/A3F o

An Introduction to the UNIX Shell

S. R. Bourne

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The shell is a command programming language that provides an interface to the
UNIXT operating system. Its features include control-flow primitives, parameter
passing, variables and string substitution. Constructs such as while, if then else,
case and jfor are available. Two-way communication is possible between the
shell and commands. String-valued parameters, typically file names or flags,
may be passed to a command. A return code is set by commands that may be
used to determine control-flow, and the standard output from a command may
be used as shell input.

. The shell can modify the environment in which commands run. Input and out-
put can be redirected to files, and processes that communicate through ‘pipes’
can be invoked. Commands are found by searching directories in the file sys-
tem in a sequence that can be defined by the user. Commands can be read
either from the terminal or from a file, which allows command procedures to be
stored for later use.

November 12, 1978

tUNIX is a Trademark of Bell Laboratories.

An Intreduction to the UNIX Shell

S. R. Bourne

. Bell Laboratories
Murray Hill, New Jersey 07974

1.0 Introduction

The shell is both a command language and a programming language that provides an interface
to the UNIX operating system. This memorandum describes, with examples, the UNIX shell.
The first section covers most of the everyday requirements of terminal users. Some familiarity
with UNIX is an advantage when reading this section; see, for example, "UNIX for beginners".!
Section 2 describes those features of the shell primarily intended for use within shell pro-
cedures. These include the control-flow primitives and string-valued variables provided by the
shell. A knowledge of a programming language would be a help when reading this section.
The last section describes the more advanced features of the shell. References of the form "see
pipe (2)" are to a section of the UNIX manual.2

1.1 Simple commands

Simple commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the
command. For example,

who
is a command that prints the names of users logged in. The command
Is =1

prints a list of files in the current directory. The argument —~/ tells /s to print status informa-
tion, size and the creation date for each file.

1.2 Background commands
To execute a command the shell normally creates a new process and waits for it to finish. A
command may be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing & is an operator that instructs the
shell not to wait for the command to finish. To help keep track of such a process the shell
reports its process number following its creation. A list of currently active processes may be
obtained using the ps command.

1.3 Input output redirection
Most commands produce output on the standard output that is initially connected to the termi-
nal. This output may be sent to a file by writing, for example,

Is =1 >file

The notation > file is interpreted by the shell and is not passed as an argument to /s. If file does
not exist then the shell creates it; otherwise the original contents of file are replaced with the
output from /s. Output may be appended to a file using the notation

[_EPRSNE SO 4

L]

Is =1 >>file

In this case file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by writing,
for example,

we <file

The command wc reads its standard input (in this case redirected from file) and prints the
number of characters, words and lines found. If only the number of lines is required then

we —| <file
could be used.

1.4 Pipelines and filters

The standard output of one command may be connected to the standard input of another by
writing the ‘pipe’ operator, indicated by |, as in,

Is=11 wc
Two commands connected in this way constitute a pipeline and the overall effect is the same as -
Is =1 >file; we <file

except that no file is used. Instead the two processes are connected by a pipe (see pipe (2)) and
are run in parallel. Pipes are unidirectional and synchronization is achieved by halting we when
there is nothing to read and halting /s when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the
result as output. One such filter, grep, selects from its input those lines that contain some
specified string. For example,

Is | grep old

prints those lines, if any, of the output from /s that contain the string o/d. Another useful filter
is sort. For example,

who | sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more than two commands, for example,
Is | grep old | wc -l

prints the number of file names in the current directory containing the string ofd.

1.5 File name generation
Many commands accept arguments which are file names. For example,

Is =1 main.c

prints information relating to the file main.c.

The shell provides a mechanism for generating a list of file names that match a pattern. For
example,

Is =1 *.¢

generates, as arguments to /s, all file names in the current directory that end in .c. The charac-

ter * is a pattern that will match any string including the null string. In general patterns are
specified as follows.

-3-

* Matches any string of characters including the null string.
? Matches any single character.

l...] Matches any one of the characters enclosed. A pair of characters separated by a
minus will match any character lexically between the pair.

For example,
la—z]*

matches all names in the current directory beginning with one of the letters a through z.
/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file
name is found that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It
may also be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all core files in sub-directories of /usr/fred. (echo is a standard
UNIX command that prints its arguments, separated by blanks.) This last feature can be expen-
sive, requiring a scan of all sub-directories of /usr/fred.

There is one exception to the general rules given for patterns. The character “.’ at the start of a
file name must be explicitly matched.

echo *
will therefore echo all file names in the current directory not beginning with *.”.
echo .«

will echo all those file names that begin with ‘.’. This avoids inadvertent matching of the
names ‘.’ and ‘.." which mean ‘the current dlrectory and ‘the parent directory’ respectively.
(Notice that Is suppresses information for the files ‘.’ and “..".)

1.6 Quoting

Characters that have a special meaning to the shell, such as < > » ? | &, are called metachar-
acters. A complete list of metacharacters is given in appendix B. Any character preceded by a
\ is quoted and loses its special meaning, if any. The \ is elided so that

echo \?
will echo a single ?, and
echo \\

will echo a singie \. To allow long strings to be continued over more than one line the
sequence \newline is ignored.

\ is convenient for quoting single characters. When more than one character needs quoting the
above mechanism is clumsy and error prone. A string of characters may be quoted by enclos-
ing the string between single quotes. For example,

echo xx ****xx
will echo
XX %kkk XX

The quoted string may not contain a single quote but may contain newlines, which are
. preserved. This quoting mechanism is the most simple and is recommended for casual use.

-4-

A third quoting mechanism using double quotes is also available that prevents interpretation of
some but not all metacharacters. Discussion of the details is deferred to section 3.4.

1.7 Prompting
When the shell is used from a terminal it will issue a prompt before reading a command. By
default this prompt is ‘$°. It may be changed by saying, for example,

PS1=yesdear

that sets the prompt to be the string yesdear. If a newline is typed and further input is needed
then the shell will issue the prompt ‘> ’. Sometimes this can be caused by mistyping a quote
mark. If it is unexpected then an interrupt (DEL) will return the sheil to read another com-
mand. This prompt may be changed by saying, for example,

PS2=more

1.8 The shell and login

Following login (1) the shell is called to read and execute commands typed at the terminal. If
the user’s login directory contains the file .profile then it is assumed to contain commands and
is read by the shell before reading any commands from the terminal.

1.9 Summary

] Is
Print the names of files in the current directory.
L Is > file

Put the output from /s into file.
L Is | we -1

Print the number of files in the current directory.
o Is | grep old

Print those file names containing the string o/d.

° Is | grep old | we -1
Print the number of files whose name contains the string o/d.

® cc pgm.c &
Run cc in the background.

2.0 Shell procedures
The shell may be used to read and execute commands contained in a file. For example,

sh file [args ...]

calls the shell to read commands from file. Such a file is called a command procedure or shell
procedure. Arguments may be supplied with the call and are referred to in file using the posi-
tional parameters $1, $2, For example, if the file wg contains

who | grep $1
then

sh wg fred
is equivalent to

who | grep fred

UNIX files have three independent attributes, read, write and execure. The UNIX command
chmod (1) may be used to make a file executable. For example,
chmod +x wg
will ensure that the file wg has execute status. Following this, the command
wg fred
is equivalent to
sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case a new
process is created to run the command.

As well as providing names for the positional pérameters, the number of positional parameters
in the call is available as $# . The name of the file being executed is available as $0.

A special shell parameter $* is used to substitute for all positional parameters except $0 A
typical use of this is to provide some default arguments, as in,

nroff —=T450 —ms $*

which simply prepends some arguments to those already given.

2.1 Control flow - for

A frequent use of shell procedures is to loop through the arguments ($1, $2, ...) executing
commands once for each argument. An example of such a procedure is re/ that searches the file
/usr/lib/telnos that contains lines of the form

fred mh0123
bert mh0789

The text of rel is

for i
do grep i /usr/hb/telnos done

The command
tel fred

prints those lines in /usr/lib/telnos that contain the string fred.

tel fred bert -

prints those lines containing fred followed by those for bert.
The for loop notation is recognized by the shell and has the general form
for name in wi w2 ...

do command-list
done

A command-list is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol-
lowing a newline or semicolon. name is a shell variable that is set to the words w/ w2 ... in
turn each time the command-list following do is executed. If in w/ w2 ... is omitted then the
loop is executed once for each positional parameter; that is, in $*is assumed.

Another example of the use of the for loop is the create command whose text is. .
for i do >8$i; done

The command
create alpha beta

ensures that two empty files alpha and bera exist and are empty. The notation > file may be
used on its own to create or clear the contents of a file. Notice also that a semicolon (or new-
line) is required before done.

2.2 Control flow - case
A multiple way branch is provided for by the case notation. For example,
case $# in
1) cat >>8%1;;
2) cat >>8$2 <81 ;;

*) echo "usage: append [from] to” ;;
esac

is an append command. When called with one argument as
append file

$# is the string / and the standard input is copied onto the end of file using the car command.
append filel file2

appends the contents of file/ onto file2. If the number of arguments supplied to append is other
than 1 or 2 then a message is printed indicating proper usage.

The general form of the case command is

case word in
pattern) command-list }}

esac

The shell attempts to match word with each parrern, in the order in which the patterns appear.
If a match is found the associated command-list is executed and execution of the case is com-
plete. Since * is the pattern that matches any string it can be used for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu-
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

case $# in
*) ...
*) ...
esac

Another example of the use of the case construction is to distinguish between different forms
of an argument. The following example is a fragment of a cc command.

for i

do case $i in
—focs]) cee
~=«) echo ‘unknown flag $i" ;;
*.c) /lib/c0 8i
*) echo ‘unexpected argument $i’ ;;
esac

done

To allow the same commands to be associated with more than one pattern the case command
provides for alternative patterns separated by a | . For example,

case $i in
—xl=-y) ...
esac
is equivalent to
case $i in
. —IxyD) cee
esac

The usual quoting conventions apply so that

case $i in

\?)

will match the character ?.

2.3 Here documents

The shell procedure re/ in section 2.1 uses the file /usr/lib/telnos to supply the data for grep.
An alternative is to include this data within the shell procedure as a here document, as in,

fori

do grep 8i <<!
fred mh0123
bert mh0789

1
done
In this example the shell takes the lines between <<! and ! as the standard input for grep.

The string ! is arbitrary, the document being terminated by a line that consists of the string fol-
lowing <<.

Parameters are substituted in the document before it is made available to grep as illustrated by
the following procedure called edg.

ed 33 <<%
g/81/s//82/g
w

%

The call
edg stringl string?2 file
is then equivalent to the command

ed file <<%

g/stringl/s//string2/g

w .
%

and changes all occurrences of stringl in file to siring2. Substitution can be prevented using \ to
quote the special character $ as in

“ed 83 <<+
1,\8s/81/82/g

w
-+

(This version of edg is equivalent to the first except that ed will print a ? if there are no
occurrences of the string $1.) Substitution within a here document may be prevented entirely
by quoting the terminating string, for example,

grep $i <<\#
#
The document is presented without modification to grep. If parameter substitution is not

required in a here document this latter form is more efficient.

2.4 Shell variables

The shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. Variables may be given values by writing, for example,

user=fred box=m000 acct=mh0000

which assigns values to the variables user, box and acct. A variable may be set to the null
string by saying, for example,

null=
The value of a variable is substituted by preceding its name with $; for example,
echo Suser

will echo fred.

Variables may be used interactively to provide abbreviations for frequently used strings. For
example,

b==/usr/fred/bin
mv pgm $b

will move the file pgm from the current directory to the directory /usr/fred/bin. A more gen-
eral notation is available for parameter (or variable) substitution, as in,

echo ${user}

which is equivaient to

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmpja

will direct the output of ps to the file /tmp/psa, whereas,

ps a >$tmpa

would cause the value of the variable tmpa to be substituted.
Except for $? the following are set initiailly by the shell. $? is set after executing each com-

mand.

$3

$!
8-

The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, othérwise
a non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

The process number of this shell (in decimal). Since process numbers are
unique among all existing processes, this string is frequently used to generate
unique temporary file names. For example,

ps a >/tmp/ps$$
rm' /tmp/ps$$

The process number of the last process run in the background (in decimal).
The current shell flags, such as —x and —v.

Some variables have a special meaning to the shell and should be avoided for general use.

SMAIL

When used interactively the shell looks at the file specified by this variable
before it issues a prompt. If the specified file has been modified since it was last
looked at the shell prints the message you have mail before prompting for the
next command. This variable is typically set in the file .profile, in the user’s
login directory. For example,

MAIL = /usr/mail/fred

SHOME The default argument for the ¢d command. The current directory is used to

$PATH

resolve file name references that do not begin with a /, and is changed using the
cd command. For example,

cd /usr/fred/bin
makes the current directory /usr/fred/bin.
cat wn

will print on the terminal the file wn in this directory. The command cd with no
argument is equivaient to

cd $HOME

This variable is also typically set in the the user’s login profile.

A list of directories that contain commands (the search path). Each time a com-
mand is executed by the shell a list of directories is searched for an executable

~,

-10-

file. If SPATH is not set then the current directory, /bin, and /usr/bin are
searched by default. Otherwise SPATH consists of directory names separated by
:. For example,

PATH=/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :),
/usr/fred/bin, /bin and /usr/bin are to be searched in that order. In this way
individual users can have their own ‘private’ commands that are accessible
independently of the current directory. If the command name contains a / then
. this directory search is not used; a single attempt is made to execute the com-

mand.

$PS1 The primary shell prompt string, by default, ‘$°.

$PS2 - The shell prompt when further input is needed, by default, ‘> °.

$IFS The set of characters used by blank interpretation (see section 3.4).

2.5 The test command
The rest command, although not part of the shell, is intended for use by shell programs. For
example,

test —f file

returns zero exit status if file exists and non-zero exit status otherwise. In general rest evaluates
a predicate and returns the result as its exit status. Some of the more frequently used rest argu-
ments are given here, see resr (1) for a complete specification.

test s true if the argument s is not the null string
test —f file true if file exists
test —r file true if file is readable

test —w file true if file is writable
test —d file true if file is a directory

2.6 Control flow - while

The actions of the for loop and the case branch are determined by data available to the shell.
A while or until loop and an if then else branch are also provided whose actions are deter-
mined by the exit status returned by commands. A while loop has the general form

while command-list,
do command-list,
done

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop command-list, is executed; if a zero exit status is returned
then command-list, is executed; otherwise, the loop terminates. For example,

while test $1
do...

shift
done

is equivalent to

for i
do ...
done

shift is a shell command that renames the positional parameters $2, $3, ... as 81, 82, ... and
loses $1.

-11-

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For exam-
ple,

until test —f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again.
(Presumably another process will eventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,
if command-list
then command-list
else command-list
fi
that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the restr command to test for the existence of
a file as in

if test —f file
then process file

else do something else
fi

An example of the use of if, case and for constructions is given in section 2.10.
A multiple test if command of the form

if ...

then ...

else if ...
then ...
else if ...
fi

fi .

may be written using an extension of the if notation as,

if ...

then ...

elif ves

then ...

elif oo

fi

The following example is the rouch command which changes the ‘last modified’ time for a list
of files. The command may be used in conjunction with make (1) to force recompilation of a
list of files.

-12-

flag=
for i
do case $i in
—c) flag=N;
*) if test —f Si
then In 3i junk$$; rm junk$$
elif test Sflag
then echo file \'$i\" does not exist
else >8i
fi
esac
done

The —c flag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is printed. The shell vari-
able flag is set to some non-null string if the —c argument is encountered. The commands

In...;rm...

make a link to the file and then remove it thus causing the last modified date to be updated.
The sequence

if commandl
then command2
fi

may be written

command] && command2
Conversely,

commandl | | command?2 '
executes command2 only if command| fails. In each case the value returned is that of the last
simple command executed.

2.8 Command grouping
Commands may be grouped in two ways,

{ command-list ; }
and '

(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)
executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands

cd x; rm junk

have the same effect but leave the invoking shell in the directory x.

-13-

2.9 Debugging shell procedures
The shell provides two tracing mechanisms to help when debugging shell procedures. The first
is invoked within the procedure as

set —v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh —v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the
—n flag which prevents execution of subsequent commands. (Note that saying ser —n at.a ter-
minal will render the terminal useless until an end-of-file is typed.)

The command
set —x
will produce an execution trace. Following parameter substitution each command is printed as

it is executed. (Try these at the terminal to see what effect they have.) Both flags may be
turned off by saying

set —

and the current setting of the shell flags is available as $—.

2.10 The man command

The following is the man command which is used to print sections of the UNIX manual. It is
called, for example, as

man sh
man —t ed
man 2 fork

In the first the manual section for s# is printed. Since no section is specified, section 1 is used.
The second example will typeset (—t option) the manual section for ed. The last prints the fork
manual page from section 2.

~~

cd /usr/man

-14 -

: “colon is the comment command’
: “default is nroff (8N), section 1 ($s)”
N=ns=1

for i

do case $i in
(1-9]+)

—t) N=tg;
-n) N=n;;

s=8i;;

—=*) echo unknown flag \'$i\" ;;
if test —f manS$s/$i.3s

*)

then
else

esac

done

${N}roff man0/${N}aa man$s/$i.3s
: "look through all manual sections’
found=no
forjin123456789
do if test —f man$;j/$i.3j

then man $j $i

found=yes

fi
done
case $found in

no) echo “$i: manual page not found’

esac

Figure 1. A version of the man command

215 -

3.0 Keyword parameters

Shell variables may be given values by assignment or when a shell procedure is invoked. An
argument to a shell procedure -of the form name=value that precedes the command name
causes value 10 be assigned to name before execution of the procedure begins. The value of
name in the invoking shell is not affected. For example,

user=fred command

will execute command with user set to fred The —k flag causes arguments of the form
name=value 10 be interpreted in this way anywhere in the argument list. Such names are some-
times called keyword parameters. If any arguments remain they are available as positional
parameters §1, $2,

The ser command may also be used to set positional parameters from within a procedure. For
example,

set — ¥

will set 81 to the first file name in the current directory, $2 to the next, and so on. Note that
the first argument, —, ensures correct treatment when the first file name begins with a —.

3.1 Parameter transmission

When a shell procedure is invoked both positional and keyword parameters may be supplied
with the call. Keyword parameters are also made available implicitly to a shell procedure by
specifying in advance that such parameters are to be exported. For exampie,

export user box

marks the variables user and box for export. When a shell procedure is invoked copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the invoking shell. It is generally
true of a shell procedure that it may not modify the state of its caller without explicit request
on the part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this
command is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

3.2 Parameter substitution

If a shell parameter is not set then the null string is substituted for it. For example, if the vari-
able d is not set

echo 8d

or
echo ${d)

will echo nothing. A default string may be given as in
echo ${d—.}

which will echo the value of the variable d if it is set and °.” otherwise. The default string is
evaluated using the usual quoting conventions so that

echo ${d—"*"}
will echo * if the variable d is not set. Similarly

.16 -

echo ${d—-$1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}
which substitutes the same string as
echo ${d-.}
and if d were not previously set then it will be set to the string ‘.. (The notation ${...=...}is
not available for positional parameters.)
If there is no sensible default then the notation
echo ${d?message}

will echo the value of the variable d if it has one, otherwise message is printed by the shell and
execution of the shell procedure is abandoned. If message is absent then a standard message is
printed. A shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the shell will abandon
execution of the procedure.

3.3 Command substitution

The standard output from a command can be substituted in a similar way to parameters. The
command pwd prints on its standard output the name of the current directory. For example, if
the current directory is /usr/fred/bin then the command

d=\pwd\
is equivalent to
d=/usr/fred/bin
The entire string between grave accents (...") is taken as the command to be executed and is

replaced with the output from the command. The command is written using the usual quoting
conventions except that a ' must be escaped using a \. For example,

Is ‘echo "$1"
is equivalent to
Is 81

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism allows string processing commands to be used within shell procedures. An exampie
of such a command is basename which removes a specified suffix from a string. For example,

basename main.c .c
will print the string main. Its use is illustrated by the following fragment from a cc command.

case $A in
*.c) B="basename $A .c’

€sac

-17-

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.
¢ foriin’ls—t;do...
The variable i is set to the names of files in time order, most recent first.

® set 'date’; echo $6 $2 $3, $4
will print, e.g., 1977 Nov 1, 23:59:59

3.4 Evaluation and quoting

The shell is a macro processor that provides parameter substitution, command substitution and
file name generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in appendix A. Before a com-
mand is executed the following substitutions occur.

® parameter substitution, e.g. Suser
® command substitution, e.g. 'pwd’
Only one evaluation occurs so that if, for example, the value of the variable X is the
string 8y then
echo $X

will echo $y.
® blank interpretation

Following the above substitutions the resulting characters are broken into non-blank
words (blank interpretation). For this purpose ‘blanks’ are the characters of the
string SIFS. By default, this string consists of blank, tab and newline. The null
string is not regarded as a word unless it is quoted. For example,

’

echo
will pass on the null string as the first argument to echo, whereas
echo 3null

will call echo with no arguments if the variable null is not set or set to the null
string.

e file name generation

Each word is then scanned for the file pattern characters *, ? and [...] and an alpha-
betical list of file names is generated to replace the word. Each such file name is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and "..." a third quoting mechan-
ism is provided using double quotes. Within double quotes parameter and command substitu-
tion occurs but file name generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \.

$ parameter substitution
* command substitution
ends the quoted string
\ quotes the special characters $° " \

For example,

echo "$x"

)/'

/.-\/’

.18 -

will pass the value of the variable x as a single argument to echo. Similarly,
echo "3*"

will pass the positional parameters as a single argument and is equivalent to

‘ echo “$1 $2...."

The notation $@ is the same as $* except when it is quoted.
echo "$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to
echo "$1" "$2" ...

The following table gives, for each quoting mechanism, the shell metacharacters that are
evaluated.

metacharacter

\ $ * . A " ’
: n n n n n t
' y n n t n n
" y y n y t n

t terminator

y interpreted

n not interpreted

- Figure 2. Quoting mechanisms
In cases where more than one evaluation of a string is required the built-in command eval may
be used. For example, if the variable X has the value 3y, and if y has the value pgr then
eval echo $X
will echo the string pgr.

In general the eval command evaluates its arguments (as do all commands) and treats the result
as input to the shell. The input is read and the resulting command(s) executed. For example,

wg="eval wholgrep’
Swg fred

is equivalent to
who | grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as |,
following substitution.

3.5 Error handling

The treatment of errors detected by the shell depends on the type of error and on whether the
shell is being used interactively. An interactive shell is one whose input and output are con-
nected to a terminal (as determined by gryy (2)). A shell invoked with the —i flag is also
interactive. .

Execution of a command (see also 3.7) may fail for any of the following reasons.

e Input output redirection may fail. For example, if a file does not exist or cannot be
created.

-19.-

The command itself does not exist or cannot be executed.

The command terminates abnormally, for example, with a "bus error” or "memory fault",
See Figure 2 below for a complete list of UNIX signals.

® The command terminates normally but returns a non-zero exit status.

In all of these cases the shell will go on to execute the next command. Except for the last case
an error message will be printed by the shell. All remaining errors cause the shell to exit from
a command procedure. An interactive shell will return to read another command from the ter-
minal. Such errors include the following.

® Syntax errors. e.g., if ... then ... done

L] A signal such as interrupt. The shell waits for the current command, if any, to finish exe-
cution and then either exits or returns to the terminal. .

® Failure of any of the built-in commands such as cd.
The shell flag —e causes the shell to terminate if any error is detected.

1 hangup

2 interrupt

3* quit

4* illegal instruction

5t trace trap

6* 10T instruction

7* EMT instruction

8 floating point exception

9 kill (cannot be caught or ignored)

10* bus error
1" segmentation violation
12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock ;
15 software termination (from kit (1))

Figure 3. UNIX signals

Those signals marked with an asterisk produce a core dump if not caught. However, the shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam-
ple,

trap ‘rm /tmp/ps$3; exit’ 2
sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com-
mands

rm /tmp/ps$S; exit

exit is another built-in command that terminates execution of a shell procedure. The exit is
required; otherwise, after the trap has been taken, the shell will resume executing the pro-
cedure at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be-ignored, in which case the sig-

nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of

™

.20 -

the process without it having to take any further action. If a signal is being ignored on entry to
the shell procedure, for example, by invoking it in the background (see 3.7) then trap com-
mands (and the signal) are ignored.

The use of rrap is illustrated by this modified version of the fouch command (Figure 4). The
cleanup action is to remove the file junk$$.

flag=
trap ‘rm —f junk$$; exit’ 12 3 15
for i
do case $i in
—c) flag=N:;
*) if test —f 3i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \'$i\" does not exist
else >8i
fi
esac
done

Figure 4. The touch command

The trap command appears before the creation of the temporary file; otherwise it would be pos-
sible for the process to die without removing the file. .

Since there is no signal 0 in UNIX it is used by the shell to indicate the commands to be exe-
cuted on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nohup command.

trap“ 12315
which causes hangup, interrupt, quit and kifi to be ignored both by the procedure and by invoked
commands.
Traps may be reset by saying

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing

trap

The procedure scan (Figure 5) is an example of the use of rap where there is no exit in the
trap command. scan takes each directory in the current directory, prompts with its name, and
then executes commands typed at the terminal until an end of file or an interrupt is received.
Interrupts are ignored while executing the requested commands but cause termination when
scan is waiting for input.

-21-

d="pwd"
foriin*
do if test —d $d/8i
then cd $d/8i
while echo "$i:"

trap exit 2
read x
do trap : 2; eval $x; done
fi
done

Figure 5. The scan command

read x is a built-in command that reads one line from the standard input and places the result in
the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt is
received.

3.7 Command execution

To run a command (other than a built-in) the shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The built-in
command exec is used in the rare cases when no fork is required and simply replaces the shell
with a new command. For example, a simple version of the nofup command looks like

trap 12315
exec $*

The wap turns off the signals specified so that they are ignored by subsequently created com-
mands and exec replaces the shell by the command specified.

Most forms of input output redirection have already been described. In the following word is
only subject to parameter and command substitution. No file name generation or blank
interpretation takes place so that, for example,

echo... >*¢c
will write its output into a file whose name is *.c. Input output specifications are evaluated left
to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it
does not already exist.

>> word The standard output is sent to file word. If the file exists then output is appended
(by seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0) is taken from the file word.

<< word The standard input is taken from the lines of shell input that follow up to but not
including a line consisting only of word If word is quoted then no interpretation
of the document occurs. If word is not quoted then parameter and command sub-
stitution occur and \ is used to quote the characters \ $ * and the first character of
word. In the latter case \newline is ignored (c.f. quoted strings).

>& digit The file descriptor digir is duplicated using the system call dup (2) and the result is
used as the standard output.

<& digit The standard input is duplicated from file descriptor digir.

“

)

-22.

<&-— The standard input is closed.
>&— The standard output is closed.
Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,
..o 2211
runs a command with message output (file descriptor 2) directed to file.
e 22>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)

The environment for a command run in the background such as
list *.c | lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file /dev/null. This prevents two processes (the shell and the command), which are running
in parallel, from trying to read the same input. Chaos would ensue if this were not the case.
For example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that they are ignored by the command. This allows these signals
to be used at the terminal without causing background commands to terminate. For this reason
the UNIX convention for a signal is that if it is set to 1 (ignored) then it is never changed even
for a short time. Note that the shell command trap has no effect for an ignored signal.

3.8 Invoking the shell

The following flags are interpreted by the shell when it is invoked. If the first character of
argument zero is 2 minus, then commands are read from the file .profile.

—cC string
If the —¢ flag is present then commands are read from sering.

—s If the —s flag is present or if no arguments remain then commands are read from the
standard input. Shell output is written to file descriptor 2.

~i If the —i flag is present or if the shell input and output are attached to a terminal (as told
by gty) then this shell is interactive. In this case TERMINATE is ignored (so that kiil 0
does not kill an interactive shell) and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases QUIT is ignored by the shell.

Acknowledgements

The design of the shell is based in part on the original UNIX shell? and the PWB/UNIX shell,*
some features having been taken from both. Similarities also exist with the command inter-
preters of the Cambridge Multiple Access System® and of CTSS.6

I would like to thank Dennis Ritchie and John Mashey for many discussions during the design
of the sheil. 1 am also grateful to the members of the Computing Science Research Center and
to Joe Maranzano for their comments on drafts of this document.

-23.

References

B. W. Kernighan, UNIX for Beginners, Bell Laboratories internal memorandum (1978).

. K. Thompson and D. M. Ritchie, UNIx Programmer’s Manual, Bell Laboratories (1978).

Seventh Edition.

K. Thompson, *‘‘The UNIX Command Language,”” pp. 375-384 in Structured
Programming—Infotech State of the Art Report, Infotech International Ltd., Nichoison
House, Maidenhead, Berkshire, England (March 1975).

J. R. Mashey, PWB/UNIX Shell Tutorial, Bell Laboratories internal memorandum (Sep-
tember 30, 1977).

D. F. Hartley (Ed.), The Cambridge Multiple Access System — Users Reference Manual,
University Mathematical Laboratory, Cambridge, England (1968).

P. A. Crisman (Ed) The Compatible Time-Sharing System, M.1.T. Press, Cambridge, Mass.
(1965).

s, .

item:

-24.

Appendix A - Grammar

word
inpur-output
name = value

simple-command: item

command:

pipeline:

andor:

command-list:

input-output.

file:

case-part:

patern:

else-part:

empyy:
word:
name:

digit:

simple-command item

simple-command

(command-list)

{ command-list }

for name do command-list done

for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part . .. esac

if command-list then command-list else-part fi

command
pipeline | command

pipeline
andor && pipeline
andor | | pipeline

andor

command-list ;
command-list &
command-list ; andor
command-list & andor

> file
< file
>> word
<< word

word
& digit
& —

pattern) command-list 33

word
pattern | word

elif command-list then command-list else-part
else command-list
emply

a sequence of non-blank characters

a sequence of letters, digits or underscores starting with a letter

0123456789

-25-

Appendix B - Meta-characters and Reserved Words
a) syntactic

| pipe symbol

&& ‘andf” symbol

I ‘orf” symbol

H command separator

3 case delimiter
background commands
() command grouping
< input redirection
<< input from a here document
> output creation
>> output append

b) patterns

* match any character(s) including none
match any single character
l...] match any of the enclosed characters

-~

¢) substitution
8${...] substitute shell variable
‘wee. substitute command output

d) quoting
\ quote the next character
: quote the enclosed characters except for

" L]

«." quote the enclosed characters except for $*\ "

e) reserved words

if then else elif fi
case in esac
for while until do done

“ 3 “- -

)

