¥ (block type)

where 5% indicates the actual decimal block number, error is the type of diagnostic in a mnemonic
form, and /# represents the actuai i-number associated with the particuiar Block number.

These diagnostics are based upon information contained in the super-dlock of the file system: aithough
limited precautions such as range checks. size checks on both isize and fsize, etc., are taken, erroneous
diagnostics can occur due to wrong data values in the super-block. /size (the contents of the first word
in the super-block of the file systam) is the biock size of the ilist region. Fsize (the conteats of the
second word in the super-block of the file systam) is the block size of the entire file system.

Descriptions for 2ach of the ¢rror mnemonics are given below:
bad The biock number contains a value outside the allowable space on the file sys-
tem. The block number cannot be less than (isize+ 2) or greater than fsize.

dup The block number is assigned o a previously-encountered file. This message
represents only this particular referencs to this biock. The procedure for finding
all such referencss is described in the next section om fle patching.

din The block is 3 member of a directory entry and contains an i-number outside the
range defined by the ifisz size of the file system. The size of the Jlist is calcu-
lated by multiplying the value of isize by the number of inodes per disk biock.
‘There are currently 16 inodes in a 512 byte disk block.

bik The block number was used as an argument (-6 option) in check.
The block type identifies the kind of block involved:

free The biock is not allocated.

data(small) The block is a data block in a small fle. A smail file consists of eight or fewer
disk blocks that directly contain the block addresses of data.

data(large) The biock is a data block in a large file. In a large file, each of the.eight block
© addresses may reference an indirecr block of up to 256 addresses of blocks that,
in turn, constitute the file itself.

"indirect The block is an indirect block in a large fle.

-4-

Examples of these types of diagnostics messages are:

check -b 53 /dev/rp0
/dev/rp0:

53 blk; inode= O(free)
53 bad; inode= O(free)
6 dups in free

3400 missing

spel 159
files 254
large 88
direc 18
indir 88
used 3067
last 6681
free 92

check /dev/rp54
/dev/rp54:

36638 dup; inodes= 2205(data (small))
14563 dup; inode=2208(data (small))
58318 din: inode= 2208(data (small))
58318 din; inode= 2208(data (small))

spcl 0
files 4970
large 742
direc 332
indir 767
used 44412
last 64666

free 19658
3.3 Inode Diagnostics

The third class of messages that will be discussed involves individual files, for which the actual number
of directory references does not agree with the value contained in their link-count field in the super-
block of the file system. The format of these messages is as follows:

i# error-indicator

The & represents the i-number of the inode. The error indicator consists of a byte whose octal value
ranges from 0 to 377;. The algorithm that check employs for computing the error indicator is explained
below:

a. 100, is added to the error indicator if the particular inode is allocated. The inode is disregarded if
it is not allocated and its mode (permissions of the file) is zero.

b. An additional 100; is added to the error indicator if the link-count fieid of the inode is non-zero:
the value of the link-count field is also added to the error indicator.

¢. For each directory entry which references that particular inode, 1 is subrracted {rom the error indi-
cator.

Only inodes whose error-indicators are neither 0 (unallocated) nor 200 (consistent file) are reported
and flagged as requiring additional attention. The most common occurrences contain error-indicators of
100, 177, 201, 377. Example:

check /dev/rp5s

/dev/rpi4:

1§ 100

23 201

39 177

213 377

spel 0
files 4970
large 742
direc 332
indir 767
used 44412
last 64666
free 19658 -

Because of their frequent occurrence, a further expianation of the four diagnostics in the above axam-
ple are given below.

3.3.1 Type-100 Error. In the case where the error-indicator is 100, the inode usually is ailocated, but

its link count is zero. This can be made evident by retracing througn the steps that the check algorithm
employs for computing the error-indicator value angd by the exarmpie below, which illustrates the struc-
ture of such an inode in raw data format. File System(V) describes the complete structure of an inode
and should be consulted for a more complete explanation. Example (see fsdb(VIID):

fsdb /dev/rp0

15i

i#: 15 mdigee—-r in: O uid: 0 gid: 0 s0: 0 sl: O

a0: 1562 al: 0 a2: 0 a3: Q0 ad: 0 a3: 0 a6: 0 a7: 0

at: Thu May 26 13:31:06 1977 mt: Thu May 26 13:31:06 1977

where md is the mode (indicating allocation) and /n regresents the link-count feld.

This particular error is not catastrophic to the file system and does not necessitate immediate attention.
The data blocks are still allocated, e.g.. 1 block at 1562. The file is not referenced by any directory:
hence. it is nameless. This error normally occurs as a result of a pipe being active witen the system
crashes.

3.3.2 Type-201 Error. Error-indicator 201 implies that an i-number does not appear in enough direc-
tories (201—missing in one directory, 202—missing in two directories, etc.). Such an occurrence is
similar to the previous case in that its nature is not serious and does not warrant immediate attention.
The data biocks associated with the inode will remain intact, but will not be available until the problem
is remedied. Example:

fsdb /dev/rp0

23i

i#: 23 md: a———rw: {in: 1 uid: 11 gid:l sQ: 0 sl: 3050

a0: 660 al: 671 a2: 724 a3: 824 ad: 34 a5: 1056 a6: 0 a7: 0
at: Thu May 12 16:05:10 1977 mt: Wed May 25 10:53:11 1977

The eight address blocks (a0-27) contain the actual raw data for this particular e¢xample. A more
detailed description of these eight address blocks can be found in File System(V).

3.3.3 Type-377 Error. Error-indicator 377 (namely, -1 represented in two's compiement format) indi-
cates that an unailocated inode appears as an entry in a directory. This situation is serious and should
be taken care of immediately. The major impiication in this case is that the inode is not allocated and
the link count is zero. This means that the system might reassign the inode to a new file and spread
the infection to other parts of the file system. Example:

fsdb /dev/rp0

213i :

i#: 213 md: O ln: O uid: 11 gid: 1 s0: 0 s1: O

a0: 0 al: 0 a2: 0 a3: 0 a4: 0 as: 0 a6: 0 a7:0

at: Thu May 12 16:05:10 1977 mt: Wed May 25 10:53:11 1977

where md indicates no allocation and /» represents the link count.

3.3.4 Type-177 Error. Estor-indicator 177 indicates that the inode appears as an entry in one more
directory than indicated by its link count. This problem, like the above. is serious and immediate atien-
tion shouid be given to correcting it before the infection spreads to other parts of the file system. For
instance. removing an inode that has a 177 error indicator could turn it into one with a 377 error indi-
cator. Example:

fsdb /dev/rp0

39i

i#: 39 md: ad-~--rwxr-xr-x In: 1 uid: 11 gid: 1 s0: 0 s1: 160
a0: 753 al: 0 2a2: 0 a3: 0 ad: 0 a5: 0 a6: 0a7: 0

at: Thu May 12 16:05:10 1977 mt: Fri June 25 10:53:11 1977

Whers /n represents the link-count feid.

4. REPAIRING FILE SYSTEM DAMAGE

This section provides guidance and some methods for resolving the problems that lead to the various
diagnostic messages discussed in Section 3 above. The sotutions presented here are examples of actual
ocgurrences.

4.1 Free-List Diagnostia

The first class of diagnostic messages are Free List Diagnostics. These types of messages are the most
common and the least complex. They basically involve the portion of a file system known as the
super-block. The super-block contains the sizes of both the /size and fsise and systzam tables of up to
100 free biocks and free i-numbers. Also, a pointer 1o a linked list of blocks. the free list, is contained
within the super-biock. The “‘root’ (/) file sysiem's super-block is considersd as a special case.
because the root file system is always mounted whenever PWB/UNIX is running. When a file system
is mounied as a file system. a copy of its super-block is loaded into memory. Normally, before any
actual repair work can be performed. the system should be sat to the single-user environment. This
will ensure no outside interference, as well as prevent spreading the infection to other fiie sysiems.
because the root file system is normally the only fiie systen mounted in single-user mode.

All repair work on a file system is made in its place of residence (normally a disk pack). Therefore.
upon completion of repair work on the free list of the roor file system. an immediaite reboor of the sys-
tem is required wrrhour a sync(l). The reboot updates the in-memory super-block of the root file sys-
tern with the newiy-repaired copy. Omitting this step guarantees disastrous results.

4.1.1 Roor File System. We show below a simple example involving the root file sysiem and the neces-
sary repair steps that are to be followed:

check /dev/rp0

/dev/rpQ:

1 dups in free
1 missing

spci 139
files 70
large 97
direc 18
indir 98
used 3443
last 6681
free 3109

The above represents the present condition of the *‘root” file systemn after the system was rebooted
and is in single-user mode. The arror messages (dups in fres, etc.) can now be repaired by invok-
ing the command icheck, which searches through the specified file system and reconstructs the free
list. The syntax for icheck is as follows:

icheck -s{drive type] special-file

where:
s Indicates that the {ree list is to be built.
drive rype Where the drive type corrasponds to the numbers 3 through 6 (RPOJ,
RP04, ... RP06) and, depending upon which type is specified. the free
blocks are then built in that order.
special file File system device name (i.e., /dev/rp0, satc.).

The steps nesded to repair the “‘root’ file system in the above condition are as foilows:

icheck -s4 /dev/rp0
/dev/rp0:

#00 = UNIX
svstem pwbb0215
Restricted rights:
Use, duplication ...

Available user memory = 6917 x 32 words

check /dev/rpd
/dev/rp0:

spcl 159
files 270
large 97
direc 18
indir o8
used 3443
last 6681

free 3109

-8- Co,

In step 2 above, the command icheck is invoked to reconstruct the fres list. Step 3 shows that the Sys-
tem is then hgolted and then reboored. because the *‘root™ file system was involved as explained above.
The remaining step, a recheck of the file system, is performed in order to make sure that the repair
succeeded. The count of free blocks between steps | and 4 remained the same because the error mes-
sage] dups in free™ offsets the succeeding error message ‘1 missing™” in step 1.

This procedure should be followed -for all possible combinations of error messages that pertain to the
*“free list’". The only exception 1o this procedure concamns step 3 above, which involves a reboot of the
system if the root file system is specified. :

4.1.2 Non-roo! File System. Below is an example that shows this procadure used on a non-root file Sys-
tem:

1.
check /dev/rpd4
/dev/rpé4:
43 missing
spcl 0
files 9207
large 1178
direc 673
indir 1185
used 58807
last 64999
free 5433
The above output from check represents the condition of the file system before any correctional
steps are applied. The steps needed to repair a **non-root™ file system in the above condition are
as follows:
2,
icheck -s4 /dev/rp4d
/dev/rpéd:
3.
check /dev/rpé44
/dev/rpdd:
spel 0
_files 9207
large 1178
direc 673
indir 1185
used 58807
last 64995
free 5476

The 43 blocks that were shown as “‘missing™ in step 1 are now part of the reconstrucied fre= list.
4.2 Block Diagnostics
The next class of diagnostic messages is Block Diagnostics. Section 3 described the two distinct tvpes
that make up this category. Their respective formats are as follows:
1. b# error: inode = i# (block type)
2. i# error-indicator
This type requires checking each disk block in a file system that is associated with a particular inode.

-9.

4.2.1 "“DUP" Diagnosric. A typical example is the error message dup followed by an i-number and the
type of disk biock. We now show a procadure used to resolve this kind of problem:

1.
check /dev/rp2

/dev/tp2:

25511 dup: inode = 2201 data (small)
spei 0

files 3587

large 853

direc 338

indir- 833

used 39647

last 52660

free 12952

2. The initial check of the file system shows a dup error message: this message indicates that the allo-
cated block number (25511) contains more than one raference point. This reference point can refer
to either a previous file or possibly the same file. The first step is to find all the reference points
(i-numbers of files). that are referencing this ailocated disk block. This is done by:

check -b 25511 /dev/rp2
This will give a complete listing of all the i-numbers that reference the disk block 25511.

/dev/rp2:

- 25511 bik; i= 1105 data(smail)
25511 bik; i= 2201 data(small)
25511 dup; i= 2201 data(small)

spet 0 -
files 3987
large 353
direc 338
indir 833
used 39647
last 52660
free 12952

3. The above output shows two i-numbers, 1105 and 2201, that reference the disk biock 25511. The
names associated with these i-numbers can be determined by invoking the command ncheck(V1Il).
Ncheck lists the given i-numbers with their respective names:

ncheck -i 1105 2201 /dev/rp2
/dev/tp2: '

1105 /hasp/info/logx484
2201 /hasp/testjob

b

"

4. One now has to determine which of the two i-numbers is the rightful owner of the disk block
25511. Sometimes this is impossible; the only possible solution is to remove a/f the files named in
step 3. In this particular example, uncasrtainty is not invelved; the data contents of disk block
25511 are displayed and give clues in identifying the correct owner, as follows:

fsdb /dev/rp2

25511b,64¢

61647000: / /testjob job (6
61647020: 270, r8340) ,rje, ¢l
61647040: a ss= x\n// ¢ usr
61647060: = (hasp,job)\n//ie

<10-

The first line above invokes fsdb(VIII) with the names of the file sysiem as its argument. Fsdb
provides an efficient method for scanning an inode or a disk biock. The second line is supplied by
the user as input to fsdb; the **25511" is the (decimal) number of the block that will be inspested.
The*b™ expands the block number to a full block address, (i.e., 61647000). The ‘64" indicates
that 64 characters are to be printed. The letter *'c’’ causes the 64 characters to be printed in char-
acter mode. The output resembies the contents of the file /usr/hasp/testjob.

5. Once the correct owner has been established. the file can then be removed, but only after the file
system /dev/rp2 is mounted. Steps 1 through 4 were accomplished while the file system /dev/rp2
was unmounted O inactive:

mount /dev/rp2 /mnt
WARNING!! - mounting: <c2> as </mnt>
m -f /mnt/hasp/info/logx484

At this point, the file system */c2" can then be unmounted (first line below), its fres list recon-
structed (next two lines), and checked again:

umount /dev/rp2
icheck -s4 /dev/rp2

/dev/tp2:

check /dev/rp2
/dev/rp2:

spel 0
files 3986
large 858
direc 338
indir 883
- used 39646
last 52660
fres 12952

- The process of identifying the principal owner (i-number) of the disk block sometimes fails. When this
occurs, one possible solution is to remove a/f files that reference that disk block (25511). The pro-
cedure in this case remains the same as before, with the exception that siep 4 and the last line of step 5
are replaced with the following: .

rm - /mnt/hasp/info/logx484
rm - /mnt/hasp/iestjob

All files that are removed should be restored from the latest backup medium for that file system. The
owner of each such file must then be notified of the problem and be given the full path name of each
restored file.

An alternative procedure would be to first recopy all the files invoived to temporary files, and then
remove the original files. The owners should be notified that their files have been renamed and that
they possibly contain contaminated information.

4.2.2 An Example af a More Complex *“DUP’’ Diagnosiic. The above case represents a case that does
not involve massive damage. However, when massive damage is present, the repair process is substan-
tially more complex, as shown in the following example:

check /dev/rpld

/dev/rpi3a:

16705 dup; inode = 12960 (data (large))
8270 dup; inode = 12960 (data (large))
8224 dup; inode = 12960 (data (large))
13112 dup: inode = 12960 (data (large))
13873 dup; inode = 12960 (data (large))
13360 dup; inode = 12960 (data (large))
8224 dup; inode = 12960 (data (large))
12320 dup: inode = 12960 (data (large))
21332 dup; inode = 13052 (data (large))
8242 dup; inode = 13991 (data (small))

12342 dup;
18516 dup;
16967 dup;
21326 dup;
19785 dup;
20037 dup:

inode =
inode =
inode =
inode =
inode =
inode =

15175 (data (small))
15220 (data (small))
16164 (data (large))
16948 (data (smail))
17305 (data (large))
17305 (data (large))

-11 -

1 dups in free

14 missing

spel 0 -
files 15428
large 492
dires 701
indir 32§
used 52193
last 64989
free 11485

The inode 12960 claims to be the owner of several disk blocks. This inode is the most likely candidats
that shouid be removed in order to raestore consistency to the file systam. The following steps will
repair the file system damage and restore the fle system to a working condition:

ncheck -i 12960 /dev/rp34-

/dev/rp34:

12960 /9452/sita/pscsxs/azaacshla/ AAN—331604--

mount /dev/rp34 /mnt

WARNING!! - mounting: <bd4> as </mnt>

mn -f /mnu9452/sita/ pscsxs/aaaacshia/ AAN-—--331604--
umount /dev/rp3é

icheck -s4 /dev/rpid

/dev/rp34:

check /dev/mp34
/dev/rp34:

spci 0
files 15427
large 491
direc 701
indir 524
used 51936
last 64989
free 11500

The output of the last check command above reveals that the damaged file system, /dev/rp34, was
repaired and is now consistent. However, the procedurs cannot guarantes that the data2 blocks associ-
ated with the other affaected files contain valid information. The. procedure can be expanded to include
the necassary steps to identify the path names of all the affected files in the above list. The owners can

-12.

then be notified that their files may contain invalid data. The additional steps replace the ncheck com-
mand in the above procedure.

Each block number reporied as a dup should be checked. This will then idenatify all the i-numbers
referencing a duplicate block:

check -bbb ...b 16705 8270 8224 ... 20037 /dev/rp34

Whers r occurrences of b (-bbb...b) cause the next n arguments to be interpreted as block numbers.
Each unique i-number reporied in the previous step can then be converted into a path name.

ncheck i [i-numbers] /dev/rp34

4.2.2 “BAD" Diagnostic. The message bad implies that the block number contains a value outside the
allowable space on the file system. Allowable space is defined as the number of disk Blocks logically
addressable. from isize + 2 to the limit gpecified by the super-block entry fize.

These messages usually occur for a small file that was in the process of being transformed into a large
file at the time of the crash. The mode field in the inode contro! structure indicates a large file, but the
address block references a data block address instead of an indirect block address.

Because the bad block and the file are normally unrelated to one another, the contaminated file mus: be
removed. The example below will be used as a mode! for developing a procedure for this kind of prob-
lem: '

check /dev/rp24

/dev/rp24:

49802 bad; inode = 1191 (data(large))
49810 bad; inode = 1191 (data(large))
128 bad: inode = 1191 (data(large))
32768 dup: inode = 1191 (data(large))
32768 dup: inode = 1191 (data(large))
40960 bad: inode = 1191 (data(large))
1 bad; inode = 1191 (data(large))
436 bad; inode = 1191 (data(large))

4 dups in free

73 missing

spel 0
files 4378
large 854
direc 299
indir 859
used 31218
last 65475
free 4118

Once the initial check of the file sysiem has been performed, as above, the following steps must be per-
formed: :

1. Unaliocate the i-number 1191. This will unallocate the bad blocks and leave the i-number as an
non-existent file with its directory entry and name field intact. This is done by using cirm(VIII).
(rather than rm(l), because the system checks for bad biock numbers when rm is used. and might
not remove. the file):

clrm /dev/rp24 1191 , ‘
2. Check the file system to insure that the bad messages were reducad into a simpier diagnostic:

/A\

<13 -

check /dev/rp24

/dev/rpl4:

4 dups in fres
14 missing

1191 377

spcl 0
files 4377
large 853
direc 299
indir 358
used 31215
last 35989
free 4118

3. Conver the i-number 1191 from step 2 into a path name:

ncheck -i 1191 /dev/rp24
/dev/rpl4:
1191 /adm/core

4. Mount the fle sysiem: _

mount /dev/rp24 /mnt
WARNING!! - mounting: <al> as </mnt>

Remove the name of the non-existant fle:

wy
.

rm f /mnt/adm/core
6. Unmount the file system:
umount /dev/rp24
7. Reconstruct the fres list to eliminate the “‘dups in fres"" that resuit from step 3.
icheck -s3 /dev/mp24
3. Check the file system again:
" # check /dev/rp24

/dev/rp24:

spct Q
files 4377
large 853
direc 299
indir 858
used 31218
last 35989
free 4129

9. The contaminated file that was removed in step 5 should be restored from the latest back-up
medium for that file system and its owner notified.

4.2.4 “DIN" Diagnostic. The message din means that a block number is a member of 2 directory entry
containing an i-number that resides outside the range of the ifis size of the file system; isize (the con-
tents of the first word in the super-block of the file system) is the block size of the ilisr region.

These messages normally ocsur when a directory contains an address block that refersnces text data
instead of directory entries. A directory emmy consists of an i-number and a l4-character name. The
example below will be used as a model for developing a procedure for this kind of problem.

-14.-

check /dev/rp24
/dev/rp24:
7902 din; inode = 15 (data(small))
1 dups in free
1 missing
1 201
2 201
3 201
5 201
7 201
9 201
13 201
14 201
1§ 201
33 201
168 201
169 201
172 201
340 201
488 201
808 201
2975 201
3976 201
3977 201
4099 201
4335 201
4364 201
4547 201
5002 201
8202 377
8224 342
spel 0
files - 4769
large 870
direc 251
indir 879
used 33545
last 35989
free 1798

The first step is to position fsdb at the beginning of the inode siructure for i-number 15 in file system
/dev/rp24. .

1. # fsdb /dev/rp24
15
i#: 15 md:ade-—-rwxr-xr-x In: 3 vid: 2 gid: 0 s0: 0 sl: 560
a0: 7902 al: 3314 22: 0a3: 0 a4: 0a5: 0 a6: 027: 0
at: Fri May 27 17:30:02 1977 mt: Fri May 27 07:01:02 1977

Where 15i is the offset into the file system. The first address fieid (a0). contains the same block
address as was reported by the initial check above. The block 7902 and its data contents will be
further investigated. ’

2. 7902b.p32d
do: 8224 Field.
dl: 8224
d2: 8224
d3: 8224

-15-

dd: 8224

d5: 8224 IF
d6: 8224

d7: 8224

d8: 8224

d9: 8224

d10: 3224 Only
dll: 8224

dl2: 8224

dl3: 8224

dl4: 8224

d15: 28443 NE/n
dlé: 3224

d17: 8224 .
di8: 8224

d19: 8224 PM
d20: 8202

d2l: 8224

d22: 8224

d23: 8224

d24: 8224 IS
d25: 3224

d26: 8224

d27: 8224

d28: 8224

d29: 8224 DESIRED
d30: 8224

d3l: 8224

q

In the above, the **7902b.p324™ displays the contants of block 7902 as directory entries: q ier-
minates this command. The block 7902 is obviously a data block 2nd not a block of direczory
entires. - The number 8224 in each instance is /interprered as an i-number and accounts {or the diag-
nostic message 342 (last diagnostic in the output of the check command atove). The din diagnostic
occurred at the fifteenth entry (d15:, in siep 2 above) because the number, 28448, exceeds the
boundary limitations of the ilisr size (the ilist size for file system, /dev/rp24, was defined as 633
blocks, with each biock containing a maximum of 16 inodes for a maximum of 10430 i-numbers).
This shows that the directory biock is damaged. Because directories change infrequently, as a rule,
there is, in all probability, a good copy on the most recent backup pack.

The next step is to physically mount (on another drive) the latest backup copy for the file sysiam
/dev/rp24 and then to replacs the contaminated biock address (7902) on the originai file system
with the corresponding inode’s block address from the tackup copy.

3. # fsdb (backup file system)
15
i#: 15 md: ad-——-rwxr-xr-x In: 3 uids 2 gid: 0 s0: 0 s1: 560
a0: 1344 al: 3314 22: 0a3: 0ad4: 0 a5: 0a6: 0a7: 0
at: Fri May 27 07: 01: 01 1977 mt: Fri May 27 07: 01: 01 1977

Note that we used the same offset (15i) into the backup file system as we did above for the dam-
aged file system.

4. The contents of the first address block (1344) in Step 3 are displayed below:

-16 - T

1344b.p32d

do: 15 .

dl: 1 ..

d2: - 14 dtablezero
d3: 13 SA

dd: 5002 duable
ds: 808 lock
dé: 0 dtbsv

d7: 9 dailyacct
d8: 4099 diskusage
d9: 7 wmp
Sl 0 x

q

In the above, the *“1334b.p32d™ displays the contents of block 1344 as directory entries: q ter-
minates this command. Note the difference betweesn the above output and the output in step 2:
also the same i-numbers that were reported 2s 201 type errors in step 2 will bave valid direciory
entries once the block transformation is made.

The next step is 1o determine if the block number (1344) on the original file system is unallocated.
This step is necsssary in order to prevent duplicate block numbers in files. The fol;owing com-
mand line will perform this function:

check -b 1344 /dev/rp24 (original file system)
If the response from the above command is
1344 blk; inode = 0 (free)

then biock number 1344 can be used. Otherwise, the biock is already allocated and an alternate
biock number must be used from the free list.

For the case where the same block number is to be reused, thers is a high probability that the con-

tents within the block have not been altered and thus eliminates the ne=d for recopying the block ..

before we use it. The block 1344 on the original file system should be inspected: its contents
should resembie the data contents in Step 4. If differences betwean the contents of the two blocks
are present, it is recommended that the biock be re-copied with bcopy(VIII) before using the block.
However, the contaminated biock address (7902) on the original file system must be changed to
the new biock address (e.g..1344):

. # fsdb /dev/rp24 (original file sysiem)
15i.a0 = 1344
q

The steps below will reconstruct the free list and re-check the file system for accuracy:

6. # icheck -s3 /dev/rp24
7. # check /dev/rp24

/dev/rpl4:

spel 90
files 4769
large 870
direc 251
indir 879
used 33545
last 35989

free 1798

-17 -

4.3 Ipode Disgnestics
The last class of error diagnostics that will be discussed here has the following format:
i# error-indicator

Section 3 defined the framework for this category of diagnostics and identified the types that occur most
frequently. All instances wiil now be sxamined separately and will illustrate methods that can be
employed o repair them. Although each of these types of errors is different in definition and compiex-
ity, they do share some similarity with respect (o their repair processes.

4.3.1 Type-100 Error. We first discuss the *‘type-100"" errors (‘‘type-201"" errors are discussed in Sec-
tion 4.3.4). The example below shows both 100 and 201 type errors.

check /dev/tpd

/dev/rp0:
426 100 <
427 201
429 100
431 201
435 100
438 100
spel 174
files 268 -
large 92 :
direc 29
used 2904
last 6681
fres 3661

The above exampie pertains to the “‘root’ file sysiem. This fact is important, because the root file sys-
temn is a special case: it requires an immediate reboot of the system after any altarations are made ia its
super-block.

The "'type-lOO"'error usually implies that the inode is allccated, but that its link-count is zero. The
process for repairing “‘type-100" errors is to make the inode unallocated. The command clrm(VIID)
(clear inode mode) performs this function. The procedure is as follows:

1. cirm fle-system [i-numbers ...]
e.g.. 4
cirm /dev/rp0 426 429 435 438

2. # icheck -s4 /dev/rp0
/dev/rpQ:
#00- unix
system pwbd0127
Restricted rights:

Ava:tlable user memory = 6910 x 32 words

3. # check /dev/rp0

/dev/rpQ:

427 201
431 201
spel 174
files 264
large 92
direc 29
used 2904
last 6681
free 3670

The firs: command above reconstructs the root free list; because the root fle system is invoived, the
sysiem is then rebooted in single-user mode, and re-checked to ensure that all “‘type-100" errors have
been taken care of. This procedurs can’be applied to any inacrive file system. The rebooting after the
icheck is needed when the “*root™ file sysiem is involved.

4.3.2 Type-377 Error. The next type in this class of diagnostic messages consists of *‘type-377"" errors
(-1 represented in two's complement form). This particular error type indicates that an unallocaxed
inode is representad as an entry in a directory as shown in the exampie below:

check /dev/rpld

/dev/rpl4:
37 missing
1992 377

spel 0
files 11364
large 1069
direc 817
indir 1074
used 47872
last 64998
free 15864

Because this type of error is considered highly communicabie in spreading the infection to other files, it
is crucial that this be attended to immediately. This error can also cause diagnostics with error indicator
values of 376, 375. etc. Instances where the value of the error indicator is other than 377 (i.e.. 376.
375, etc.). are most likely 10 be direcrories or muluply-linked files. When these conditions arise. the

repair procedures become more complex and demand a greater amount of knowledge and experience.’

These errors are also very serious and warrant immediate attention.

The repair process for a multiply-linked file is identical to the procedure for repairing an ordinary fiie
that contains an error indicator value equal to 377,. The differences are that several file names replace
the single name referenced in both step 1 and step 3 of the procedure below and that the error indicator
should equal values of 376, 375, eic. .

When a directory is involved, the error condition becomes compounded. because the directory itself
and its contents (files and subdirectories) are aiso affected. The first siep is 1o determine the complete
path name of the directory. Once the path name has been determined, the entire directory can then be
removed and later restored from the latest available backup medium.

The process of converting an i-number into a path name is accomplished by the command ncheck. This
command will terminaie prematurely when a directory that is needed to complete the construction of
the path name is non-existent. The path name must then be constructed manually, which is difficult
and error-prone.

The procedure for repairing an ordinary file that contains an error indicator of 377 is as follows:
1. The first step is to convert the i-number (1992) into a character name:

\

-19 -

ncheck -i 1992 /dev/rpld
/dev/rpld:
1992 /fl/payload/r43117

2. Once the path name is determined, the file system must now be mountad as an active file system:

mount /dev/rpld4 /mnt
WARNING!! - mounting: <f3> as </mnt>

3. The name of the non-existent file can now be removed:
rm -{ /mnt/f1/payload/rd3117

4. The file system is then unmounted:
umount /dev/rpl4

5. The file system is checked again for accuracy:
check /dev/rpld

/dev/rplé:

spel 0
files- 11364
large 1069
direc 817
indir 1074
used 47872
last 64998
free 15901

4.3.3 Type-177 Error. The error indicator value of 177, 176, 175, etc., indicata that an inode is refer-
encad as an entry by more directories than its actual link count indicates. This problem, similar to the
type above, is serious, and should be corrected immediately. An.example of this error type is shown

below:

check /dav/rp32

/dav/tp32:

612 177
spel ~ 76
files 288
large 101
direc 18
indir 101
used 3236
last 4397
fres 1098

The correction procadure requires an adjustment in the inode’s link-count field. The exact amount is
the difference between the constant, 200, and the inode’s error-indicator. In this particular case, the
difference betwesn the two values is 1 (200, - 177,). The value 200, represents a file having no abnor-
mal characteristics. The error-indicator 177 represents the present status of the file. The most logical
action is to increase the link-count fieid by a value equal to the difference between these two numbers.
The procedure for aitering the link-count feld is as follows:

.20 -

& fodb /dev/rp32

612i

i#: 612 md: ad——rwxr-xr-x In: 1 uid: 0 gid: 0 s0: 0 sl: 32
a0: 891 al: 0 a2: 0 a3: 0 a4: O a5: 0 aé: 0 a7: O
at: Wed Mar 16 13:36:42 1977 mz:: Sat Feb 19 17:39:55 1977

In= 2

q

check /dev/rp32
/dev/mp32:

spel 76
files 288
large 101
direc 18
indir 101 .
used 3236
last 4397
free . 1098

The above procedure first seeks to the starting address of the control block for i-number 612, then sets
the link-count field to 2 (1 more than it was) and finally re-checks the file system to insure the pro-
cedure worked correctly. .

4.3.4 Type-201 Error. The last type of error diagnostic consists of the error indicator 201. This type of
error implies that a directory entry is ‘‘missing’’. it is nor serious and does nor require immediate atten-
tion. However, the data blocks associated with the inode will remain unavailable untii the problem is
solved. The ‘‘missing™ directory entry can be either an ordinary file or a directory. Therefore, the first
" step involves identifving the i-number as either 2 directory or an ordinary file. This identification pro-
cess is accomplished by examining the mode field in the inode structure for the particular i-number. If
the inode is identified as a directory. its repair procedure is deferred until the end of this section. Oth-
erwise, the inode is an ordinary file and its data blocks can be salvaged by copying the inode’s i-number
in an empty entry in some directory. The directory which is involved in this process is called **201dir™;
it resides as a top-level directory under the root directory of each file svstem on all of the PWB/UNIX
- Systems. An exampie of this error type is shown below:

check /dev/rp0

/dev/rp0:

427 201
431 201
spel 174
files 264
large 92
direc 29
indir 92
used 2903
last 6681
free 3650

The repair process for this error type is different from all the previous procedures because a single-user
environment is not required. The repair procedure is as follows:

1. The initial step is to identify the i-number of the directory *201dir’":

Is -id /201dir
92 /201dir
chdir /201dir

2. We are now able to locate ourseives at that position in the ifisr of the root file system:

-21-

fsdb /dev/rp0
92i
#i: 92 md: ad——-rwxr-xr-x In: 2 uid: 0 gid: 0 sO: 0 sl: 112

a0: 2480 al: 0 22: 0 23: 0 a4: 0 a5: 0 26: 0 a7: 0
at: Wed Mar 30 11:37:12 1977 mr: Mon Feb 28 07:40:09 1977

3. The next step is to position ourselves in the file system at address addr{0] in the 201dir’s inode or
control block structure. The value of addr{0] is indicated by the **="" in the above inode structure.

a0b.p4d

d0: 92

dl: 1 ..

d2: 0 446

d3: 0 «xi1 .

The *a0b” is 2 mnemonic notation for addr{0]. The *‘pdd’” prints 4 entries in the **201dir’" dires-
tory. The decimal number 92 is the i-number of the **201dir" directory. The **.” represents the
current directory (the result of step 1). The **..” represents the parent directory of **201dir™ its i-
aumber is 1, which represeats the *‘root’” direstory or **/”°. The remaining two entries (d2 and
d3) are currently nuil. Their names are 446 and x/, respectively. Notice their i-numbers are both
zero and currently the files themselves are non-existent. These two empty entries, 44§ and x1, will
soon contain the i-numbers of the two 201 errors.

a0b.d2= 427
dZ: 427

4. We assign the i-number 427 to the nuil entry 446, which now becomes the name of that orphan.
Its full path name is /201dir/448. We repeat the procedure for the orphan i-number 431;

a0b.d3= 431
d3: 431

5. We now terminate the command invoked in step 2 and identify the respective owners and sizes of
the two files /201dir/446 and /201dir/x1, and restore them to their owners.

#1s -] 446 x1
ofWaseeewea] deamn 3072 Feb 9 08:18 446
W 1 atrs 3072 Feb 9 08:37 xI .

e 99

The name fieid of a directory eatry, other than **.”” and **..””, can be changed to represent any charac-
ter string. The string is limited to a maximum of 14 characters. For instance, the present name of
directory entry d2 in /201dir is 446: the foilowing step will change the name from 444 to orphand46:

a0b.d2.nm = orphand4§

The procedurs in steps 1 through 5 above assumes the presence of empty (nuil) eatries in the
“201dir™ directory. If these empty entires are not present, the user must then make them availabie
before steps 4 and § can be executad. Step 3 notifies the user of the existence of such null entries by
printing their names. If they do not appear, the following steps will create these missing aull entries:

q

cp /dev/aull x
cp x xl
#cpxl x2
#mxxl x2

The above terminates the /5db command of siep 2 and creates three empty files in 201dir, (x, x1, x2),
which are then immediately removed consequently producing the null entries in 201dir. The repair
procedure can now be restarted at step 2. This procsdure is not compiex but is very suscsplible to
human mistakes; therefors, it is necessary that each step be throughly understood.

The affectad i-aumber of 2 “type-201°° error, as well as the previous error types (177, 100, 377, etc),
can apply to a directory, a special-file, or no file at ail, in addition to an ordinary file. The various types of

PWB/UNIX files and their description are given in [1]. The first word in the i-number’s inode struc-
ture identifies the fiie type and indicaies inode allocation and file permissions:

file type:
directory d
character device ¢
block device b
large file 1
ordinary file -
inode allocation a
file permissions: —-
owner
group
others

e.g..
fsdb /dev/rp0 '
15i ~~
i#: 15 md: ade—-rwxr-xr-x In: 2 uid: 11 gid: 1 s0: 0 sl: 3050
a0: 660 al: 67] a2: 724 23: 824 a4: 34 25: 1056 a6: 0 a7: O
at: Thu May 12 16:05:10 1977 mt: Wed May 25 10:53:11 1977
q .

When a “type-201°" error is identified as a directory, the repair process is different than for an ordinary
file. The procedure is simiiar 1o that for resolving a **177"" error diagnostic. The directory's iink count
must.be decreased by a value equal to the difference between the error-indicator value (201;) and the
constant 200,. namely by 1.

433

s. ACKNOWLEDGEMENTS

I wish to thank Rich Graveman and Larry Wehr for suggastions on clarifying and simplifving some of ~
the more compiex procedures. I would also like 10 express my gratitude to T. A. Dolotuta for reviewing
several drafts of this document and 10 Margarita Rivera for her help in its preparation.

6. REFERENCES

[1] D. M. Riichie and K. Thompson. The UNIX Time-Sharing System. Comm. ACM 17(7):365-75
(July 1974).

[21 T. A. Dolotia. R. C. Haight, and E. M. Piskorik. eds.. PWB/UNIX User's Manuai—Editon 1.0,
Bell Laboratories (May 1977).

