TE L m e s — Z ans St IR~ OP - - .

\ 4
130>
Bell Laboratories UNDS
subject: Exercises in Repairing PWB/UNIX date: October 19, 1978
File Systems
- File: 39382-900 from: p., D. Wandzilak
' PY 9442
1A-114 xT7344
MEMORANDUM FOR EFILE
7~

. INTRODUCTION

This document describes a tool that generates a series of selfa-
instructional exercises based on the concepts presented in refer-
ence [3]. The tool is an interactive PWB/UNIX* program that
simulates the various degrees of file structure damage that are
presently reported by the check(VIII) command. The workshop
exercises are intended to provide users with the necessary frame-
work that will enable them to become more proficient in repairing
a damaged PWB/UNIX file system.

I assume that the reader has an understanding of the descriptions
in references [1], [2], and [3]. I also recommend that copies of
this document and reference [3] bte periodically consulted for
detailed explanations and procedures on resolving the more com=-
plicated exercises that might be generated in using this tool.

2. BASIC CAPABILITIES

Fsrepair is an interactive PWB/UNIX program that selectively
alters the structure of a consistent file system to contain one
or more of the various degrees of file structure damage that are
currently reported by check. The tool allows the individual to
concentrate on the problem area(s) to which he or she needs more
exposure. Figure 1 contains a complete list of all the file sys-
tem damage that is generated by this progranm.

A. Block Diagnostices

Mnemonic Identifier Description

bad The blcck number contains a value
' outside the allowable space on the
file systen.

* UNIX is a Trademark of Bell Laboratories.

dup

din

Inode Diagnosties.

Mnemonic Identifier

100

177

201

- 377

Free-list Diagnostics

Mnemonic Identifier

~dups in free

Bad Free Block

missing block(s)

The block number is assigned to a
previously encountered file.

The block number references a block

of directory entries that contains

an i-number that resides outside 7~
the range of the ilist size of the

file system. All inodes must

reside in the portion of the file

system identified as the ilist.

Description : e

Usually references an allocated
inode which contains a zero value
for its link count. An inode is a
32-byte structure that identifies
various attributes of each file or
directory (See File System(V)).

The inode is an entry in one or
more directories than indicated by
its actual link count references.

The inode is missing a directory
entry.

An unallocated inode is c¢laimed as
an entry in a directory.

Description

Identifies any duplication of disk 7~
blocks.

A block number in the free list
lies outside of the range of avail-
able space.

Identifies those block(s) which are
neither allocated nor immediately o~
available for allocation. '

Figure 1.

All of the above errcor diagnostics are generated by the program

fsrepair.

However, only those error diagnostiecs identified as

bloeck diagnostics (i.e., list A) or inode diagnostics (i.e., list
B) may be selected as exercises. The free-list diagnostiecs are
only generated as the result of constructing an exercise selected
from either the block diagnosties or inode diagnosties. The
free-list diagnostics can not be selected as individual exer-
cises.

3. GETTING STARTED - DISK PACK INITIALIZATION

This section must be throughly read and understood before invok-
ing fsrepair. The implementation of this progranm requires a
spare disk drive and a minimum of two file systems of moderate
sizes (e.g., copies of the /usr file system). Only one of the
two file systems will be acted upon by this progran. The remaine-
ing file system provides a backup, which can be used to either
reinstate the active file system to a consistent state (beginning
stage), or it can provide an effective means for resolving the
more complicated disk damage on the active file system (e.g.,
simulating a spare disk drive).

A directory must be provided, containing the following executable
commands:

a. mountme
b. umountme
e. removeme
d. fsrepair

The executable commands in a., b., and ¢. above are intended to
be used in place of the mount(VIII), umount(VIII) and rm(I) com-
mands, respectively. These commands are owned and executed by
the root login. The user is advised to be aware of these condi-
tions and to use caution when using one of these commands. The
command referenced in d. above is the name of this program which
-the user will invoke once these initialization procedures have
been performed. This command, unlike the others, is not owned or
executed as root. The following steps summarize the various
functions, and the order in which they should be performed, in
order to establish a working environment that is a basis for the
operation of this program. The procedural steps are as follows:

1. Obtain a scratch disk pack that has been recently formatted.

2. 'Physically mount this disk pack on a spare disk drive. Next
copy (see ve(VIII)) a non-root file system (e.g., /usr) onto
this disk pack in two different locations.

PPV UNIE U UV SUPEPUNIRPPR-SESTUIPPAP S SO NI A 9 S e T il Smaag e

3. Re-label (see labelit(VIII)) the two file systenm copies with
their appropriate volume serial numbers and file system
identification names as follows:

labelit /dev/rpXX ([fsname] (vol-ser. #] first copy
labelit /dev/rpYY [fsname] [vol-ser. #]. second copy

4, Change the owner of both special files, character and block
corresponding to each of these two file systems (e.g.,
/dev/rpXX and /dev/rrpXX). The new owner must correspond
with the owner of the fsrepair program. Also, the modes
(permissions of the file) for both special files should be
read and write by this owner (see ghmod(I)).

5. Check the two file systems on the secratch disk pack to
insure that each file system is consistent. This is a cru-
cial step because if file damage is already present, invok-

ing the fsrepair program on such a file system can cause
unexpected results.

6. Change the ".path" file in the user’'s login directory to
allow for an alternate directory search, which includes the
directory, /ete. This provides a more convenient method for
allowing the user to access and execute commands that would
normally require a fully qualified path name (e.g., check,

lprm, -icheck, ete.). Figure 6 represents an example which
~illustrates the format for this new directory search.

s/ete:/bin:/usr/bin
Figure 6.

However, when the ".path" file is damaged, the user is
required to first terminate the process for his/her current
login shell (i.e., log off the system) and then invoke a new
login shell process (i.e., re-log onto the system) before
invoking this program. This forces the user’'s .path file to

be re-read and allows the changes that were made to this
file to become effective.

7. Invoke the fsrepair program.

4. PROGRAM USAGE

The program is designed to be invoked on a moderate-sized

PWB/UNIX file system which has an adequate supply of files (large
and small), directories, and non-allocated inodes (for example,
the contents of the /usr file system). The program operates on
the basis of the availablity of these resources. Once a resource
or any combination of these resources become unavailable, a
notification in the form of an ERROR diagnostic is issued, and

. —— A O~ e 1 o e PR
.

? -

the program terminates. Section 5 describes the various condi-
tions which generate ERROR diagnostics.

4,1 Initializing an Error Condition

™ Invoking the program with a list of arguments enables the users
5o choose only those error diagnostics from the-lists in either A
or B in Figure 1, which are of interest to them. Each argument
is named by their respective mnemonic identifiers (e.g., dup,
din, 100, ..., etc.) and successive arguments are separated by
one or more blank spaces. Figure 2 represents an example which
illustrates this format: .

- § fsrepair bad 377 ... dup ... ete. (return key)

Figure 2.

The program then processes each argument in the list sequen-
tially. Once the last argument in the list has been processed,
the user can request additional exercises by choosing a particu-
lar error diagnostic and entering its corresponding mnemonic
identifier through the terminal. Refer to Section 4.3.

In addition to Figure 2, the program can also be invoked without
any arguments. In this mode of operation, the user is then tem-
porary restricted from selecting his or her own exercises. This
restriction is enforced until an exercise for each error diagnos-
tic from both 1lists A and B in Figure 1 have been processed,
after which the user can request additional exercises of his or
her own choice in the same manner that was previously discussed.
Figure 3, represents an example which {illustrates this format.

¢ fsrepair (return key)

Figure 3.
= 4.2 Interactive Use

Once the program is invoked, the remainder of the session is then

conducted interactively. The program solicits a series of prompt

messages on the user’s terminal. These prompt messages are

organized into two categories. The first category of prompts

require the user to reply with an appropriate response. For

example, the program will prompt the user’s terminal with the
- following message:

ENTER DEVICE NAME (e.g., 24, 14, 44):

This message requires the user to identify the device name for
the file system where these exercises will be constructed by
entering only the minor device number associated with the special

-6 =

file, /dev/rp??. The minor device number specifies both the phy-
siecal drive unit and a designated logical portion of the device
(e.g., 24 = The physical drive unit is represented by the first
digit, 2, and the succeeding digit, 4, represents the designated
logical portion of the device). All messages in this category
inform the user on the kind of response that is required.

The remaining prompt category provides the user with a direct
connection to the PWB/UNIX shell, via the -¢ flag. The user is
notified of this mode of processing by the special prompt charac-
ter "->" appearing on his or her terminal. The remainder of the
line after the prompt character is then sent to the UNIX shell
(8sh(I)) to be interpreted as a legal command. The commands
nohdir" and "ed", which are invoked directly by the shell, will
not change the user’s current directory, ".", when invoked under
these conditions. The user must supply the fully qualified path
name when accessing commands that require a directory search
sequence which is different than either the default value,
:/bin:/usr/bin, or any alternate search sequences that are speci-
fied in the file named ".path" in the user’s login directory.

The program remains in this mode of processing until either a
"hreak™ of "del" character is typed by the user. The progranm
preempts all processing in this mode, and prints a message on the
user’s terminal requesting the user to direct the program on what

to do next. Figure 4 illustrates this sequence of event;.

(a) -> /ete/check /dev/rrp22 (return key)
/dev/rrp22:
spel 84
files 340
large 102
direc 32
indir 102

used 3237
last 4060
free 1068

(v) <> ("del"™ or "break" key)

TYPE S TO (STOP), N FOR (NEW EXERCISE) OR "RETURN KEY" TO CONTINUE:

where:

S, or s Terminates the program and control returns at
the shell level (i.e., %).

N, or n Produces a new exercise after prompting the
user to select the desired exercise (e.g.,
100, 201, bad, ...).

Return Key Control returns to the prompt mode before the

interrupt (del or break xey) occcurred (i.e.,

- R A s eren, e - e o8 Lamacs o

-7 -

=>; connection to the PWB/UNIX shell).

Figure 4.
4, Selecting an Error Condition
= -3 Selecting an Error Conditlon
Step (a), in Figure 4 illustrates this facility of directly.
accessing UNIX commands through a direct connection to the
PWB/UNIX shell. This convention remains intact until the user
initiates an interrupt as shown in step (b) above. The user is
then free to choose other exercises. Figure 5 represents an
example which illustrates this process of selecting another exer-
cise. :
-
(a) => ("del" or "break" key)
(b) TYPE S TO (STOP), N FOR (NEW EXERCISE) OR "RETURN KEY" TO CONTINUE: N
(e) ENTER ONE EXERCISE ONLY (e.g., 100, 201, bad, ..., ete.): 377
EXERCISE SELECTED #*# 377 #%
(d) ->
where:
(a) The "del" or "break" character disconnects the
connection and allows the user to alter and con-
Ce trol the flow of processing.
(b) ~ Request for a.new exercise. Both upper or lower
case ASCII characters are accepted (e.g., N or n).
(e) The user selects the desired exercise by entering
the corresponding mnemonic identifier for the
exercise.
(d) The desired exercise is now ready and the connec-
_— tion to the shell is again reinstated.
| Figure 5.

3.4 Repairing an Error Condition

Once an exercise has been selected and the connection to the
PWB/UNIX shell is established (i.e., =>), the user can then

m~, proceed with the necessary repair steps to resolve the particular
error condition. The appropriate section of reference (3]
describes specific procedures designed to resolve the particular
error condition. An example of a prccedure for repairing an
error condition is as follows:

(a) <> /ete/check /dev/rrpil

/dev/rrpil:
17 100
519 100

spel 0

files 11364

large 1069

direc 817

indir 1074
used 47872
last 64998
free 15901

(b) «> /ete/eclrm /dev/rrpil4 17 519

(e) <> /ete/icheck -s#4 /dev/rrpil
/dev/rrpith:

(d) -> /etc/check /dev/rrpil
/dev/rrpii:
spel 0
files 11362
large 1069
direc 817
indir 1074
used 47872
last 64998
free 15915

(e) ->

Only after an exercise is completed (i.e., the error condition is
repaired) should the user select another exercise as described in
section 4.3.

5. PROGRAM DIAGNQSTICS

This section describes the various conditioms that cause an
internal error message to be generated and the solutions for
resolving each of these conditions. The error messages currently
exist in two categories, fatal errors (ERROR:#:message body),

which are followed by program termination, and non-fatal errors
(WARNING:#:message body), which do not terminate the program.
All messages in both categories conform to the following format
specification:

Category:Number:Message Body

where:

Category identifies the message category as
either fatal or non-fatal.

Number identifies the error condition.

Message Body explains briefly the error condition.

5.1 Fatal Messages

A fatal condition refers to an occurrence of a significant error
within the program that cannot be self-satisfied, but rather
requires external methods to resolve the pending condition. A
message printed as a result of these conditions are called ERROR
messages and are immediately followed by the termination of the
program. The user or a PWB/UNIX Administrator is then expected
to remedy the problem before fsrepair can be re-invoked. Ounce
the error condition has been corrected, and the active file sys-
tem is restored to a consistent state, fsrepair can be re-

invoked.

The individual messages included in this category as well as con-
venient methods for resolving them are discussed below.

ERROR:1: STAT ERROR

This message is printed if either the root directory (/) or the
special file (/dev/rp??) supplied by the user is not accessible.
This message occurs when the file could not be located or the
directory names in the file’s path name were not accessible.

SOLUTION: Check if the special file exists or for an
improper setting of the file’s permission bits
(mode, ownership). Refer to Section 3.

ERROR:2: ROOT DEVICE

N

This message occurs when an attempt is made to invoke this pro-
gram on the root file system.

SOLUTION: Re-invoke the program using a non-root file sys-
tem.

ERROR:3: FILE NOT SPECIAL

This message indicates that the selected file does exist in
directory /dev. However, the selected file is not a special file
(eharacter or block device).

SOLUTION: Re-invoke the program with a proper block device
name (e.g., /dev/rpii).

ERROR:4: CAN NOT READ AND WRITE THE BLOCK DEVICE

The special file, /dev/rp??, can not be read or written by the
owner or has an owner that is different than the current owner of
this program.

SOLUTION: Reset the permission bits in the mode field so the
owner can read and write the file. Also, change
the owner of the file to have the same owner as
this progranm.

ERROR:5: CAN NOT READ THE SUPER-BLOCK

This message occurs when the read(II) syscall issued on block one
of the active file system terminates prematurely. This message
can be caused by the device of the file system being off-line or
by an imperfection on the recording surfaces of the disk pack.

SOLUTION: If the device of the file system is off line, turn
the power on and then re-invoke the program. Oth-
erwise, select a second disk pack and perform the
steps in Section 3 before re-invoking this pro-
gran. .

ERROR:6: FILE SYSTEM SIZE CHECK

The super-block of the file system contains erroneous information
for either the isize or fsize parameter specifications. The
variable, isize, the first word entry in the super-block of the
file system, contains the block size of the ilist region. The
variable, fsize, the second word entry in the super-block, con-
tains the block size of the entire file system. This message can
be attriouted to the file systeam not having a valid PWB/UNIX file
system structure. This should not happen, unless the procedure

e

-

- 11 -

steps in Section 3 were not performed correctly, or an error
occurred while these steps were being performed.

SOLUTION: Recopy the super-block (block one) using the com-
mand, b¢opy(VIII) or re-execute the procedure
steps in Section 3.

1

ERROR:7: CAN NOT ALLOCATE ENOUGH CORE

This message indicates that the syscall alloe(III) could not
succeed in granting the amount of additional core memory that was
requested. Presently, this syscall is called only once and
requests for the following additional core memory:

(isize * 16 + 1).

The additional core memory is used by the program for determining
which inodes will not be used in implementing the current exer-
eise. The error occurred because the combined text and data
space exceeded the maximum boundary limitation for the user’s
current virtual address space.

SOLUTION: Re-compile the program with separate I/D space.
This separates the program’s text (instructions)
from the data space and allows for greater expan-
sion in both of these regions. Refer to ge(I) in
reference [2] for complete instructions on the C
compiler.

ERROR:8: NO REMAINING FILES

This message indicates that the current exercise failed, because
there are no available file(s) remaining in the file system in
which to construct the exercise.

SOLUTION: The remedy is to re-invoke the program, but only
if the file system is consistent.

ERROR:9: NO REMAINING DIRECTORIES

5.2 Non=Fat Messa es

This message indicates that the current exercise failed, because
there are no available directories remaining in the file system
in which to construct the exercise.
SOLUTION: Same as for ERROR # 8. - ~~

ERROR:10: NO REMAINING FREE INODES

This message occurs when an attempt to allocate a free inode is
made and fails. The failure resulted because there are no free ~
inodes remaining in the file systen.

SOLUTION: The remedy is to copy the backup file system (See
Section 3) onto the file system and then re-invoke
the progranm. :

A non-fatal condition refers to those errors that do not warrant
program termination. A message printed as a result of these con-
ditions are called "WARNING" messages. In general, messages in
this category pertain to invalid prompt responses by the user and
to an occasional error in reading or writing a disk bloeck.

WARNING:1: INVALID ARGUMENT - SKIPPING TO NEXT ARGUMENT

The message indicates that the user selected an exercise which is
not supported by this program. Both lists A and B in Figure 1,

include all the exercises which are currently supported by this
progran.

SOLUTION: Choose an exercise from either list A or B in Fig- ~
ure 1. ,

WARNING:2: CAN NOT READ A DISK BLOCK

The message indicates that the read(II) syscall failed for the -~

current operation on device (/dev/rp??) at location (block #).
The exercise is then terminated.

SOLUTION: Re-select the exercise that provoked the error.

If the error condition continues to occur, ter-
minate the program and coasult with the PWB/UNIX
System Administrator.

WARNING:3: CAN NOT WRITE A DISK BLOCK

The write(II) syscall failed for the current operation on device
(/dev/rp??) at location (block #). The exercise is then ter-
minated.

SOLUTION: Refer to the desceription given for WARNING # 2.

WARNING:4: FILE SYSTEM IS MOUNTED

Fsrepair checks for this condition when it is initially invoked.
This message reminds the user that the file system where these
exercises will be conducted is already a mounted file system and

that the file system must be unmounted before it can be re-
mounted. :

SOLUTION: No action is required.

WARNING:5: INVALID INSTRUCTION - TRY AGAIN

The message indicates that an invalid prompt response was
received. All prompt messages in this category inform the user
which prompt responses are acceptable. A response that is dif-
ferent than what is expected is then disregarded and the prompt
is re-issued.

SOLUTION: Read the prompt message carefully and then decide
on the proper response.

WARNING:6: NO REMAINING BLOCKS ON FREE LIST

The message occurred when the in-core free list nas been

» -
- 14 =
exhausted. The exercise, not the program, is then terminated at
the point where the error condition occurred.

SOLUTION: Reconstruct the free list by invoking the command -~
jcheck(VIII). HReselect the exercise that failed '
as a result of this error condition.

6. AN ILLUSTRATIVE EXAMPLE

Figure 7 represents an example which contains the initial invoca-

tion of the program, selection of exercises, generation of vari-

ous program errors, and the termination of the program. 7~
A. ¢ fsrepair 100

B. INFORMATION (y/n)? n

c. ENTER DEVICE NAME (e.g., 24, 14, 44): 22

#%% PROGRAM INITIATED #**#

DEVICE: /dev/rp22
FILE NAME: ¢lass
VOLUME NAME: adm
D. > /etce/check /dev/rrp22
/dev/rrp22:
17 100
519 100
spel 84
files 339
large 102
direc 32
indir 103 ’ A s
used 3488 —
last 4060
free 817
E. <> ("del"™ or "break" key)
F. TYPE S TO (STOP), N FOR (NEW EXERCISE) OR "RETURN KEY" TO CONTINUE: n
G. ENTER ONE EXERCISE ONLY (e.g., 100, bad, ete.): 177 _

EXERCISE SELECTED #% {77 ##

H. -> /ete/check /dev/rrp22
/dev/rrpa22:

I.

J.

- 15 =

17 100

95 177

96 177
519 100
spel 84
files 339
large 102
direc 32
indir 103

used 3488

last 3060

free 817

<> ("del" or "break" key)

TYPE S TO (STOP), N FOR (NEW EXERCISE) OR "RETURN KEY" TO CONTINUE:
WARNING: 5: INVALID INSTRUCTION - TRY AGAIN

TYPE S TO (STOP), N FOR (NEW EXERCISE) OR "RETURN KEY" TO CONTINUE:
ENTER ONE EXERCISE ONLY (e.g., 100, 201, bad, ..., ete.): 202

WARNING: 1: ILLEGAL ARGUMENT - SKIPPING TO NEXT ARGUMENT

ENTER ONE EXERCISE ONLY (e.g., 100, 201, bad, ..., ete.): din

EXERCISE SELECTED *#* din *#

=> /ete/check /dev/rp22
/dev/rrp22:
1324 din: inode
1324 din: inode
1324 din: inode
1324 din: inode
1 dups in free

98 (data(small))
98 (data(small))
98 (data(small))
98 (data(small))

S missing
17 100
95 177 P
96 177
98 201
101 201
519 100
specl 84
files 339
large 102
direc 32
indir 101

used 3488
last 4060

free 817

> ("del" or "break" key)

20:

n

PI

where:

TYPE S TO (STOP), N FOR (NEW EXERCISE) OR "RETURN KEY" TO CONTINUE: S
##% PROGRAM TERMINATED NORMALLY ###

Figure 7.

The program is invoked with one argument (100).

Names of documents that are associated with this tool.

Select the file system where the session will be con-
ducted.

Facility to access and execute commands via the
PWB/UNIX shell.

An interrupt ("del" or "break") signal was detected and
step D is then terminated.

Select the next action for the program to do next.
This message occurred because of the action taken in
step E. '

This message occurs when the user chooses to select a
new exercise, as in step F.

Facility for accessing and executing UNIX commands is
reinstated.

Same as in step E above.

‘An invalid instruction (202) was given and results in
an error condition (see Section 5).

The prombt message will continue to occur uhtil a
correct response is supplied.

)

An improper exercise was selected. This results in an
error condition. Refer to lists 4 or B in Figure 1 for
the names of all exercises that are supported by this
progranm.

This prompt message is re-issued due to the error con- e
dition in step L. A proper exercise was then selected.

The facility for accessing and executing UNIX commands
is once again reinstated.

. - 17 -

0 An interrupt signal was detected and step N is immedi-
ately terminated.

P Due to the interrupt, this prompt message was produced,
The program is terminated. ' :

7. CONCLUSION

File system integrity is an integral part of installing, operat-
ing, and administering a PWB/UNIX system. Therefore, every
effort must be made to insure that those persons responsmble for
maintaining a PWB/UNIX system have adequate knowledge and train-
ing in this area. It was with this intention in mind that this
tool was developed. This tool is presently being used in the
course entitled, "Operating, Installing and Administering a
PWB/UNIX System”, as a workshop exercise for training Bell System
Customers, and to train PWB/UNIX operations personnel.

REFERENCES

(1] D. M. Ritchie and K. Thompson, The UNIX Time-Sharing Sys-
tem, Comm. ACM 17(7) : 365 - 75 (July 1974).

{2] T. A. Dolotta, R. C. Haight, and E. M. Piskorik, PWB/UNIX
User’s Manual - Edition 1.0, Bell Laboratories (May 1977).

[31] P. D. Wandzilak, Repairing Damaged PWB/UNiX File Systems,
Bell Laboratories (March 1978).

£ D. WM-/}/-L
PY-9442-PDW~-pdw P. D. Wandzilak

Copy to

A. P. Boysen, Jr.

M. P, Fabisch

9442 PWB Development Group

9442 PWB System Engineering Group
9442 Supervision

