f subject: Setting Up UNIX/TS

-~

|
-

MEMORANDUM FOR FILE

UNDS /320

Bell Lahoratories

date: Scptember 30, 1978

frem: R. C. Haight
MH 8234
2F211 x7498
MF 78-8234-98

L. A. Wehr
MH 8234
2F24S x4896
MF 78-8234-98

The attached document describes programming steps for generating a UNIX/TS operating sys-
tem along with administrative detail on configuration, setting up file systems, and
installation/recompilation of command software.

: MH-8234-RCH/LAW

fl. C. Haight

L. A. Wehr

-

)

——. . ——

e e D ——

Setting Up UNIX/TS
R. C. Haigit

Bell Laboratories
Murray Hill, New Jersey 07974

L. A. Wehr

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION
1.1 Prerequisites

Before attempting to generate a UNIX/TS system, you should understand that a considerable
knowiedge of the attendant documentation is required and assumed. In particular, you should
be very familiar with the following documents:

The UNIX Time-Sharing System

UNIX/TS User's Manual

C Reference Manual

Administrative Advice for UNIX/TS (10 be issued)
* UNIX/TS Operations Manual (1o be issued)

A complete list of pertinent documentation is given in Documents for UNIX/TS (1o be issued).
Also, throughout this document, each reference of the form name(N), where N is a Arabic
number, refers to page name in Section N of the UNIX/TS User's Manual.

You must have a basic understanding of the operation of the hardware. This includes the con-
sole panel, the tape drives, and the disk drives, all of which are assumed to have standard
addresses and interrupt vectors. If you do not understand somecthing. consult the UN/X/TS
Operations Manual and DEC™ maintenance manuals. It is also assumed thal the hardware works
and has been completely installed. The DEC diagnostics should have been run to test the
configuration, and you must have a detailed description of .the hardware, including device
addresses, interrupt vectors, and bus levels. This information is very important Lo generate the
UNIX/TS system.

1.2 Procedure

UNIX/TS is distributed on a single, multi-file magnetic tape. recorded 9-track at 800bpi. The
initial load program will copy a file system from tape (either a TU10 or a TU16) to disk (either

an RP03 or an RP06). Note that RP04 and RPOS5 drives are considered to be equivalent to -

RPO6 drives; any diflerences will be noted explicitly. Once the root file system has been success-
fully loaded to disk, UNIX/TS may be booted and the available utility programs may then be
used to complete the installation.

The remaining files on the tape contain source text and supplemental commands. These files
contain essential information (o generale a new system that will match your particular hardware
and software environment.)

In order for any of the update procedures to work correctly, .you must be running UNIX/TS.
Older versions of UNIX cannot be correctly updated with a UNIX/TS system. The cpio(l) pro-
gram will not replace any file if its replacement has a modification time that is less than (i.c.,
earlier than) the modification time of the original file. This can be due to local modifications.
Furthermore, certain administrative files (e.g.. passwd, croniab) are sent with modification times
of Jan 1, 1970 to ensure that they do not replace their counterparts during updates. Any file not
copied will cause cpio(l) to print a message to that effect. These messages should always be
investigated to ensure that any files not copied were of that type. However, note that, depend-
ing on respective modification times, a locally-modified file may get updated, thus destroying the

local modilications.

There are several diflicultics that can arise when installing a UNIX/TS system. Onc of the most
common problems is ruaning out of disk space when performing an update. Should this occur,
the original contents of the filc sysiem should be restored from a backup copy and the contents
of the update tape should be read into a sparc file systcm using the cpio(l) program. Unwanted
material can then be removed and the original file systemi can be updated from this new file sys-
tem using the —p option of ¢pio(l1). Modification times of liles should also be preserved using
the —m option of cpio(1).

This document is not strictly linear. Read it thoroughly, from start to finish, and then rcad it
again. Also, remove the wrile ring, if present, from the distribution tape to guard against
accidental erasure. .

2. LOAD PROCEDURES

2.1 Distribution Tape Format

The five files are: a loader, a physical copy of the roor file system, the cpio(1) program, and a
cpio(1) structured copy of the roor file system, and a (cpio) copy of Aisr. Root refers to the
directory **/*°, which is the root of ali‘the directory trees. The format of this tape is as follows:

record 0: Tape boot loader—>512-bytes;

record 1: . Tape boot loader —512-bytes;

remainder of file 1: Initial load program —several 512-byle records;

end-of-file.

file 2: root file system (physical) —several 5120-byte records (blocking lactor
10);

end-of-file.

file 3: cpio program (latest version) —several 512-byte records;

end-of-file. .

file 4: root file system (structured in cpio format) —several 5120-byte records
(to be used only for updating an earlier UNIX/TS);

end-of-file.

file 5: . fusr file system (same format as file 4).

end-of-file.

The roor (/) file system contains the following directories:

bek: - ENE Directory used to mount a backup file system for file restoral.

bin: e Public commands; most of what's described in Section 1 of the
UNIX/TS User's Manual.

dev: Special files, all the devices on the system.

etc: Administrative programs and tables.

lib: Public libraries, parts of the assembier, C compiler.

mnt: Directory used to mount a file system.

stand: Standalone boot programs.

tmp: Directory used for temporary files; should be cleaned at reboot.

usr: Directory used to mount the /usr file system; user directories often

kept here also.
2.2 Initial Load of root

Mount the distribution tape on drive 0 and position it at the load point. Next, bootstrap the tape
by reading eilher record 0 or record | into memory starting al address 0 and start execution at
address 0. This may be accomplished by using a standard DEC ROM bootstrap loader, a spec:al
ROM, or some manual procedure. See romboot(8), tapeboot(8), and 70boor(8).

)y)

0 -

The tape boot loader will then type “UNIX tape boot loader™ on the console terminal and rcad
in and exccute the initial load program. The program will then type detuiled instructions about
the opcration of the program on the console terminal. First, it will ask what type of disk drive
you have and which drive you plan to usc for the copy. The disk controller used must be at the
standard DEC address indicated by the program. However, other disk controllers on your Sys-
tem may be at non-standard addresses. You must mount a formatted, error-frce pack on the
drive you.have indicated. If nccessary, use the appropriate DEC diagnostic program to format
the pack. Note that the pack will be written on. Second, the program will ask what type of tape
drive you have and which drive contains the tape. Normally, this will be drive 0, but the pro-
gram will work with other drives. Nole that the tape is currently positioncd correctly after the
end-of-file between the initial load program and the roor file system. When everything is ready,
the program will copy the file system from the tape to disk and give instructions for booting
UNIX/TS. After the copy is complete and you have booted the basic version of UNIX/TS,
check (using fsck (IM)) the root file system and browse through it. :

The file srand/mnuest is a stand-alone memory mapping diagnostic program. {t should be booted
and run (20 minutcs) if you are not absolutely sure that DEC FCO (field change order) M8140-
R002 has been applied to your PDP 11/70 CPU!

2.3 Update of root

. It is very important that the system be running in single-user mode during the update phase. To

update an already existing roor file system, files three and four will be used. It is necessary to
first make a copy of your root file-system using volcopy(IM) and then update this copy. The
copy should be made on a separale disk pack using the same section number as your root file

-system (always section 0). Also, after the update is completed, check if any of your local

administrative files in the directory /erc need modification. Most of these are mentioned in Sec-
tion 4 befow.

Mount the tape on drive 0 and position it at the load point. We assume that disk drive 1 is
available for making the copy, and that the root file system is on /devip0. The following pro-

cedure will first make a copy of the roor file sysiem, ‘and then update this copy. Note that -

/dev/imt4 refers to tape drive 0 but has the side effect of spacing forward to the next end-of-file
(no rewind option). The Boplion of cpio specifies that input is in 5120-byte records.

volcopy root /dev/rrp0 pknamel /dev/rrpl0 pkname2
mount /dev/rpl0 /bck

¢ The two echo’s will move the tape to file 3.
echo . </dev/mt4 '

echo </dey/mt4

cp /dev/mitd-c/bek/bin/cpio

chmod 755 /bck/bin/cpio

chown bin /bck/bin/cpio

cd /bek

/bck/bin/cpio —idmB </dev/rmt0

cd / S

umount /dev/rpl0

where pknamel and pkname?2 are the volume names of the source and destination disk packs,
respectively. If the new copy is satisfactory, shut down and halt the system, change disk packs,
and reboot the system using the new root. '

2.4 File 5 (/usr) Format

File 5 contains the /usr file system in cpio(l) format (5120-byte records). The Ausr file system
contains commands and files that must be available (mounted) when the system is in multi-user
mode. The tape contains the following directories:

edm: Misccllaneous administrative command and data files, including the connect-
tinie accounting file wimp and the process accounting file pacct.

)D

bin: Public commands; an overflow for /bin.

dict: Dictionarics for word proccssing programs.

games: _Various demonstration and instructional programs.

include: Public C language #include files.

lib: Archive libraries, including the text processing macros; also contains data files
for various programs, such as spell(1) and cron(IM).

mail: Mail directory.)

man: Source for the UNIX/TS User's Manual: see man(1).

mdec: Hardware bootstrap loaders and programs.

news: Place for all the various system news.

pub: Handy public information, e.g., table of ASCII characters..

spool: Spool directory for daemons.

src: Source for commands, librarics, the system, etc.

tmp: Directory for temporary files; should be clcaned at reboot:

A table of contents of this tape may be obtained by using the cpio(1) options —itB. Also, after
installation, files and directories deemed useless by the local administrator may be easily
removed. Alternately, only parts of the tape may be extracted using the pattern matching capa-
bilities of cpio(1).

2.5 Initial Load of /usr

Mount a file system (device) as /isr. The ultimate size and location of this file system on a dev-
ice is an administrative decision; initially, the following procedure will suffice:

: "The 4 echo’s will move the tape to file 5.”
echo </dev/mt4
. echo </dev/mt4
echo </dev/mt4
echo </dev/mt4
cd/ -
mkfs /dev/rrpl 35000 7 418
¢ If you have RPO3 drives, the last argument above should be 200.
labelit /dev/erpl usr pkname
mount /dev/rpl /usr
cd /usr
cpio —idmB </dev/ rmt0

where pkname is the volume name of the pack (e.g., “‘p0001™).

Since /usr must be mounted when the system is in multi-user mode, the file /erc/rc must be
changed to intlude the command lines:

mount /dev/rpl /usr
and ’
umount /dev/rpl

These lines must be inserted at the appropriate places in /erc/c, as indicated by comments in the
prototype file. Next the file /erc/checklist should be changed to include /devirrpl. See also
Sck(1M), labeiit(1M), mkfs(I1M), mount(1M).

2.6 Update of /usr

It is advisable that the system be running in' single-user mode during the update phase. It is also
wise to first make a copy of your /usr file system for backup purposes. Next, mount the distribu-
tion tape on drive 0 and position it at file 5. The Asr file system must also be mounted. The fol-
lowing procedure will perform the update: L.

.

"
i
-

)0 - -

.

cd /usr :
cpio —idmB </dev/rmt0

3.. CONFIGURATION PLANNING
3.1 UNIX/TS Couliguration

The basic UNIX/TS operating system supplied supports only the console, a disk controller (disk
drive 0), and a tape controller (tape drive 0). The actual configuration of your system must be

. described by you. All of the UNIX/TS operating system source code and object libraries are in

Jusrsreuts. All of the configuration information is kept in the directory /usrfsrciutsif. There are
only two files that must be changed to reflect your system configuration, low.s and conf.c; the
program confic(1M) makes this task relatively simple.

Config requires a system description file and produces the two needed files. The first part of the
system description file lists all of the hardware devices on your system. Next, various system
information is listed. A briel explanation of this information follows. For more details of syn-
tax and structure, see config(1M) and the associated masrer(S)

root—Specifies the device where the roor file system is to be fourd. The device must be a
block device with read/write capability since this device will be mounted read/write as **/*".
Thus, a tape can not be mounted as the roof, but can be mounted as some read-only file
system. Normally, root is disk drive 0, section 0.

swap—Spccifics the device and blacks that will be used for swappmg Swplo .is the first

.block number used and nswap indicates how many blocks. starting at swplo, to- use. Swplo

can not be zero. Typically, systems require approximately 2,000 blocks. Care must be
taken that the swap area specified does notl overlap any filc systcm. For example, if sec-
tion 0 is 8,000 blocks long, the roor file system could occupy the first 6,000 blocks and
swap the remaining 2,000 by specifying:

root rp06 O
swap rp06 0 6000 2000

pipe —Specifies where pipes are to be allocated (must be a file system —the root file system
is normaily used).

dump—Specifies the device to be used to dump memory after a system crash. Currently
only the TU10 and TU16 tape drives are suppérted for this purpose.

buffers —Specifies how many system buffers to allocate. In general, you will want as many
buffers as possible without exceeding the system space limitations. Normally, buffers is in
the range of 24—50. Each’entry takes up 512 bytes outside system address space and 26
bytes inside the system.

sabufs —Spécifies how many system addressable buffers to allocate. One buffer is needed for
every mounted file system. Certain 1/0 drivers need such buffers. Normally, sabufs is in
the range 10—15. Each entry requires 540 bytes.

inodes —Specifies how many inode table entries to allocate. Each entry represents a unique
open inode. When the table overflows, the warning message “‘Inode table overflow’’ will
be printed on the console. The table size should be increased if this happens regularly.
The number of entries used depends on the number of active processes, texts, and
mounts. Normally, inodes is in the range of 100—150. Each entry requires 74 bytes.
files—Specifies how many open-file table entries to allocate. Each entry represents an open
file. When the table overflows, the warning message ‘‘no file’” wiil be printed on the con-
sole. The table size should be increased if this happens regularly. Normally, files is in the
same range as the number of incdes. Each entry requires 8 bytes.

mounts—Specifies how many mount 1able entries to allocate. Each entry represents a
mounted file system. The roor (/) will always be the first entry. When full, the mount(2)
syscall will return the error EBUSY. Normally, mounts is in the range of 8-16. Each entry
requires 10 bytes.

coremap—Specifics how many entries to allocate to the list of free memory. - Each entry
represents a contiguous group of 64-byte blocks of free memory. When the list overflows,

« B

2

). R

due to excessive fragmentation, the system will undoubtedly crash in an unpredictable
manncr. The number of cntrics used depends on the number of processes active, (heir
sizes, and the amount of memory available. Normally, coremap is in the range of 50-100.
Each entry requires 4 bytes.

e swapmap— Specifics how many entries to allocate to the /ist of free swap blocks. Exactly like
the coremap, except it represents free blocks in the swap area, in 512-bylc units. Each
entry requircs 4 bytes.

e calls—Spccifics how many callout table entries to allocate. Each entry represents a function
to be invoked at a later time by the clock handler. The time unit is 1/60 of a second. The

- callout table is used by the terminal handlers to provide terminal delays and by various
other 1/0 handlers. When the table overflows, the system will crash and print the panic
message ‘“Timeout table overflow™ on the console. Normally, calls is in the range of 30-
60. Each entry requires 6 bytes. ’ _

e procs—Specifies how many process fable entries to allocate. Each entry represents an active
process. The scheduler is always the first entry and init(8) is always the second entry. The
number of entries depends on the number of terminal lines available and the number of
processes spawned by cach user. The average number of processes per uscr is in the range
of 2-5. When (ull, the fork (2) syscall will retura the error EAGAIN. Normually, procsis in
the range of 50-200. Each entry requires 28 bytcs.

e [exts—Specifies how many text rable entries to allocate. Each entry represents an active
read-only text segment. Such programs are created by using the —i or —n option of the
loader /d(1). When the tabic overflows, the warning message “‘out of text” is printed on
the console. Normally, fexts is in the range of 25-50. Each entry requires 12 bytes.

e clists—Specifies how many character list buffers to allocate. Each buffer contains up to six
bytes. The buffers are dynamically linked together to form input and output queucs for
the terminal lines and various other slow-speed devices. The average number of buffers
needed per terminal line is in the range of 5-10. When full, input characters from termi-
nals will be lost and not echoed. Normally, clists is in the range of 100-300. Each entry
requires 8 bytes.

32 UNIX/TS Generation

To generate a new UNIX/TS operating system, make sure that the directories under /ust/src/uts
are up-to-date. Follow the procedure below:

cd /usr/src/uts/cf

ed dfile .

a ’
linformatipn as described above}

Vear
-

q
make NAME=name CONFIG=dfile

Dfile is the name of the file containing the configuration information, and name is a character
string of at most eight characters used to identify a specific system (such as “utsa0501''). The
procedure will assemble low.s, compﬂe conf.c, and load them together with the object libraries
inio a file called name. .

The system has a finite address space so that if table sizes or the number of device types are too
large, various error messages will result and the above procedure will only create an a.ow file.
In particular, the maximum available data space is 49,152 bytes. The actual data space requested
can be found by using s&e(l) on ‘a.our and adding the dara and bss segment sizes. One then
seduces the specified values for the various system entries until it all fits. The amount of space
in the &ss segment used for each entry is indicated i m Section 3.1 above.

When you are satisfied with the new system, you mn test it by the following procedure:

JU WUUIS. S AU U

cd /ust/src/uts
cp name /

cd /

rm /unix

In /mame /unix
sync

Then hait the processor and reboot unix. Note that this procedure results in two names for the
operating system object, the generic /umix, and the actual name, say Atsa0501. An old system

. may be booted by referring to the actual name, but remember that many programs use the gen-

eric name /unix to obtain the name-list of the system.

If the new system does not work, verify that the correct device addresses and interrupt vectors
have been specified. If the wrong interrupt vector and the correct device address have been
specified for a device, the operating system will print the error message ‘‘stray interrupt at
XXX when the device is accessed, where XXX is the correct interrupt vector. If the wrong
device address is specified, the system will crash with a pamc trap o(‘ type 0 (indicating a
UNIBUS® timeout) when the device is accessed.

3.3 Special Files

A special file must bc made for every device on your system. Normally, all special files are
located in the directory /ev. Initially, this directory will contain:

console console terminal
error see err(4)
mem, kmem, null see mem(4)
Ay see tty(4)
rpl0—7] repl0—7] disk drive 0, sections 0—7
mt0, rmt0 tape drive 0 (800 bpi)
mt4, rmt4 tape drive 0 (800 bpi, no rewind).

There are two types of special files, block and character. This is indicated by the character bor ¢
in the listing produced by /s(1) with the *‘=1"" flag.

In addition, each special file has 2 major device number and a minor device number. The major
device number refers to the device type and is used as an index into either the bdevsw or cdevsw
table in the configuration file conf.c. The minor device number refers to a particular unit of the
device type and is used only by the driver for that type. For example, using the following sam-
ple portion of a configuration file, a block special file with major device number | and minor
device numbeg 0 would refer to the TU10 magtape, drive 0, while a character special file with
major device humber 1 and minor device number 4 would refer to the DH11 asynchronous mul-
tiplexor, line 4.

~- —— T T T PO Y WU ™ R e atan o

) T

- o— - =

i‘nt -+ (sbdevsw{])()
/e 0/ &hpopen, &hpclose, &hpstrategy, &hplab,
;- le/ &tmopen, &tmclose, &tmstrategy, &tmitab,
i‘nt (scdevswil) ()
/* O0s/ &klopen, &kiclose, &klread, &klwrite, &kisgtty,

/* 1¢/ &dhopen, &dhclose, &dhread, -&dhwrite, &dhsgtty,

/e 2¢/ &nulidev, &nulldev, &mmread, &mmwrite, &nodev,

/e 3¢/ &nodev, &nodev, &nodev, &nodev, &nodev,

/e 4¢/ &nodev, &nodev, &nodev, &nodev, &nodev,

/e S+/ &nodev, &nodev, &nodev, &nodev, &nodev,

/* 6¢/ &tmopen, &tmclose, &tmread, &tmwrite, &nodcv,

/e 7¢/ &hpopen, &hpclose, &hpread, &hpwrite, &nodev,

/+ 8¢/ &nodev, &nodev, &nodev, &nodev, &nodcv,

/e 9¢/ &nodev, &nodev, &nodev, &nodev, &ncdev,

/+10%/ &nodev, &nodev, &nodev, &nodev, &nodev,

/elle/ &nodev, &nodev, &nodev, &nodev, &nodev,

/*12¢/ &nodev, &nodev, &nodev, &nodev, &nodev,

{-13°l &syopen, &nulldev, &syread, &sywrite, &sysgity,
The program mknod(1M) creates special files. For example, the following would create parr of
the initially-supplied /Mev directory:)

cd /dev

mknod console ¢ 0 0

mknod error ¢ 20 0

mknod mem ¢ 2 0; mknod kmem ¢ 2 1; mknod null ¢ 2 2
mknod tty ¢ 13 0

mknod rp0 b 0 0; mknod rrp0 ¢ 7 0

mknod mt0 b 1 -0; mknod rmt0 ¢ 6 0

mknod mt4 b 1 4; mknod rmtd ¢ 6 4

After the special files have been made, their access modes should be changed to appro;)riate
values by chmod(1). For example: '

cd /dev '
chmod 622~ console

chmod 444 error

chmod 644 mem kmem
chmod 666 null

chmod 666 tty)
chmod 400 rp0 rrp0

chmod 666 mt0 rmt0
chmod 666 mt4 rmitd

Note that file names have no meaning to the operating system itsell, only the major and minor
device numbers are important. However, many programs expect that a particular file is a certain
device. Thus, by convention, special files are named as follows:

block device conf.c /dev

RPO3 disk w pe
.RP04/5/6 disk hp rpe* N
RS03/4 fixed head disk hs rse
TU10 tape tm mte

TU16 tape ht mte

o smen

‘ L IR IR

character device conf.c /ey

DLI11 asynch line ki tty+, console
DHI11 asynch linc mux dh ttye

DZ11 asynch line mux dz ttys

DN11 auto call unit dn dne

DUI11 synch line du due
DQS11B synch line dgs rjei

KMC11 micro kme kmce

LP1] line printer lp Ipe

RP03 disk 5] rrpe
RP04/5/6 disk hp rpe

RS03/4 fixed head disk hs Irs*

TUI10 tape tm rmte

TU16 tape = ht rmie

error . err error
memory mm mem, kmem, null
terminal sy tty

For those devices with a Aev name ending in **+"", this character is replaced by a string of digits
representing the minor device number. For example:

mknod /dev/mt! b [1
mknod /dev/rp24 b 0 024

Note that for disks, an octal number scheme is maintained because each drive is split cight ways.
Thus, /evirp24 refers to section 4 of physical drive 2. There is also a special file, Mdeviswap, that
is used by the program ps(1). This file must reflect what device is used for swapping and must
be readable. For example:

rm /dev/swap
mknod /dev/swap b 0 0
chmod 444 /dev/swap

3.4 File Systems

Each physical pack is split into eight logical sections. This split is defined in the operating sys-
tem by a table with eight entries. Each table entry is two words long. The first specifies how
many blocks are in the section, the second specifies the starting cylinder. See Ap(4) (RP04/5/6)
and rp(4) (RP03) for default cylinder/block assignments.

These values are described to the system in the header file /usrfinclude/sysfio.h which may be
changed by using the editor ed(1). After such a change, the system must be made again (see
Section 3.2).

A file system starts at block 0 of a section of the disk and may be as large as the size of that sec-
tion; if it is smaller than the size of a section, the remainder of that section is unused. Note that
the sections themselves may overlap pltysical areas of the pack, but the file systems must never
overlap.

The program mkj.'s(lM) is used to initialize a section of the disk to be a file system. Next, the
program labelit(1M) is used to label the file system with its name and the name of the pack.
Finally, the file system may be checked for consistency by using f5ck(1IM). The file system may
then be mounted using moum(lM)

4. ADMINISTRATIVE FILES

4.1 /etc/motd

This file contains the message-of-the-day. It is printed by login(1) after every successful login.

R LS

- jyY -

4.2 /ete/te

On the transition between init states, /rc/init invokes /Min/sh to run /fetc/re (must have excculable
modcs). So that /frc/rc can properly handle the removal of temproary files and the mounting and
unmounting of filc systems, it is invoked with three arguments: new stale, number of times this
state has becn entered, previous state. When the system is initially booted, /etc/re is invoked
with arguments "1 0 0"; when state two(multi-user) is subsequently entered, the arguments are
201"

Daemons may be invoked either by /rc/c or by including lines for them in /etc/inittab.

This file must be edited to suit local conditions; see init(8).

4.3 /etc/inittad

This file indicates to /etc/init which processes to create in each init state. By convention. state 1
is single-user ang siate 2 is multi-user. For example, the following line creates the single-user
environment:

1:co:c:/bin/-sh </dev/console $/devlconsolc 2> /dev/console

This indicates that for state 1 a process with the arbitrary unique identifier "co” should be
created. The program invoked for this process should be the shell and when it exits it should be
reinvoked ('¢’ flag). .

To attach a login procés‘s to the console in the multi-user state, add the line:
2:co:c:/etc/getty console 4

and for line /devAry00 for use by 300/150/110 baud terminals, add the followmg line:
' 2:00:c: /etc/getty ttyG0 0 60

The arguments to getty are the device, speed table, and number of seconds to allow before
hanging up the line.

Again, this file must be edited for local conditions. See getty(1M), init(8), inittab(s).
4.4 /etc/passwd
This file is used to describe each user to the system. You must add a new line for each new

user. Each line has six fields separated by colons:

1. Login name: ,
Normally 1-6 characters, first character alphabetic, rest alphanumeric, no upper-case.

2 Encrypted‘password
Initially null, filled in by passwd(1). The encrypted password contains 13 bytes, while the
actual password is limited to a maximum of 8 bytes. The encrypted password may be fol-
lowed by a comma and up to 4 more bytes of password age information.

3. UserID:
A number between 0 and 65535; 0 indicates the super-user. These other IDs are reserved:
bin::2: software administration;
sys::3: system operation;
adm::4: system administration;
uucp::S: UNIX-UNIX file copy;
rje::68: remote job entry administration;
- games::196: miscellaneous; never a real user.
4. Group ID:
The defauit is group *“1** (one). -

5. Accounting information: .
This feld is used by various accounting programs. It usually contains the user name,

.

).’._ - — _1‘

.“.

department number, and account number.

6. Login dircctory:
Full pathname (keep them reasonably short).

7. Program name:
If null, Ain/sh is invoked after successful login. If present, the named program is invoked in
place of Din/sh. '

For example:

ghh::38:1:6824-G.H.Hurtz(4357):/usr/ghh:
grk::44:1:6510-S.P.LeName (4466):/usr/grk:/bin/rsh

See also passwd(5), login(1), passwd(1).
4.5 /etc/group

This file is used to describe each group to the system. Each line has four fields scparated by
colons: ’

group name;

encrypted password;

numerical group ID;

list of all login names in the group, separated by commas.

See also group(5).
4.6 /etc/checklist

This file contains a list of default devices to be checked for consistency by the fsck(1M) pro-
gram. The devices normally correspond to those mounted when the system is in multi-user
mode. For example, a sample checklist would be:

/dev/rrp0
/dev/rrpl

4.7 /etc/shutdown

This file contains procedures to gracefully shut down the system in preparation for filesave or
scheduled downtime.

4.8 /etc/filesave.? .

This file contains the detailed proéedures for the local filesave.
4.9 /usr.ladmf;a'é"ct

This file contains the process accounting information. See acct(1M).
4.10 /ust/adm/wtmp

*

This file is the log of login processes.

5. REGENERATING SYSTEM SOFTWARE

System source is issued under the ‘directory lusrfsre. The sub-directories are named cmd (com-
mands), lib (libraries), s (the operating system), head (header files), and wrif (utilities). See
mk(8) for details on how to remake system software.

