[
@ Bell Laboratories Cover Sheet for Technical Memoran%um

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEI 13.9-3)

Title: Interprocess Communication Mechanisms in Date: November 21, 1977
CB-UNIX
T™: 77-5223-1
Other Keywords: UNIX File System -§223-771121.01TM
Pipes
Named Pipes
Signals
Semaphores
MAUS
Messages
Author(s) Location Extension Charging Case: 49359-20
J. C. Kaufeld Jr. CB 2C-249 4522 Filing Case: 49075-01
ABSTRACT

A discussion of interprocess communication mechanisms in CB-UNIX!' is presented. In
particular: files, pipes, named pipes, signals, semaphores, MAUS and messages are dis-
cussed. For each mechanism, a general explanation is given, the user interface is detailed
and then limitations and potential problems are presented. The discussion applies
specifically to CB-UNIX, a version of the UNIX operating system developed in Columbus
for use in real-time oriented applications. The explanations do not necessarily apply o
UNIX operating systems in general, however, most versions of the UNIX operating system
have very similar implementations of files, pipes, signals and messages.

ERRATTA

This memo is a corrected copy issued June 19, 1978. This copy corrects a number of
misleading comments and outright errors. In addition, references to the CB-UNIX program-
mers manual are corrected to refer to the correct section number.

Pages Text: 22 Other: 1 Total: 23

No. Figures: 0 No. Tables: 0 No. Refs.: §

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

CB-UNIX Interprocess Communication Mechanisms

CONTENTS

. OVERVIEW ., .

1.1 INTRODUCT ION
1.2 MECHANISMS .
1.3 RESTRICTIONS .
1.4 SYSTEM CALLS .
1.5 TRADEOFFS .

. FILES .

2.1 File Mampulatlon Subroutmes (parnal lxst)
2.2 Notes: .

. PIPES .

3.1 Pipe Mampulanon Subroutmes
3.2 Notes:

. NAMED PIPES .

4.1 Named Pipe Mampulauon Subroutmes
4.2 Notes:

. SIGNALS .

5.1 Signal Mampulatxou Subroutmes
5.2 Notes: "~ .

. INTERPROCESS MESSAGES

6.1 Message Manipulation Subroutines:
6.2 Notes:

. SEMAPHORES . .
7.1 Semaphore Manipulation Subrounnes: .
7.2 Notes:

. MAUS .

8.1 MAUS Mémpulanon Subrouunes
8.2 Notes:

. REFERENCES .

CO 0000 Oh 4 §o LI LILIND — =

Pt b Pt
[e= R e R en }

P et
L) D —

— i ek gt et et
) ~3 -~ ON A

S — —
(= el e

[
~

Bell Laboratories

subject: Interprocess Communication Mechanisms in CB-UNIX date: November 21, 1977
Case: 49359-20
File: 49075-01 from: J. C. Kaufeid Jr.
CB.5223

2C-249 x4522

™: 77-5223-1
5§223-771121.01TM

ABSTRACT

A discussion of interprocess communication mechanisms in CB-UNIX!' is presented. In
particular: files, pipes, named pipes, signals, semaphores, MAUS and messages are dis-
cussed. For each mechanism, a general explanation is given, the user interface is detailed
and then limitations and potential problems are presented. The discussion applies
specifically to CB-UNIX, a version of the UNIX operating system developed in Columbus
for use in real-time oriented applications. The explanations do not necessarily apply to
.UNIX operating systems in general, however, most versions of the UNIX operating system
have very similar implementations of files, pipes, signals and messages.

ERRATTA

This memo is a corrected copy issued June 19, 1978. This copy corrects a number of
misleading comments and outright errors. In addition. references to the CB-UNIX program-
mers manual are corrected to refer to the correct section number.

MEMORANDUM FOR FILE

1. OVERVIEW
1.1 INTRODUCTION

The discussion of interprocess communication mechanisms presented in this paper is directly appli-
cable oniy to CB-UNIX. CB-UNIX is a version of the UNIX operating system which was developed in
Columbus (hence the CB prefix) for use in real-time applications. However, the discussions of files.
pipes, signals and messages are representative of UNIX operating systems in general. The discussions
of named pipes, semaphores and MAUS apply only to CB-UNIX because those mechanisms. as
described, exist only in CB-UNIX. Be cautioned, however, that even for mechanisms which exist in
both CB-UNIX and UNIX operating systems in general, the CB-UNIX mechanism is likely to differ
subtly because of the emphasis on real-time.

1. UNIX is a Trademark of Beil Laboratories.

-’2' v ~

As a final disclaimer, this discussion does not include impiementation within CB-UNIX, system
configuration instructions or an analysis of the overhead involved. Also, it is hoped that the extensives
revisions and reviews which this document has undergone have lessened the number of errors and -~
omissions but it's unlikely that this paper is "bug free".

1.2 MECHANISMS

The following is a synopsis of the major interprocess communication mechanisms available in
CB-UNIX. Each mechanism is discussed in greater detail later in this paper. References are of the i
form: name(section) - where section refers to a tab in the CB-UNIX Programmer’s Manual[1].

_ FILES CB-UNIX files, which are identical to UNIX/TS files[2], can be used as a general purpose
data communication mechanism. A process can create or modify files as necessary; given
that a second process is aware of the existence of the file, it can read information from the
file put there by the first process. In fact, the mere existence of a file can be used as an
interprocess flag.

References: open(2A), close(2A), dup(2A), creat(2A), Iseek(3A), seek(2A), read(2A), -~
write(2A), stat(2A), link(2A), unlink(2A), chmod(2A), chown(2A),
access(2A), smdate(2A)

PIPES A pipe is a unidirectional data transfer mechanism which has a maximum capacity of PIP-
SIZ+! bytes. Pipes are usually used to transfer data between processes but the pipe
mechanism allows a single process to use a pipe as, for instance, a temporary storage area
with a PIPSIZ byte capacity. Processes which wish to use the same pipe must be related;
implying that either one process is the parent of the other processes or that all processes
have had a common ancestor. Pipes are created using the pipe system call; the file descrip- .
tors returned by pipe may then be passed by a process to its children using the call or fork
system calls. Once set up, standard CB-UNIX calls such as read, write, and close may be -
used to manipulate the pipe. Unless all 1/0 to a pipe is in terms of the same block size, =
having more than one reader of the pipe is certainly confusing; multiple pipe writers with
a single pipe reader establishes a funnel. 7~

References: pipe(2A), close(2A), read(2A), write(2A), fork(2A), call(2A), exec(2A),
fstat(2A)

NAMED PIPES Named pipes are similar to pipes except that the processes involved need not be
related. Rather than using the pipe system call to set up the pipe, the pipe is pre-defined_
at system configuration time; open is used to set up the pipe. Two major differences
between pipes and named pipes are that named pipes are never allowed to exceed PIPSIZ
bytes and named pipe write requests never sleep.

References: open(2A), close(2A), read(2A), write(2A), fstat(2A)

SIGNALS Enables processes to interrupt each other and to do interrupt processing specific to the sig-
nal received. Before the signal is received, the target process can choose to ignore the sig-

nal, catch the signal, or let the system handle it as it sees fit (the default action is usually ~
to abort the receiving process).
References: kill(2A), signal(2A), setpgrp(2A), getpid(2A), getppid(2A), sleep(2A),
alarm(2A), reset(2A)
SEMAPHORES The classic resource protection mechanism. Enables cooperating processes to control
access to a resource or to synchronize their actions.
References: event(2A) -~

MAUS Allows processes to share memory(3]. MAUS is divided into sections; each of which may
be individually attached/detached from a process. Attaching a section requires a free
memory management register. Since processes are limited to 8 data space registers and

1. PIPSIZ is a system defined parameter. Its standard value is 4096. A

-3-

since at least two data register are needed for the normal data and stack; there will be at
most 6 registers available for MAUS sections.

References: maus(2A), break(2A)

MESSAGES Enables processes to communicate in terms of "typed” data packets. The messages are
sent by type and queued at the receiving process. The receiver may request any message
(in which case he gets the oldest message on the queue) or a particular message type (in
which case he gets the oldest message of that type).

References: msg(2A)
1.3 RESTRICTIONS

As each mechanism is presented in detail, the problems and restrictions of that mechanism will be
extensively discussed. There is, however, another problem which is inherent in the use of messages
and signals; in order to be used. the process id of the target process must be known. Since process ids
are assigned by CB-UNIX at the start of execution, process ids must be communicated by some inter-
process communication mechanism. At present there is no direct way for this process id to be com-
municated to another process unless the processes in question are related (see call(2A). fork(2A}.
getpid(2A), and getppid(2A)). There is a proposal to remedy this situation(4] but no implementation
date has been set. However, it is possible to use named pipes, files, MAUS or even semaphores to get
around this problem.

Most of the interprocess communication mechanisms to be discussed are system wide resources.
This implies that the sysiem designers must plan for the amount of resource to be configured into the
system and set up conventions for its use. Signals, semaphores. named pipes. and MALUS fall into this
category. With the exception of pipes, which exist separately for each process which creates them. all
interprocess communication mechanisms require system wide agreements as to their use.

1.4 SYSTEM CALLS

The system calls through which the user interfaces with interprocess communication mechanisms
follow certain conventions. A -1 return means that some sort of error has occurred. the oniy excer-
tion to this convention is for semgrp and only because a —1 is a legal return from serpgrp (see section
5.1). When a —1 is returned by a system call, a global variabie, errno, is filled in by the CB-UNIX sys-
tem call interface. This global variable, available in any CB-UNIX process. is used to return specific
error codes to supplement the —1 return. Further documentation on errno is available in the CB-UNIX
Programmer’s Manual. In particular, the introduction to section 2, which lists error code mnemonics
and the actual error code values, is recommended.

1.5 TRADEOFFS

A companion memorandum which describes the tradeoffs between the various interprocess comi-
munication mechanisms described here is in preparation(S].

2. A process can operate in either separated I&D space mode in which case 8 memory management regisiers are available for
datw and 8 are available for text; or in non-separated mode in which a total of 8 memory management registers are availsble
for text + data. .

2. FILES .

CB-UNIX files represent the most general way that data can be shared between processes. Since
most readers are probably familiar with the concept of files it would be unwise to go into any great
depth in describing the various ways in which files can be manipulated. To quickly summarize,
CB-UNIX files can be read, written, positioned, created, opened, etc.,.; given that a group of processes
all know of the same file, and have established conventions for its use, any type of data can be com-
municated using the file. Synchronizing the use of the file can be accomplished through one of the
other interprocess communication mechanisms or even through another file.

2.1 File Manipulation Subroutines (partial list)

open(name,access)
char *name; int access;

The file name.is opened with the permissions specified in access The file descriptor returned
by the open system call must be saved for later use by the read, write, close, etc.,. system calls.
Access may take on the following values:

access: 0 = read permission.
1 = write permission.
2 = read/write permission.

returns: =0 = file déscriptor.
~1 = error.

See Also: open(2A), chmod(2A), chown(2A), access(2A), stat(2A), dup(2A), Is(1A)
close(fildes)

int fildes;

The file associated with fildes is closed. The file descriptor fildes is then available for
re-allocation by the system.

returns: -1 = error.
See Also: close(2A)
dup(value)

struct { char lobyte; char hibyte; } value;

The file descriptor in value.lobyte (must have been returned by a previous open, creay, etc.,.) is
duplicated. Dup will attempt to allocate the new file descriptor starting at value. hibyte*.

returns: 20 = file descriptor.
—1 = error. (invalid input file descriptor or no free file descriptor = value. hibyte).

See Also: dup(2A)

creat (name, mode)

char *name; int mode;

1. In order to understand the nature of dup it is necessary to know that for each open a file structure is allocated within the
systemn and a pointer to this structure is entered into an array maintained on a per process basis. The index associated with
this array entry is a file descriptor. When a file descriptor is duplicated, the file structure pointer in the array at the index
associated with the original file descriptor is copied to the new file descriptor index. Both file descriptors then point to the
same file structure, i.e. they refer to exactly the same file. For instance. in order to close the file both file descriptors must be
closed Dup in conjunction with close and open may be used to manipulate file descriptors as desired. For instance it is often
necessary to make some specific file the standard output (assumed to be file descriptor 1 by the CB-UNIX support routines
like printf(3A) and putchar(3A)).

.5.

The file name is created. The mode of the file is mode. If the file existed its mode is not
changed but the file is truncated to 0 length. Mode is created by ORing together some combi-
nation of the following bits:

04000 set user ID on execution.

02000 set group ID on execution.

01000 save text after execution (root only).
00400 readable by owner.

00200 writable by owner.

00100 executable by owner.

00070 read/write/execute by group.

00007 read/write/execute by others.

See Also: creat(2A), chmod(2A), chmod(1A), chown(2A), chown(1A), Is(1A), access(2A).
passwd(5A), group(5A)

unlink (name)
char *name;

The link? name is removed. If name was the last link to a file, the file is removed.

returns. -1 = error.
See Also: unlink(2A), In(1A), link(2A), rm(1A)
link (namel,name2)

char *namel,*name2;

A link with name2 to namel is created. Namel must already exist and name2 must not exist.
returns: -1 = error.
See Atso: unlink(2A), link(2A), creat(2A), In(1A), rm(1A)

read (fildes, buffer,bytcnt)

int fildes; char *buffer; int bytcnt;

Data is read from the file corresponding to fildes and placed in the core area starting at buffer
until either bywnr bytes are read, an error is detected or an end of file is found.

returns: >0 = # of bytes read into buffer.
=(= end of file (no data placed in buffer).
-1 = error.

See Also: read(2A), getc(3A), getchar(3A)
write(fildes, buffer,bytcnt)

int fildes; char *buffer; int bytcnt;

Data is written from core starting at buffer for byrcnt bytes. Writing continues until byrent bytes
have been written or an error is detected.

2. Linking is a subject whose understanding requires an in-depth discussion of the CB-UNIX file system. However. by way of
explanation, any file may have many names which are created using link(2A) or In(1A). Ali of these names refer t0 the
same logical data storage area, i.c. they are different names for the same file. When multiple names exist, the file 1s not
removed until the last name is removed. Link cannot create a file, the file must aleeady exist: link can only make another
name for the file.)

returns: >0 = # of bytes written.
-1 = error.

See Also: write(2A), putc(3A), putchar(3A), printf(3A)

seek (fildes,offset,type)

int fildes,offset,type;

The file corresponding to fildes has its read/write pointer positioned as specified by offser and
ppe. The meaning of offser is modified by ope as follows: (pos = current position of
read/write pointer)

ype New File Position

0 offset

1 pos + offset

2 file size + offset

3 offset x 512.

4 pos + (offset x 512.)

5 file size + (offset x 512.)

returns: —1 = type invalid, seek error or bad fildes

See Also: seek(2A), Iseek(3A)

lseek(ﬁides.lngoﬂ'set.type)

int fildes; long Ingoffset; int type;

Lseek positions the file associated with fildes at Ingoffser according to o/pe. Type has the same
meaning as for seek except that only 0, 1 and 2 are valid.

returns: -1 = type invalid, seek error or bad fildes

See Also: Iseek(3A), seek(2A) _

2.2 Notes:

NOFILE and FCLFILE, system defined parameters, control the number of files which are simul-
taneously available to a single process. FCLFILE, whose default value is 15, is the number of open

files which may be passed to a child process. NOFILE, whose default value is 20, is the number of

files which a single process may have open.

In order to enable a process to open more than FCLFILE files, an open call of the form: open(=1,0)
must be done.

Maximum file size is 65535 blocks, 512 bytes/block.
The name of a file is restricted to 14 characters.

Files past 8 blocks (4096 bytes) are inherently slower because a level of indirection is added by the
system. The file structure maintained by CB-UNIX has room to store 8 block addresses; once 8 is
exceeded, the blocks in the file structure become blocks of block addresses.

Once a file gets large it remains large until removed. Files cannot be shortened.

Space allocation in a file is deferred until darta is read or written. This means that if you create a
file, seek 1o block 4000, and then write some data; no space is allocated for blocks 1 to 3999. Their
block addresses in the block map for the file are 0 - which signifies an all zero block. If you read
one of those blocks, data values of zero will be returned and space allocated.

If you mount a file system read-only and then access a non-allocated block on a file which is less
than the length of the file (see the above description), the system will allocate space for the block

«7-

on the disk and write a block of zeros to that space, update the file system super block, and then not
update the file inode. The above sequence results in a bad free list on the read-only file system.
NOTE: This is considered a bug and will be fixed.

3. PIPES

A pipe is a uni-directional communication device used to pass information between related processes
. i.e. parent-child, siblings, parent-grandchild, etc.,. Process relation is necessary because the file
descriptors for the read and write ends of the pipe can only be passed on by the fork, call, or exec sys-
tem calls. In using pipes, information is written into the write end of the pipe using the write file
descriptor with any standard CB-UNIX write routine (e.g. write, printf, putchar, e.,.) and is read from
the read end of the pipe using the read file descriptor and any standard CB-UNIX read routine (e.g.
read, readf, getchar, gerc, etc.,.).

3.1 Pipe Manipulation Subroutines:
pipe(fildes)

. int fildesl2];

Opens a pipe for reading and writing. The pipe read file descriptor is returned in fildes(0}, the
write file descriptor is returned in fildes(1].

See Also: pipe(2A), read(2A), write(2A), close(2A), fstat(2A)
3.2 Notes:

e PIPSIZ, the maximum byte size of a pipe, is a system‘ define. Normally, PIPSIZ is set to 4096 bytes
which is the maximum size of a small file. If PIPSIZ is made larger then 4096, than pipes will
always become large files if the writer stays ahead of the reader.

o Be careful when using buffered writes 1o a pipe. Remember that a pipe reader will not 'see any of
the buffered data until the writer has flushed a buffer 10 the pipe. For instance, when using the
standard library routine purchar, to a file descriptor other than 1 (by definition, puichar to file
descriptor 1 is unbuffered); the data will be buffered until 512 characters have been purchared or
until a Aush is done. Any process attempting to read the other end of the pipe will roadbiock until
data actually appears in the pipe.

o Pipes are implemented as non-associated CB-UNIX files. That is, they are normal files with disk
space allocated when necessary on the root device of the system. However, the inode allocated for
the pipe has no appearance in any directory and no name. Thus, if a system crashes with a pipe
open, its inode will show up in a subsequent check(1B) as an unreferenced inode.

e Reading a pipe whose writing end is closed returns an end of file.

e Writing a pipe with no read file descriptors (all read file descriptors have been closed) causes a signal
13, SIGPIPE, to be sent to the writing process. After the signal has been processed, the write will
return an error (errno = EPIPE).

e The system call fstat(2A) can be used with the file descriptor for either the read or write end of the
pipe. When used with the write end of the pipe, the size returned is the number of bytes left until
PIPSIZ bytes is reached. When used with the read end of the pipe, the size returned is the number
of byies of data in the pipe.

¢ In actuality, a read does not remove data from a pipe; it merely advances the read pointer. This fact
has implications for pipe disk overhead which will be discussed later. In a similar fashion, a write
advances the pipe write pointer. When the write pointer reaches PIPSIZ the write roadblocks; it
does not matter that reads may be trailing the writes by only 1 byte and that effectively there might
be only 2 bytes in the pipe. Whenever the read pointer catches the write pointer, the read and write
pointers are reset to zero and any disk blocks associated with the pipe are released. Thus it is
guaranteed that at least once every PIPSIZ bytes, the read and write pointers will be equal and the
pipe pointers will be reset to zero.

e Once a process writing to a pipe roadblocks, it remains roadbiocked until the pipe completely emp-
ties, i.e. the read pointer catches the write pointer, unless a signal is received.

.9.

e All writes, of less than PIPSIZ bytes, are guaranteed to be atomic. This means that the buffer of
data referenced in a single write will be put onto the pipe contiguously thereby preventing multipie
writers from having their data scrambled as it is put onto the pipe. A result of this principle is that
the size of a pipe can exceed PIPSIZ bytes. Single writes of more than PIPSIZ bytes are broken up
into PIPSIZ byte blocks and the writing process is roadblocked until all blocks have been written.
Writing more than PIPSIZ bytes in a single write from a process - when more than one process is
writing the pipe - could scrambie data in the pipe.

o Pipes use the same mechanism for 1/0 as any other CB-UNIX file. A consequence of this fact is
that whenever a full block of data (512 bytes) is in the pipe, the system will initiate 1/0 on the data.
This means that the data in the pipe will be written to disk if the pipe is not completely emptied
before the I/0 reaches the top of the disk queue (which occurs very quickly). Additionally, even if
less than 512 bytes of data have been written to the pipe, if the data rests in a pipe for longer than
30 seconds it will be written to disk by a program known as update.

e If the root file system runs out of space during a pipe write. the pipe write may return an error after
some. but not all, of the data has been placed into the pipe. Unfortunately, there is no way of
determining the amount of data in the pipe after an error of this sort occurs.

-10 -

4. NAMED PIPES

A named pipe is a pipe which can be used by non-related processes. The existence of a named pipe

is established by the system configuration and access is obtained by opening the CB-UNIX path name
associated with the named pipe. Conventionally, named pipe path names are of the form:
/dev/pipe/ name, the remainder of this section will use nmpipe for the path name of a named pipe.

4.1 Named Pipe Manipulation Subroutines:

The open system call is used to set up the named pipe, nmpipe. The first open of nmpipe causes the
system to initialize a pipe and associate it with nmpipe, subsequent opens of nmpipe establish new file
descriptors which refer to the same pipe. Only one file descriptor is necessary for both reading and
writing a named pipe: however, the standard case is to use separate file descriptors, usually in different
processes.

open (nmpipe,access)
char *nmpipe; int access;

The named pipe associated with the path name nmpipe is opened for 1/0 based on access

access. 0 = reading.
1 = writing.
2 = reading/writing.

returns: =0 = file descriptor of named pipe.
-1 = error.

See Also: open(2A), mknod(1A). mknod(2A), pipe(2A),stty(2A),fstat(2A)
4.2 Notes: :

Named pipes have many of the same restrictions and problems as pipes. The differences are as
noted in the following list.

e NNAMPIPE, a system define parameter, controls the number of named pipes available. Its defauit
value is 10. :

o By default, named pipes should never return an EOF; however, some kinds of disk errors will cause

an EOF to be returned. Also, if it is not desired to block when reading an empty named pipe it is
possible to get and immediate EOF returned. See stty(2A).

e A write on a named pipe will never cause a SIGPIPE.

¢ By default, writes on named pipes do not sleep: if there is not enough room in the pipe to hold the
" data, no data is placed in the pipe and a zero is returned from the write. This feature may be dis-
abled. See sty (2A).

o If a named pipe is set to return a zero when a write to a full pipe is attempted, it will never be
allowed to fill past PIPSIZ bytes. An implication of this fact is that a write of more than PIPSIZ
bytes to a named pipe will always return a zero.

e Named pipes are intended for communication between unrelated processes and are well suited for
the problem of funneling output from several processes into a single reading process.

¢ The number of named pipes is defined when the system is configured and nodes (see mknod(1A) -

and mknod(2A)) must be created for each pipe using the path name convention outlined above.

<11-

5. SIGNALS

Signals are used to provide interprocess interrupt capability. When a process receives a signal. its
current processing is interrupted and control is given to a signal processing routine. A process may
choose to ignore a signal, catch a signal or allow system default action (usually abort the process).
Most of the allowable signals have specific purposes. The following mnemonics have been established
in order to aid in remembering those purposes.

No. Mnemonic Description Default Action
i SIGHUP hangup abort

2 SIGINT rubout (DEL) abort

3 SIGQIT quit (FS) abort/core
4 SIGINS iltegal instruction abort/core
5 SIGTRC trace/breakpoint abort/core
6 SIGIOT 10T instruction abort/core
7 SIGEMT EMT instruction abort/core
8 SIGFPT floating point error abort/core
9 SIGKIL uncatchable termination abort

10 SIGBUS bus error abort/core
11 SIGSEG segmentation violation abort/core
12 SIGSYS bad system call abort/core
13 SIGPIPE end of pipe abort

14 SIGCLK alarm clock expired © abort

15 SIGTRM catchable termination abort

16 unused abort

17 unused abort

18 SIGCLD death of a child * ignore

19 SIGPWR power-fail restart ~ ignore

Under the default action column, abort means that the process is terminated, core means that a core
image of the process, at the time of the signal, is produced, and ignore means that the signal is ignored.

The SIGHUP, SIGINT, and SIGQIT signals are produced by the system as a result of terminal
action for processes which are associated with a terminal. They are provided so that:

SIGHUP: A process will not continue to run after the controlling terminal has been hung up.

SIGINT: A process can be forced into another processing mode or aborted when it is not accepting
commands from the terminal, i.e. you may strike the 'del’ or 'rubout’ key on the terminal
at any time and the signal will immediately be produced.

SIGQIT: An alternate signal, usually used as an unconditional kill, may be produced at the terminal
to stop terminal controlied processes which have run amok. The core produced by SIGQIT
is often used in debugging. Like the 'del’ key, the 'fs’ key may be struck at any time and
the corresponding signal will be produced immediately.

SIGCLD, the child death signal, is used to inform a parent process immediately upon the death of a
child. will be immediately aware of the death of a chiid. Because a parent may not care about a child.
its default action is to be ignored. SIGCLD is discussed in detail in the Notes section.

Normally, in order to send a signal, the process id of the target process must be known. There are a
variety of ways in which process ids can be communicated. For instance, a file couid be established in
which each process puts its process id in a particular spot, 2 named pipe could be used to pass all pro-
cess ids to a signal-dispensing process, etc.... For related processes, i.e. processes with common ances-
try or parent-child relations, fork(2A), getpid(2A), and getppid(2A) system calls can be used to obtain
process ids.

Signals can also be sent to a process group. For instance, normally all processes started at a particu-
lar terminal belong to the same process group. When a terminal signal, such as SIGHUP, is generated
by a terminal, it is sent to the process group associated with the terminal. Therefore. all processes

-12-

started at the terminal will get the signal. A process may change its process group to any number it
desires using setpgrp(2A). Process groups defined by system designers should be in the range —101 to
—32767 to avoid conflict with CB-UNIX conventions.!

5.1 Signal Manipulation Subroutines:
signal (sgn,&catch)

int sgn; CATCH catch(); (typedef ype CATCH)

_ Notifies CB-UNIX that the subroutine catch is to be called. when the signal sgn occurs. Carch
will be called with the argument sgn when that signal is caught. Thus, one signal catch routine
can catch multiple signals. To ignore a signal, call signal with &carch = 1. To restore the sys-
tem default action on a signal, call signal with &carch = 0. For catching signals, no distinction
is made at the receiving process between signals sent through the process group to which the
process belongs and signals sent to that process through its process id. In other words, the
receiver cannot determine the identity of the sender.

returns: old value of carch
—1 = error (errno = EINVAL if illegal sgn).

See Also: signal(2A), reset(2A)
kill (signo,target)

int signo,target:

There are several different cases of kill:

kill (target,+signo) Sends the signal signo t0 the process with process id rarger if the sending ..
process’s uid matches the uid of rargez If the sending process’s uid is root the signal -
is sent unconditionally.

kill(0,+signo) Sends the signal signo to all members of the process group of the sending pro-
cess whose uids match the uid of the sending process. If the sending process'’s uid is ™
root all members of the sending process’s process group receive the signal. Note that ~
the sending process also receives the signal. -

~

kill(—1,+signo) Sends the signal signo to all processes whose uids match the sending process’s
uid. If the sending process’s uid is root, all processes except 0 and 1 will receive the
signal.

kill(target,—signo) Sends the signal signo to all processes in the process group rarger whose
uids match the sending process’s uid. If the sending process’s uid is root, all
processes in the process group rarget will receive the signal.

kill(0,—signo) Sends the signal signo to all processes whose process group matches the sending
process’s process group and whose uids match the sending process’s uid - except that
the sending process will not receive the signal. If the sending process’s uid is root, all
processes whose process group matches the sending process’s process group - except
the sending process - will receive the signal.

kill(target,0) Reserved for future expansion.

returns: =0 = all ok.
—1 = no signal sent (errno = ESRCH).

See Also: kill(1A), kill(2A)

1. Positive process groups are used as default process group numbers by CB-UNIX and process groups in the range -1 t0 —100
are reserved for sysiem programming.

-

/‘

.13 -

setpgrp(group)
int group;

Tells the system to set the process group of the calling process to group. The old process
group of the process is returned. If group = 0, then the group is not changed and the only
action is to return the current process group.

returns: old process group.
5.2 Notes:

e NSIG, a system define parameter, controils the number of signals; Tﬁe maximum allowable value of
NSIG is currently 33, the minimum vaiue is 19, the default value is 20. The number of signals
actually available is NSIG-1, a number that only the most picayune rationale can justify.

e In the case of simultaneous signals, CB-UNIX will process SIGINS first and then the remaining sig-
nals in signal number order.

o Except for SIGINS and SIGTRC, caught signals are restored to default action when processed by
CB-UNIX. Thus a signal catch subroutine should probably reset the signal catch as its first instruc-
tion. SIGINS is used by processes which emulate floating point on non-floating point machines.
SIGTRC is used by adb(l1A) in process tracing.

e Except for SIGCLD, signals are not queued. For instance, if two processes send a third process the
same signal simultaneously, the third process will see only one instance of the signal.

e SIGCLD, used to notify a process of the death of a child, is a very special signal. When a process
dies, SIGCLD is sent to its parent process and the dying process enters the zombie state, that
twilight zone between life and death. At this point, the process is really dead but certain cleanup
activity must be performed by its parent in order to ailow its soul to rest. The default action on
SIGCLD is to ignore the signal; this leaves the child process in its zombie condition, i.e. not really
fully dead. If, at some time in the future, the parent process specifies an action on SIGCLD, the
signal will be sent-to the parent again. If the process has asked the system to ignore SIGCLD. the
action is a little different. In this case, the child process is mercifully put to rest and does not
remain in the zombie state. Note that there is a difference between the default ignore and a process
requested ignore. Finally, if the process is catching SIGCLD, the carch routine is activated by
SIGCLD. In this case, the child remains in the zombie state until the parent does a war If a
parent process dies without waiing, leaving children in the zombie state; those children are inher-
ited by the CB-UNIX init process which then becomes responsible for their well being. In fact.
whenever a parent dies, all of its children are inherited by init regardless of their current state.

o SIGTRM is used by init(1B) in changing the run state of the machine. If a particular process needs
to be killed because it is not supposed to be running in the current run level of the machine. init will
send it a SIGTRM signal. If the process does not die within 20 seconds, init will send it a SIGKIL
signal. For more on run levels see lines(5A) and init(1B).

e SIGTRM is the default signal used by the kill command. See kill(1A).

e Caught signals may interfere with certain system cails. In order to understand the consequences of
this statement it will be necessary to go into some detail about how signals are actually handled.
When the signal is sent, the receiving process has a bit set which 'posts’ the signal. The signal is
posted without regard to its eventual disposal by the receiving process - because the data necessary
for that determination is not available until the receiving process is active. If the receiving process
is in the wait state,? when a signal is posted, it is placed in the run state so that signal disposal can be
determined. If the requested action was to ignore the signal, the process will reenter the wair state.
If the process is in the sleep state,® when a signal is posted, it is left in that state. After the skeeping

2. A process is put into the war state on low priority system calls: i.e. ones which are expected to be of long duration or are for
general system resources. Some examples are [/0 to a character device such as a terminal. pipe roadblocks, and semaphore
activity.

-14-

process enters the run state, which occurs after the reason for the slkeep has disappeared, the system
examines its signal action area to determine signal disposal. If the requested action” was to ignore,
the system causes processing to resume without regard to the signal. If the process was in the run
state when the signal was received, all is as expected: the signal is either ignored or processed. The
potential problem only occurs when the process is in the wair state and is catching the signal which
was posted. In this case the process cannot reenter the wair state. Instead, the system call is
aborted and a —1 is returned, with errno = EINTR, after the users catch routine is executed. Any
system call so interrupted may be reissued from the beginning, unfortunately, in the case of a write
10 a character device some of the characters may have already been written; it is not currently possi-
bie for the user to determine how many. This is the only case in which an interrupted system call
may not be restarted successfully.

SIGPWR is sent to all processes upon completion of the CB-UNIX power-fail restart procedure.

SIGCLK is used by sleep(2A). Before using it read the sieep manual page. Any signal may be used
by a process for its own purposes. Of course, if the process uses one of the pre-defined signals
some confusion could result if the system happened to send the signal at an unexpected time. Sig-
nals 16, 17, and 19 are never sent by the system.

SIGKIL cannot be caught

CAUTION: Because of the way CB-UNIX works, it is impossible to guarantee that a signal can be
reset before the same signal is received again except as noted above.

3. A process is put into the sieep state on high priority system calls; i.e. ones which are expected 1o take only a short period of
time or which require locking the process in core. Some examples are CB-UNIX fite activity, disk 170, and raw 1/0 to 2
character device.

.15 -

6.. INTERPROCESS MESSAGES

Interprocess messages are used to pass small amounts of data between processes. When a message
is sent it is placed on a message queue associated with the receiving process until read; however, before
a message can be placed on the receiving process’s message queue, the receiving process must enable
~ message reception. To get a message, the receiver requests that a message of a particular type be taken
from the message queue. All message activity occurs in core, no disk activity is involved.

6.1 Messgge Maanipulation Subroutines:
In the following subroutine descriptions, the following structure definition is assumed:

struct mstruct {
int frompid; /* process id of sender */
int mtype: /* type of message */

} mstructp(1];

For more documentation on messages see msg(2A) in the CB-UNIX Programmer's Manual.
msgenab() '
Enables message reception for the calling process. The basic action here is to allocate a mes-

sage Q header for the process which calls msgenab. Until messages are enabied within a pro-
cess, another process cannot send messages to it.

returns:. =0 = messages enabied.
-1 = error.

msgdisab()
Disables message reception for the calling process. All messages currently on the message Q

are flushed; those requiring acknowledgments are acknowledged (see Notes section). The
message Q header allocated by msgenab is de-allocated. '

returns: =0 = messages disabled.
-1 = error.

send (buffer, size, topid, type)
char *buffer; int size,topid,type;

' A message of size bytes is taken from buffer and placed on the message queue of process ropid
The message will have the type gpe. If the system message queue space is full or if the
addressed process message queue length is too long, send will return without sending the mes-
sage.

returns: 20 = number of bytes sent.
-] = error.

sendw (buffer,size,topid,type)
Same as send except that it will not return until the message is actually sent unless an error

occurs. Errors are as follows: receiving process has not enabled messages, illegal message type
or message too long.

recv (buffer,maxsize, mstructp,type)
char *buffer; int maxsize,type; struct mscruct mstructpill;
Gets the first message in the process message queue of type gppe and places the first maxsize

bytes of the message into buffer. If the message is longer than maxsize the rest of the message
is lost. If no message of zype exists, return immediately. If gpe = 0 then recv returns the

-16 -

first message on the message of any type. If no messages are on the queue and gpe = 0, recv
returns immediately.

returns: 20 = number of bytes received.
-1 = error.

recvw (buffer,maxsize, mstructp, type)

Same as recv except that recvw will not return until a message of the correct type is available.
If vpe = 0, recvw will not return until any message is avaiiable.

6.2 Notes:
e The following system define parameters are used to control message storage allocation:

Value Mnemonic Description
212 MAXMLEN Maximum message length in bytes
5 MAXMSG Maximum number of messages on
receiving process queue.
10 NMQHDR number of message q headers
available system wide.
52 MMAPSIZ size of map used for message space
allocation.
50 MSGMEM - number of 32 word blocks
allocated for message storage.

e NMQHDR is the number of processes which can simultaneously enable message reception.
¢ The amount of memory allocated within the system for messages is:
(NMQHDR x sizeof(msgghdr)) + (MMAPSIZ x 2) + (MSGMEM x 32);

msgqhdr is currently 8 bytes long.
* A zero length message is legal. However, a message always requires at least 8 bytes of storage.

e Types have built in meanings for the system. The CB-UNIX implementation of messages assumes
that for types 1-63 an acknowledgment is desired; 64-128 imply no acknowiedgment. If a process
disables message reception or terminates with messages on its message queue, CB-UNIX changes all
messages of tvpes 1-63 to type 128 and returns them to the sender (if there is room on his queue):;
messages of types 64-128 are discarded.

e A process may not send a message 10 a non-existent process or processes which have not enabled
message reception. If it tries, a —1 will be returned.

¢ When a message system call returns, the possible values of errno are:

ETABLE System out of message Q headers (msgenabd) or receiving process message q full (send).
Messages not enabled at receiver (send, sendw).

EINVAL Message 100 long (send, sendw) or illegal message type (send, sendw, recv, recvw).

ESRCH Process id not found (send, sendw).

ENOMEM No memory to store message (send).

ENOALOC Messages not enabled (recv, recvw, msgdisab).

ENOMSG Message type not on Q (recv).

EFAULT Cannot fill in mstructp data (recv, recvw).

-17-

7. SEMAPHORES

Semaphores are used to control access to system resources or 1o synchronize actions between
processes. Typically, a non-zero semaphore value indicates that the resource being controlled is avail-
able; zero indicates that the resource is in use. In synchronization mode, a semaphore value of one
tells the checking process to proceed, a semaphore value of zero tells the checking process to wait.

7.1 Semaphore Manipulation Subroutines:
For more documentation see sema(2A) in the CB-UNIX Programmer’s Manual.
v(sema)

post(sema)
int sema;

The semaphore sema is incremented and any processes waiting on sema are awakened.

returns: >0 = value of sema before increment.
-1 = illegal semaphore number.

p(sema)
int sema;
If sema is zero, process doing p is roadblocked; otherwise, sema is decremented and process

continues at statement following p.

returns; =0 = value of sema before decrement.
-1 = jllegal semaphore number.

block (sema)
int sema;

Process is put to sieep on sema until a post(sema) or v(sema) is done by some other process.

returns: =0 = value of sema before roadblock.
—1 = ijllegal semaphore number.

test(sema)
int sema;

Semaphore sema is decremented if it is greater than zero.

returns: =0 = value of sema before decrement (if any).
—1 = jllegal semaphore number.

7.2 Notes:

e NEVT, a system define parameter, controls the number of semaphores in the system. Of these
NEVT semaphores, NSSEM of them belong to special processes like the line printer spooler. The
special semaphores have negative numbers, ~1 to ~NSSEM; the remainder of the semaphores have
positive numbers, 0 to (NEVT-NSSEM-1) and are used by application programs.

o Semaphores are initialized to 0 at system startup. For further initialization, a program must be run
after the system has been started in order to set values using a series of v subroutine calls.

e Any of the above calls will return a —1 with errno = EINVAL if an illegal semaphore number :<
used.

- 18 -

There are no races in the semaphore mechanism. That is, correct interlocking of semaphore checks
is guaranteed by CB-UNIX.

A typical sequence of semaphore system calls to be included in each process accessing some con-
trolled resource, for instance, a data file, is: :

p(sema) /* initialized to 1 elsewhere */
---code to manipulate file---
v(sema);

If a semaphore is being used by a pair of processes to synchronize some critical section of code, a
typical loop control in the two processes might be:

while{p(sema) > = 0) {
---Critical code section---
v(sema);

Note that if several processes block on a single semaphore, say semal, a single v(semal) or
post(semal) will wake them up and allow all to continue processing.

Semaphores have a 16 bit value. If you were to continuously post or v a semaphore 32767 times
without any intervening p, the semaphore would overflow without indicating an error.

Beware of allowing a process to terminate after a p but before a v or post

Similarly, avoid sequences like p(l) ... p(2) in one process and p(2) ... p(1) in another process. This
condition is known as a deadly embrace and could cause both processes to hang. Always p sema-
phores in the same fixed order in all processes.

.19 -

8. MAUS

MAUS is a dedicated core area subdivided into sections which can be separately attached by any pro-
cess. These sections are referenced by names in the CB-UNIX file system which must be used as argu-
ments to germaus in order to attach the corresponding section of MAUS. These names may also be
used by the open system call after which the file descriptor returned by open can be used by other sys-
tem calls such as read, write, close, and seek in the normal manner.

8.1 MAUS Manipulation Subroutines:

The description in this section applies to the C interface to MAUS. For a more cémplete coverage
of the MAUS interface see maus(2A) in the CB-UNIX Programmer’s Manual.

getmaus (section, access)
char *section; int access;

Returns a MAUS descriptor which references the MAUS section with the CB-UNIX name sec-
tion. This maus descriptor is analogous to the file descriptor returned by the open system call
and is used by the other MAUS manipulation subroutines. The second argument, access
describes the permissions which the caller would like with respect to the MALUS section section.

access: 0 = read permission.
1 = write permission (due to hardware restrictions, write implies read/write).
2 = read/write permission.

returns: 20 = maus descriptor.
-] == error.

freemaus{mausdes)
int mausdes;
De-allocates the maus descriptor mausdes so that it may be reused. If the MALUS section
corresponding to mausdes is active, it remains active.
returns: ~—1 == error.

enabmaus(mausdes)
int mausdes;

The MAUS section corresponding to mausdes is attached to the first available memory manage- .
ment register. The virtual address of the MAUS section is returned. Mausdes must have been
obtained through a germaus system call; in addition. the process must have at least one free
memory management register.

returns: >0 = address of MAUS sections in the process’s address space.
-] = error.

disma.us(vaddr)
char *vaddr;
If a MAUS section is attached at vaddr it is detached. If there is no MAUS section attached 10

vaddr, an error is returned.

returns: =0 = mausdes of MAUS section attached.
-] = error.
-2 = no MAUS section associated with vaddr.

-20-

switmaus(mausdes,vaddr)

int mausdes; char *vaddr;

This is a generalization of enabmaus and dismaus There are four cases:
switmaus(—1,-1)
In this case, switmaus is merely a check for a free memory management register. -1

is returned if there are no free memory management registers; a return of anything
else implies that there is a free memory management register.

switmaus(—1,vaddr)

The MAUS section attached to vaddr is disabled (same as dismaus).
switmaus(mausdes,—1)
The MAUS section associated with mausdes is attached to the first availabie memory
management register (same as enabmaus).
switmaus{(mausdes,vaddr)
The MAUS section associated with mausdes is éttached to vaddr. If there is already a
MAUS section attached to vaddr, its mausdes is returned. If no MAUS section was

associated with vaddr, a —2 is returned. If an error condition exists, e.g. illegal
mausdes or bad vaddr, a —1 is returned.

returns: —1 = error (for other returns, see above descriptions).

8.2 Notes:

The amount of core to be used for MAUS and the assignment of sections within MAUS are part of
the CB-UNIX system configuration and are completely arbitrary. MAUS sections must be allocated
at system configuration time and for each section a special file must be created (see mknod(1A)).

MAUS descriptors are inherited across forks and execs.
MAUS virtual address 10 mausdes association is inherited across forks.

If a freemaus is done on a mausdes which is associated with a MAUS section currently attached to
process's address space, the MAUS section remains attached. If a dismaus is later done on the vaddr
associated with the freed mausdes, mausdes is returned anyway.

The virtual address returned by MAUS manipulation calls, vaddr, never has any of it low order 13
bits set. In other words it always represents the start of a 4096 word segment. By the same token,
virtual addresses passed into MAUS manipulation routines have their low 13 bjts ignored.

The number of MAUS sections which may be simultaneously attached to a single process varies.
For a process with separated text and data (i.e. I&D space separated) as many as 6 MAUS sections
might be attached simultaneously. For a process with combined text and data (I&D space not
separated) as many as 5 MAUS sections might be attached simultaneously. For instance, a 1&D
space separated program with 15k bytes of text, 6k bytes of data and a 1k byte stack could have 6
MAUS sections simultaneously attached. The same program without 1&D space separation could
have 4 MAUS sections attached.

If a program wishes to access a MAUS section but has no free memory management registers, the
MAUS section can be opened with the open system call after which standard UNIX [/0 commands
such as read, write and seek can be used to access the MAUS section.

When a MAUS system call returns a —1, the possible errno values are:
EINVAL lllegal mausdesor vaddr.

N

-21-

EMFILE Bad MAUS descriptor.
ENOMEM No free memory management regxsters

9. REFERENCES

(1]
(2]

(31
[4]

(51

"CB-UNIX Programmer’s Manual"

"A Description of the UNIX Fil
1975. .

"Shared Memory in UNIX", Dale

"Proposal for UNIX Interproces
1976.

*Interprocess Communication Pe:

()

