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1. Introduction

By far the most popular method for specifying a programming language is to specify the
syntax using some variant of BNF notation [bac59] and then give an informal description of the
semantics. This was the method used for the influential Algol 60 report [nau63]. While
natural language descriptions are very good at conveying the spirit of a language construct,
important details may get left out, either because they are overlooked, or because they are hard
to express.

It is for cleanly and concisely specifying the precise details of the meaning of a language
that we turn to formal specifications of programming languages.

1.1. An example. Here we consider the example of the for statement in the C program-
ming language [ker78], where it is difficult to express the meaning of the for, even if we take
the meaning of the while statement as being understood. The for statement in C has the
form

for ( exp, ; exp; ; expy ) stm

The intent of the for statement is similar to that of the following program fragment, but
as we shall see, an exact analogy is frustrated by continue statements:

expy ;

while ( exp; ) |
stm
exps i

!

Assignments may be embedded within expressions in C, and an expression followed by a semi-
colon is a statement. In the statement exp ; the expression is evaluated for its side-effects —
the value of the expression is thrown away.

Thus the first expression exp, specifies initialization for lhe loop: the second exp, specifies
a test. made before each iteration. such that the loop is exited when the expression becomes 0:
the third expression exp; often specifies an incrementation which is performed after each itera-
tion. )
The difference between the for stalement and ‘the above program fragmen! is that a
continue statement within stm is treated differently in the two cases. In the while. when a
continue in stm is encountered. the statements following the continue (including exp;) are
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skipped and the test exp; is reevaluated. In the for statement, however, when a continue in
stm is encountered, exp; is evaluated before the next iteration begins. (Notice that we do not
have a precise notion of what an iteration is.)

Using goto statements and labels we could indeed give the meaning of the for state-
ment, in effect by compiling it into an intermediate language. Quite apart from the fact that the
meaning of the intermediate language would then have to be specified, we would have lost the
simplicity of a natural language description.

1.2. Abstract. The purpose of this work is to provide a readable and precise specification
of the semantics of the C programming language. We would like the specification to be precise
enough that a compiler can be constructed from the specification. Of the three methods —
operational, denotational, and axiomatic — that have been used to specify the semantics of rea-
sonably complete languages, the denotational method seems best suited for our purposes.

The exact boundary between operational and denotational semantics is neither very clear,
nor very important. In this prelude we will survey the operational and denotational approaches
to the semantics of programming languages. The language we will use to illustrate both these
approaches has statements with the following syntax.

stm = id :=exp;
| stm stm
| if (exp ) { stm )
| while (exp ) | stm )

In the discussions that follow, it will sometimes:be convenient to drop { and } and write the
conditional and while statements as

if (exp ) stm
while ( exp ) stm

Expressions will be discussed in some detail in section 2. We intend exp to generate the
usual arithmetic expressions, with no side-efzects.

Some bibliographic notes appear in section 8.

1.3. Operational semantics. In practice, when a question arises about the meaning of a
program, it is often resolved by actually compiling and running the program. A compiler on a
given computer clearly constitutes a precise specification of a language. Unfortunately, this
specification is not very usable since it depends too intimately on the details of the particular
compiler on the particular computer.

A machine independent specification of a language can be constructed by abstracting away
unnecessary details and defining a simplified hypothetical computer: the language can then be
specified by writing an interpreter for the language using the machme language of the hypothet-
ical computer.

McCarthy [mcc62) suggested in 1962 that the semantics of a language be specified as fol-
lows:
1. Isolate the information that is needed to describe the state of a computation. For the pur-
~ poses of this prelude. a state s will give the current value of each program identifier.

2. “The meaning of a program is defined by its effect on the state vector.” *‘In the case of
ALGOL we should have a function s’ = algo/(p.s) which gives the value s’ of the state
vector after the ALGOL program p has stopped. given that it was started at its beginning
and that the state vector was initially s.’ (In these quotes from [mecc62] we have used the
symbols p and s instead of 7 and £.)

~
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McCarthy’s interpreter for LiSP [mcc60] became the de facto standard for the language
[mcc78], so LisP might be viewed as the first language to be defined interpretively. Landin
defined Algol 60 by first translating Algol 60 programs into expressions in a modified A-cal-
culus, and then interpreting the resulting expressions on an abstract machine called the SECD
machine [lan64,lan65]. McCarthy’s and Landin’s work was a starting point for the Vienna
definition of PL/1 [luc69].

1.4. Denotational semantics. The beginnings of denotational semantics are evident in the
1964 paper [str64] by Strachey. Although Strachey was considerably influenced by Landin, he
preferred to use an approach that did not depend in any way on the workings of a machine,
however abstract the machine might be.

Here we will give the barest hint of the method of denotational semantics [scs71], which
will be discussed in section §.

Let a state s map an identifier to a value. Exploiting the structure of an expression, it is
easy to devise a function which maps an expression exp and a state s to a value. (We have
assumed that there are no side-effects during expression evaluation.)

Let us take the meaning of a statement stm to be a function f from states to states. Sup-
pose stm is the assignment id := exp ; and we are given a state s. Then f(s) will be some
state s', which maps all identifiers except id to the values that the original state s would have:
id will be mapped to the value of exp in the original state s. For a compound statement
stmy stmy, if f) is the meaning of stm; and f; the meaning of stm,, then the meaning of
stm, stm; will be the function f,of, from states to states. In general, for each syntactic rule
that constructs a statement from its constituents, a semantic rule will be given to construct the
meaning of the statement from the meanings of the constituents. '

Taking the meaning of a statement to be a function from states to states, and giving the

“meaning of the compound statement stm, strm, by functional composition as above, leads to

difficulties when goto statements are included in the language. These dlfﬁcultles can be
resolved by using continuations, which will be examined in section 6.

Denotational specifications have been given for a number of languages, including Algol 60
[mss74,hen78] and Pascal [ten77].

1.5. Distinguishing operational and denotational specifications. A multiplicity of notations
have been used for specifying the semantics of programming languages. In some cases the
notation is so extensive that the basic concepts underlying the specification are hopelessly lost.
The situation is complicated by the fact that some notations can be used to express both opera-
tional and denotational specifications.

We will initially use distinct notations for operational and denotational semantics so that it
will be clear at a glance which style is being discussed. The operational semantics in section 3
will be expressed using both notations in order to compare and. contrast it with the denotational
semantics in section 5.

An easy and effective way of telling operational and denotational specifications apart is to
look at the semantics of while statements. (If the language does not have while statements,
then look for the semantics of any construct that may lead to an infinite computation.) Regard-
less of which method is used. we expect while ( exp ) stm to have the same meaning as

if (exp ) | stm while ( exp ) stm )

Operational methods specify the meaning of the while statement using some formalization
of: if exp evaluates to false, then skip to the end of the while statement: otherwise execute stm
and reexecute the while statement. In this way, the meaning of a while statement is specified in
terms of the meaning of the while statement. .

Denotational methods synthesize the meamng of the while statement just in terms of thé
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meanings of exp and stm, and not in terms of the entire while statement. Since execution of a
while statement need not terminate, denotational methods need some mechanism for finitely
expressing the meaning of a possibly infinite computation. This point will be discussed further
in section 5.1 after recursive definitions are discussed in section 4.

2. Expressions: a small example

In order to set up a programming language we must begin by setting up the syntax, which
specifies what programs in the language look like. After specifying the syntax, we still do not
have a programming language until we set up its semantics, which specifies what programs in
the language mean.

In this section we introduce some basic concepts and notations for specifying semantics,
by considering arithmetic expressions over -~ (subtraction) and  (multiplication). The
language of expressions is simple enough that we can focus on the semantic method without
being sidetracked by the intricacies of the language being defined. The language is in fact so
simple that there is no distinction between its operational and denotational semantics. Substan-
tive distinctions between the two methods can be made after while statements are included.

The starting point for a semantic specification is a syntax for the language. We would like
to defer a discussion of the choice of syntax on which semantics are based until section 2.4.

Meanwhile, as a further simplification, we will write expressions in prefix notation e.g.
x-abc instead of (a-b)wc. Later in this section infix expressions like (a-b)*c will be
treated.

Thé syntax of prefix expressions is given by
exp = - exp exp
| % exp exp
| id

Here id represents an arbitrary identifier. In examples, the letters a, b, and c will be
used for identifiers. In productions we will sometimes use subscnpts, as in exp 1= - exp, exp,,
with the sole intent of distinguishing the instances of exp.

Even though there is no real distinction between operational and denotational semantics
for prefix expressions, a natural progression is to introduce operational semantics and then
denotational semantics for expressions.

2.1. Domains. Each syntactic object, like an expression or an identifier, denotes a seman-
tic object: in the case of expressions, a value chosen from say the set of integers. Instead of
the term *“‘set”’, the term domain is generally used, so we talk about the domain of expressions
or the domain of values. The reasons for separating the terms ‘‘set’’ and ‘‘domain’ will
become clear in section 4.4 when we impose some structure on domains.

Even modest programming languages encompass a number of distinct domains. Some of
these domains. like those of expressions and statements, are clear from the syntax, but others
reflect semantic choices made during the design of the language and are not nearly as obvious.
Strachey [str72] suggests that a language designer start by considering the domains relevant to a
language, since we cannot give the semantics of a language without knowing what the semantic
objects are. Furthermore. deep semantic differences between languages can show up even at
this stage [str72].

The language of prefix expressions has three synlactic domains: Exp the domain of expres-
sions is constructed from the domain Ide of identjfiers and the domain Bop of binary operator
symbols.

The first step in defining the semantics of prefix expressions is a specnﬁcanon of the
domains that the meanings of the syntactic objects will lie in. An identifier id will denote a

“
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value belonging to an appropriate domain V of values. We will use functions cailed states to

map identifiers 1o their values. The domain of states will be S.

2.2. Operational semantics. We will set up a procedure val(exp.s) that will return a value
in V, given an expression exp and state s. In order to define procedure val(exp,s) we need a
metalanguage that the procedure will be written in. For brevity, in this paper we will use a
metalanguage that is simple enough that a precise definition of the metalanguage will be omit-
ted. The metalanguage includes the operator 8, which subtracts its second argument from its
first. and may be viewed as perfect subtraction. Also included is the operator @, which multi-
plies its first and second arguments.

The procedure val(exp,s) can be written as follows:

val(exp,s) =

ifexp is id then s(id)
elseif exp is —exp exp; then val(exp,.s) © val(exp,,s)
elseifexp is *expexp, then val(exp,.s) ® val(exp,,s)

Figure 1. Operational semantics for prefix expressions.

Using val(exp.s), we need both exp and s before we can begin to give the meaning of an
expression. In Figure 1, the meaning of an expression is therefore inextricably linked with
states.

2.3. Denotational semantics. The mapping of syntactic to semantic domains is done by .

functions that are called valuations. Valuations play a role similar to that of procedures like val
in section 2.2.

Given an expression exp and a state s the valuation ev determines a value in V. Deter-
mination of a value proceeds in two stages: eviexp] is a function from states to values. The
special brackets [ and 1 are used just to enclose syntactic objects. When the function evlexpl
is applied to state s the value (evlexpl)(s) is determined. We will avoid parentheses and write
evlexpls for (evlexp]) (s).

Later in this prelude we will consider two different valuations, which will give two
different meanings, for statements. For-expressions, however, there will be just one valuation.

Since there is just one valuation ev for expressions, we can drop ev without loss of infor-
mation and abbreviate evlexp] to [expl. Thus for nonterminal exp in the syntax, the meaning
of the expression generated by exp will be written as fexpl.

We declare (1o the reader) that [expl(s) is an element of V by writing
lexpl(s): V
Elsewhere we can declare that s is an element of S by writing
s: S ’

All uses of s will then refer 1o elements of S. We can distinguish between distinct states by
decorating s with subscripts and/or primes. .

The semantic specification in Figure 2 emphasizes the syntax directed nature of the
definition of [exp}. For example, associated with the syntactic rule

exp = — exp; exp;



is the semantic rule
[expd(s) = Lexp }(s) © [exp,}(s)

Syntactic Domains Tt T
id: Ide identifiers
exp: Exp expressions
- % Bop ) binary operators.
Semantic Domains
v: \'/ values
s S=Ide —V states

Semantic Rules
[exp)(s): V

| id
~ s(id)

| - exp; exp,
— [exp,1(s) © [exp,d(s)

| % exp, exps
— Lexp 1 (s) ® Lexp,1(s)

Figure 2. Denotational semantics for prefix expressions. Lines beginning with *{" specify
the syntactic rules for constructing prefix expressions, and are followed by lines beginning
with **—="" which give the corresponding semantic rules.

2.4. Abstract syntax. When specifying the semantics of a programming language. a dis-
linction is made between the *‘concrete™ syntax of the language, which specifies exactly how
programs in the language can be constructed, and the “‘abstract’’ syntax on which the semantic
specification is based. "For the language of expressions over - and % the concrete syntax. which
handles precedence of % over - correctly, might be

exp ::= exp — term | term
term ::= term * factor | factor

Jactor = (exp ) | id

Since an identifier id is generated by the derivation
exp = lerm = factor » id
there is clearly no essential semantic difference between the strings generated by exp. term. and

Jactor.

McCarthy [mcc62] advocated the  use of ‘‘abstract syntax™ where instead of basing the
semaritics of expressions on the above grammar, special procedures like isdif in [mcc64) are
used to decide if the expression finally generated by a nonterminal is really the difference of
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two subexpressions. If isdiff says yes, then there are further procedures, like subtrahend and
minuend in {mcc64], to extract the subexpressions whose difference is being taken. These spe-
cial procedures constitute an abstract syntax of the language.

Almost all the methods base semantic specifications on an abstract syntax of the language
in question. In both the Vienna definition of PL/1 [luc69] and the ANsI Standard PL/1 definition
[ans76,mar77], the abstract syntax differs sufficiently from the concrete syntax that the conver-
sion of concrete programs to abstract programs has to be specified in detail. In denotational
specifications in the style of [mil76,st077,ten76] the abstract syntax is fairly close to the con-
crete syntax: the major difference between the two is that the abstract syntax is a compact, gen-
erally ambiguous grammar for the language being defined. Alternately, denotational
specifications can be based on parse trees in which nonterminals like exp, term, and facror
which are semantically similar have been grouped together. The notation in [mss76] integrates
parse trees into the metalanguage.

The syntax of statements in the sample language in this prelude is ambiguous because of
the production

stm = Stm Sstm

This syntax is a convenient starting point for introducing the semantics for the language.
The semantics of statements in C [set78] will be based on an unambiguous grammar.

The grammar for infix expressions given above is larger than the grammar for prefix
expressions given early in section 2. The semantic specification for infix expressions will be
proportionately larger than Figure 2, but manageably so. We will need valuations not only for
exp. but for term and factor as well. As with exp, there will be just one valuation for term and
Jactor, so we need not explicitly identify the valuation, as in the following rules for term:

leerml(s): V
| term % factor
~ Lzerm}(s) ® Lfacror)(s)
| factor
— Qsacror)(s)

3. An Operational Semantics

McCarthy [mcc62] suggested (see section 1.3) that *‘the meaning of a program is defined
by its effect on the state vector.” In this section we will examine some of the basic concepts of
this view of operational semantics. We will not attempt to introduce the notations that have
been used to give operational specifications for complete programming languages.

Recall from section 1.2 that the syntax of statements in our sample language is given by
stm .= id :=exp;
| stm stm
| if (exp ) { stm}
| while (exp ) { stm )

The syntax of expressions is not of importance here. We assume that a procedure like val
. in section 2.2 yields the value val/(exp.s) of expression exp relative to state s.
The value of an expression was found in the last section by decomposing the expression
into subexpressions and first evaluating the subexpressions. A similar idea works for assign-
ments. conditionals, and compound statements, but not for while statements.
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3.1. A statement interpreter. Procedure comp(stm,s) in Figure 3 returns a final state s,
given a statement stm and a starting state s. As in procedure val(exp,s) in Figure 1, there is a
case for each production in the syntax for stm.

comp(stm,s) =
ifstm is id := exp; then
slval(exp,s)/ id)
else if stm is stmy stm, then
comp (stmy,comp(stm,, s))
elseifstm is if (exp ) | stm,) then
if val(exp,s) #0 then comp(stm,,s) else s
elseif stm is while (exp ) | st ) then
if val(exp,s) =0 then comp(stm,comp(stm,,s)) else s

Figure 3. Given a statement stm and a state s, comp(stm,s) is the state s' that is the
result of starting with state s and executing stm. We specify that parameters be evaluated
before a recursive call occurs, so comp(stm,,comp(stm,,s)) is evaluated by first evaluating
comp(stm,s) =s' and then evaluating comp(stmy,s'). Keywords like them in the
metalanguage are in a different font from keywords like while in the programming .
language. ‘

- If stm is the assignment id := exp; then the state s is modified to s', where s'(id) will be
val(exp,s). All other identifiers are mapped to the same value by both s and s'. More pre-
cisely, ’

s'(x) = ifx=id then val(exp,s) else s(x)

The definition of a new function like s’ from an old one like s takes place often enough
that we will introduce some . notation for it. We will write f [a/y] for the function f' defined
below. (The use of A notation is explained in a footnote!.)

S = Ax. ifx=y then a else f(x)

We therefore have, s' = s[val(exp,s)/id].

If stm is the compound statement stm, stm,, then comp(stm.s) is evaluated by first
-evaluating s’ = comp(stm;,s) and then evaluating comp(stmy.s’).  Alternately,
comp(stm, stm,,s)) is given by comp(stmy.comp(stm,.s)) and the understanding that the inner
comp(stm,,s) evaluated first. '

If stm is the conditional if ( exp ) { stm, ) then the state comp(stm,s) depends on
val(exp.s). If val(exp.s) is nonzero (which corresponds to true in C [ker78]) then
comp(stm.s) is comp(stm,,s). otherwise it is s.

10rdinary notation does not permit us 1o talk about functions like s and f* without dragging in their argu-
ments. Since we wish 10 talk about functions independently of their arguments, it will be convenient 10 use
the following alternate notation to specify the function 5. where the argument of s’ is listed on the right
hand side and preceded by a **A™*

s'=Ax. if xmid them val(exp.s) else s(x)

While this notation is motivated by the A-calculus [chud].cur58] we will use it purely as a device for defining
functions.
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If stm is while ( exp ) { stm; } then comp(stm,s) is the same as it would be if stm were

if (exp ) {stm; while (exp ) { stm; )}

- 3.2. Remark on the metalanguage. The operational semantics of the sample language is
‘ given using the procedures comp in Figure 3 and va/ in Figure 1. By stating that ‘‘nested’ or
( “innermost”’ calls are done first while evaluating comp(stm,s), we have indicated an unambigu-
) ous evaluation. Evaluation of recursive definitions, of which comp and val are examples, is dis-
cussed in section 4.1.
3.3. Alternate notation. Figure 4 shows what the recursive definition in Figure 3 looks like
if it is expressed using the notation associated with denotational semantics. The denotational
- specification in section 5 will differ from Figure 4 only in the semantic rule for while state-
ments.
¢
Domains
id: Ide identifiers
exp: Exp expressions
stm: Stm statements
- % Bop binary operators
v: v values
s S=Ide—V states
Semantic Rules
Istm)(s): S
| id := exp;
— siv/id] where v = [expl(s)
‘ stm, stm,
= [stm)) ( Lstm1(s) )
| if (exp ) { stm; )
— ifLexpd (5) 0 then Lstm Y(s) else s
| while (exp ) | stm; )
- ~ if lexpY(s) =0 then Ustm}( Ustm}(s) ) else s
L
Figure 4. The recursive definition of the statement interpreter in Figure 3. expressed in
the notation we have been using for denotational semantics. Note that [stm] appears on
the right hand side in the semantic rule for the while statement. The semantics of ex-
pressions are as in section 2. Recall that a nonzero expression value corresponds 10 true
P in C [ker78].
\

For clarity, large expressions have been partitioned into subsidiary expressions using the
where and let in constructions. For example, s;. s;. and s; below are all equivalent.
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sy = s[ [exp)(s) /id)
sy = slv/id] where v = [exp}(s)
sy = letv = [exp)(s)

in slv/id]

The where construction will be used only when both parts of the construction fit on one
line. The letin construction will be used either when there is more than one subsidiary expres-
sion, or when the construction spans more than one line.

4. Recursive Definitions

Recursive definitions have figured prominently in the semantic specifications in sections 2
and 3. In this section we look more closely at recursive definitions and examine how we can
base computation sequences on them and how we can use them to define functions.

A recursive definition of F(x,, . . .,x,) will be written as
F(xh--o,x")-T

where T is a term constructed using known functions like +, {£then-else, is; the unknown
function represented by F; the formal parameters x,...,x,; and constants. F will be
referred to as the unknown function symbol.

For simplicity, the treatment in this section will be informal and will use simple examples
like

F(x,y) = if x=0 then y else F(x—1,y+1) 4.1)

The discussion carries over to the case when two or more unknown functions are defined
simultaneously. (Recall that comp in section 3 was defined using va! from section 2.)

In section 4.1 we show how computation sequences can be based on recursive definitions.
For some recursive definitions, like that of comp in Figure 3, more than one computation
sequence is possible. An example in section 4.2 shows that the values computed by different
computation sequences need not always agree. This example suggests that we seek alternate
methods for associating meaning with recursive definitions. Fixed points of recursive
definitions will be introduced in section 4.3. In order to talk about fixed points we need to be
precise about what an undefined value is: this need for precision motivates the discussion of
domains in section 4.4.

Familiarity with sections 4.3-5 will help greatly in understanding denotational semantics in
section 5.

4.1. Computation rules. Reflection on the recursive definition (4.1) suggests that F(x,y)
will be x+y if x is nonnegative. Starting with F(5.2) we will show how 7 might be computed.
Later in this section we will define ‘‘computation sequences’ in terms of *‘expansion™ and
*simplification’’ of terms.

Given a term like F(5,2) we will be allowed to expand F(5,2) using the definition (4.1).
Expansion is performed by textually substituting the actual parameters 5 and 2 for x and y, to
give

if 5=0 then 2 else F(5—1,2+1) ' (4.2)

After expansion, we will be allowed to simplify the intermediate term (4.2) as follows.
Any subterm like 5—1 or 5=0, which does not contain unknown function symbols. can be
replaced by the appropriate constant. Thus 5—1 simplifies to 4 and 5=0 simplifies 1o false.
Furthermore., {fp then ) else 1, simplifies 10 1, if p is true and to 1, if p is false.
Simplification of (4.2) yields
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F(4,3) 4.3)

The term F(4,3) above can be expanded to yield
if4=0 then 3 else F(4—1,3+1)
which simplifies to ,
FG.4) (4.4)

Four expansion and simplification steps later we will get 7.

The procedures vai(exp,s) in Figure 1 and comp(stm,s) in Figure 3 are just larger exam-
ples of recursive definitions. These recursive definitions can also be evaluated using alternate
expansion and simplification steps.

Given a recursive definition like (4.1) and a starting term 1, like F(5,2) a computation
sequence is a sequence of terms fo,#;,%, - * - , Where £, is determined from ¢ by (i) expanding
some subterm in £, and then (i) simplifying as far as possible to yield #,.

Coming up in section 4.2 is an example of a recursive definition and a starting term for
which the computation sequence is not unique. Such a situation occurs if at some expansion
step. there is a choice of subterms to expand. This point must be kept in mind while reading
the following definition of *‘computation rule’.

Given a recursive definition and a starting term #,, a (deterministic) computation rule picks
a unique computation sequence fo, /1.0, * * * .

In addition to supplying recursive definitions like comp in Figure 3 and val in Figure 1, an’
operational specification must supply a computation rule: otherwise, the operational specification
may not be deterministic.

4.2. Comparing computation rules. As the next example due to Morris [mos68] shows,
different computation rules may sometimes lead to different results. Consider the recursive
definition

M(x.y) = if x=0 then 1 else M(x—1,M(x—y.y))

When started with M(1,0) we get the following computation sequence if we expand the ‘‘inner-
most’’ subterm at every stage.

M(1,0) » M(0.M(1.0)) » MO.M(O.M(1,0))) » ---

Since this sequence is infinite, the value computed by this sequence is undefined.

If instead of expanding the ‘‘innermost’” subterm at each stage, we expand the *‘outer-
most’’ subterm, then we get a sequence that computes 1. -

M(1,0) » M(O,M(1,0)) » 1

Starting with stm and s, depending on the computation rule, the code for procedure comp
in Figure 3 may yield quite different computation sequences. (The operational semantics of
section 3 chose one particular sequence as giving the ‘‘meaning’’ of stm.) The existence of dis-
tinct computation sequences does raise some questions about the relation between these
sequences. These questions are best studied by taking a more functional approach and consid-
ering the **fixed points’ of a recursive definition.

4.3. Fixed points. The recursive definition (4.1) of F(x,y) was used to determine compu-
tation sequences in section 4.1. In this section we will take a different view of the same
definition. For convenience, the definition is repeated below. -

Flx.y) = ifx=0 then y else F(x—1.y+1) 4.1)
In the above definition we can view F as a variable representing a function, just like x is
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viewed as a variable representing a number in the following equation.
x46 = (x+1)3—x? .

It is easy to verify that x=1 satisfies the above eqixation.

Returning to (4.1), let us view F as a variable representing a function. If we set F to the
function

S = AXx,y. x+y

then we find that f satisfies (4.1). In other words if we substitute x+y for F (x,y) and
x—1 + y+1 = x+y for F(x—1,y+1) in (4.1), then the two sides of the equality remain equal,
since for all x and y, x+y = y when x=0.

Since the function f satisfies the recursive definition (4.1) we will call f a Sixed point of
the recursive definition.?

Once we start looking for fixed points of recursive definitions, we find an abundance of
them. Another fixed point of (4.1) is the function g given by

g = Ax.,y. ifx<0 then O else x+y

While both f and g are fixed points of (4.1), functions f and g are different since
f£(~1,5)=4, but g(-1,5)=0.

Changing our viewpoint momentarily, if the recursive definition of F is taken to be a
scheme for computing F(x,y), then it is clear that for negative values of x, the idea of decre-
menting x, incrementing y, and repeating the process, leads to a nonterminating computation.

Let us use the symbol *“1” (read bottom) for the result of such a nonterminating compu-
tation. Using the symbol L we can express functions like the following:

h = Ax.y. ifx<0 then L else x+y

Again, it can be verified that A is a fixed point of (4.1). Not only is A a fixed point of (4.1),
but. informally speaking, h corresponds most closely to the computation of F (x.y), since
h(x.y) is L exactly when the computation of F(x,y) does not terminate, and h(x,y) and
F(x.y) both yield x+y otherwise.

The relationship between 4 and the other fixed points of (4.1) will be discussed further in
section 4.5. after L is discussed in section 4.4.

4.4. Domains. If a computation does not terminate, we have no information about the
computed value. Loosely speaking, the computed value is *‘undefined”.

The notion of “‘undefined value™ can be formalized by including a special value, writ-
ten**L". as one of the elements of a set B of basic values. Without a special value like L it is
difficult to distinguish the notion of ‘‘undefined value™ from the following quite distinct
notions: uninitialized values; and the results of operations like 170 (which is really an error).

The value, L. has somewhat different properties from the remaining elements of B. The
intuitive relationship between L and other values in B is suggested by Figure S.

2 The term “‘fixed point™ is generally used in the following sense. Let & be a function from some domain D
to D. An element x in D is a fixed point of & if and only if x = &{x). The function f is actually a fixed
point of the function

AF. Ax.y. if x=0 then y else F(x—1 y+1)

When the meaning of while stalements is specified in section § we will define it as the least fixed point of a
suitable function. :
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L
Figure 5. A value in B is either L or is some integer.

In section 4.3, we used L to express the result of a nonterminating computation. Another
example of its use follows. Consider the declaration

char all;

which might appear in a C [ker78)] *‘function™, where a is a formal parameter of the C ‘“‘func-
tion”. Here a is declared to be an array of characters, but we have no information about the
number of elements in the array. We will therefore say that the number of elements in the
array is L When an actual parameter is supplied, then the number of elements in the array will
be known, and will be some integer.

In the denotational semantics that we will consider, a domain will be a pair (D,[0), where
D is a set, and [T is a partial order on D. (There are other conditions that a domain must
satisfy, but these will be reserved until the mathematical details are discussed in appendix A.)
The partial order [C on the domains we will consider is a formalization of the notion “less
defined than’’. Each domain will also have a least element under [ which will be written as L

In discussions we will sometimes refer to L as the undefined element of the domain under
discussion. For the domain B in Figure 5, all elements other than L will be referred to as the
**defined’’ elements of B.}

4.5. Least fixed points. The difference between A and the functions f and g is that
h(x.y) is L for all negative values of x. but neither f(x.y) nor g(x,y) is L for negative values
of x. The important point to note is that when h(x.y) is defined, then h(x.,y), f(x.y), and
g(x.y) are all equal. Thus h is less defined than f or g. In fact, 4 is the least defined fixed
point, in the sense that for any other fixed point f*, of (4.1), when h(x,y) is defined, h(x.y)
and f*(x.y) give the same defined value.

In order to read the body of the paper, all the reader needs to accept is that for each
recursive definition. there exists a unique least defined fixed point. In the sequel we will follow
common terminology, and refer to the least defined fixed point as the least fixed point.

Least fixed points are interesting because they, of all fixed points, correspond most closely
to the *‘function computed’” by a recursive definition.

3 The domain B in Figure S has a very simple structure: the element _ is less defined than all the other equal-
Iv defined elements. Now consider the domain of all functions from B to B. written B—B. Assuming B has
an infinite number of elements. there will be an infinite number of ““levels of definedness’ for elements of
B—B. After all we can have a sequence of functions fg.f}./s. - - . where f,(x) is - for all but 1 elements
of B. and when f,(x) is not - then f,(x)=f,_,(x). In this case we have f,C/f,.; but f,=/f,,. Such se-
quences of functions will be encountered in section 5 when denotational semantics for while statements are
discussed.
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5. Denotational Semantics

Concluding section 3, Figure 4 expressed the recursive definition of the statement inter-
preter in the notation we have been using for denotational semantics. Moving from operational
to denotational semantics requires a change in viewpoint: from specifying computations to
specifying functions.

This change in viewpoint can be appreciated by examining the treatment of while-state-
ments.

5.1. While statements. In both operational and denotational semantics, the meaning of a
while statement is given by setting up a recursive definition motivated by the following program
fragment:

if (exp ) { stm; while ( exp ) stm, }

Let us suppose that stm is while ( exp ) stm;. From the recursive definition in Figure

[stm1(s) = iflexpd(s) = O then UIstm}( Ustm,)(s) ) else s

The above equality will hold in denotational semantics as well.
For clarity, let us rewrite Istm] as F and switch the then and else parts, to get the follow-
ing recursive definition.

F(s) = iflexp}(s) = O then s else F(Istm)(s)) 5.1)

In denotational semantics, the function {stm] will be the least fixed point of the recursive -

definition (5.1). In order to give the reader some feeling for the least fixed point of (5.1), we
will construct a computation sequence (see section 4.1) using (5.1). In a sense to be made pre-
cise, the least fixed point of (5.1) will be exactly the function computed by this computation
sequence.

Explicitly computing a function. The first three terms in a computation sequence for (5.1)
are:

fo“'F(S) '

= iflexp)(s) =0 then s
else F(Istm}(s))

ty=iflexpl(s) =0 then s
else if [expd (Estm1(s)) = O then Lstm1(s)
else F(Ustm\3(Estm3(s)))

Informally, the terms fo.1).1; correspond to stages in the process of expanding the while
statement, or loop. We start out with f, corresponding to the. unexpanded while loop: 1,
corresponds to the loop expanded once; 7, corresponds to the loop expanded two times; and so
on for subsequent terms. Since there is no a priori bound on the number of times a while
statement will be executed, if we want 10 capture the meaning of a while statement by loop
expansion. this process will have to produce an infinite sequence of terms fo.fy.f5. - - . The
fully expanded loop will be the ‘‘limit>* of the infinite sequence of terms.

Since we will give the semantics of statements using functions rather than using the
sequence fo.f;.1y, - - - directly, we will construct a related sequence of functions fo.f;.f5. * * *
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from fo. 0,85, < -+ .4

Jo=As L

Si=As. iflexpl(s) =0 then s
else L

S2=As. iflexpl(s) =0 then s
else if Lexp) (Lstm;}(s)) = O then Istm ) (s)
else |

In general, for i20,
fis1 = As. iflexp)(s) =0 then s
eise f;(Istml(s))

Just as the fully expanded while loop corresponds to the ‘‘limit’” of the sequence of terms
to. 1.ty + - -, the function [stm} for the while loop will be the “limit” of the sequence of func-

tions fo.f1.f2. " .
Given any state s, fo(s) will be L However, if [expl(s)=0 then f(s) will be s itself.
The sequence of functions fy,f;.f2, * -+ has a very useful property. For i<j, f;(s) and

/;(s) can never be incomparable states. More precisely, if fo.f1./2, * - - are elements of some
domain (D,[Z) then it can be shown that

fi:fi-ﬂ '20

Given such a sequence of functions fo.f}.f2 -+ our informal notion of *‘limit’" of the
sequence can be made precise by taking the ‘‘least upper bound’ of the set {fo.f1./2 -« - ).
written U {fo./1.f2. « -+ }. A precise treatment will be given in appendix A.

For our present purposes it suffices to say that we will write

f=u{fof1fo -} (5.2)

to capture the informal notion of **limit” of the sequence fo./).f3. - .

The function f in (5.2) has an additional property which allows the computation sequence
of terms fy,7,,12, - - - 1o be related to denotational semantics. The function f can be shown to
be the least defined solution of the recursive definition (5.1).

Implicitly defining a function. There is a more direct way of constructing the sequence of
functions fo.f)./f2. - - - than the one used above. If we start with f,. the function 7 below is
such that f, = 7(f;): in general, for all /20, f,,, = 7(f,).

r=AF. As. iflexpl(s) =0 then s else F( [stm}(s) )

As stated in a footnote in section 4, the term ‘‘fixed point’* is generally used in the following
sense. Let & be a function from some domain D to D. An element x in D is a fixed point of &
if and only if x = &(x).

There are a number of functions that are fixed points of . As stated in section 4.4, each
domain D has an associated partial order [ which formalizes the intuitive notion of ‘‘less

* The connection between the terms /, and the functions f, can be formalized by setling up a suitable in-

“terpretation. This interpretation replaces the unknown funclion symbol F by the funciion ¢ = As. .. which is -

undefined everywhere. .
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defined than®. There is a similar partial order ' on the domain that the arguments of, and
fixed points of, r are drawn from. A result in appendix A guarantees that among the fixed
points of 7 there is unique least defined fixed point under C'.

We will write

Jix (1)
for the least defined fixed point of r. It will sometimes be convenient to drop parentheses and
just write fix r for fix (7).
It is the least fixed point of

r = AF. As. iflexp)(s) =0 then s else F( [stm)(s))

that we choose to be the meaning of the while statement. In other words, when stm is
while ( exp ) stm, then

[stm] = fix \F. As. ifLexp)(5)=0 then s eise F( Istm}(s)) 5.9

5.2. A connection. The function f in equality (5.2) was constructed by taking the *‘limit”’
of a sequence of functions. On the other hand, no explicit construction was given for Estm) in
(5.4). A natural question to ask is whether [stm] can even be computed.

A result in appendix A shows that f in (5.2) and [stm} in (5.4) are in fact exactly the
same function!

5.3. Denotational semantics. Rather than repeat most of Figure 4 we will just indicate the
change that needs to be made to the figure to construct a denotational speaﬁcatlon Replace
the lines for while statements in Figure 4 by the lines in Figure 6.

[stm)(s): S

| while (exp ) { stm; )
— let f=fix \F.
As'. if [expd(s) =0 then F( Ustm)(s) ) else s'
in f(s)

Figure 6. If the lines for while statements in Figure 4 are replaced by the above text,
then we will get a denotational specification.

6. Continuations

All denotational specifications of realistic programming languages use ‘‘continuations’’,
which are a device for handling break. goto or related statements that result in transfer of
control. Since goto statements can occur within C programs. we will use continuations in giv-
ing the semantics of statements in C [set78]. While the approach in this section will be denota-
tional. continuations can also be used in operational semantics. In fact the first published use
of continuations as we will use them was in a survey of operational semantics [rey72].

So far we have used the direct approach of taking the meaning of a statement to be a func-

" tion from states to states. The direct approach cannot handle goto statements because they

disrupt the connection between control flow and the static text of a program. The problem can
be traced to the direct semantics for compound statements.
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In this section we will need to talk about both direct and continuation semantics, so we
need to differentiate between these two kinds of meanings of statements. We will therefore
explicitly identify valuations. Valuation ss will map a statement stm to a function ssIstm} from
states to states. In ss the first s is from statement, and the second s is from state. Another
valuation sc will be introduced in a moment. It will be convenient to drop parentheses and
write for example sslstmls for sslsim](s).

Based on the semantics of compound statements in Figure 4, we can write
sslstm; stmyls = sslstm,} ( sshsem;ls ) 6.1)

The problem with equation (6.1) is that it expresses the case where stm, is always executed
after stm,, since the function sslstm,] will always be applied 10 the state sslstm,1s. If it is pos-
sible for stm; to be a goto, then equation (6.1) fails, since rather than applying ssfstm,] to
sslstm)s, we need to apply the function appropriate to the place where ““control’ goes after
stm;.

This problem is resolved by using continuations [abd76,mor70,stw74].

6.1. An example. The use of continuations will be illustrated by considering the following
program fragment in the C language [ker78]. Note that = and not := is the assignment symbol
in C. This discussion is for illustrative purposes only, and is based on a very simple subset of C
in which there are no side-effects.

square (next) (
sq = next % next;
return (sq); )
return (next); /# cannever be reached %/

)

We will indicate why the statement return (next), which can never be reached, does
not affect the continuation semantics of the above program fragment.

Procedures in C are called “‘functions™ since they return values and may be called within
expressions. We will refer to such procedures as C-functions. square in the program frag-
ment above is therefore a C-function. Statements in C must occur within the body of a C-
function definition, and it is not possible to jump out of a C-function.

The value v returned by square depends on the statements in square. From these

statements we will construct a function f to determine the value v returned by square.
When [ is applied to the state s with which the statements in square are reached, we will get

Sf(s) =v

A function like / which maps a state to the ‘‘answer™ of a C-function will be called a
(statement) continuation.

A C-function returns to its caller either on executing a return statement, or on reaching
the end of the statements in the function. In the latter case. the value returned is grb, which is
a special ‘‘garbage’’ value.

A parse tree for the statements in square is shown in Figure 7. The continuation f for
these statements will be determined during a post-order traversal of the parse tree. We start
the traversal with a starting continuation ¢, which corresponds to a C-function containing just
the null statement: for all states s,

co(s) = grb

When a return is executed, contro! returns to the caller of square. regardless of the
statements that follow the return. Moreover, the value returned to the caller is the value of
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the expression following the keyword return.
Continuation ¢; will therefore be such that for all states s, -

c;(s) = v where v = s(next)

S=c3 stm Co

. ] ~
- \ H “ -~
g . 1Y

- A)J
. L
+ stm Cf~ea,  StMS » return (next)\.
4 " A Ss Cnw= -l
" . ‘\ pR -~ i
| sq=next#next; ' return(sq))

- e
‘emmecanse"" e ecer=s

Figure 7. The continuation for the entire tree will be determined during a post-order
traversal of the tree.

The interesting case is return (sq), which is the next statement to be-traversed. Since

control returns to the caller when return (sq) is reached, regardless- of the statements fol-
lowing return (sg), we want.continuation c, to be such that :

cy(s) = v where v =s(sq)

Note that ¢, does not depend in any way on ¢;. Thus return (next), which can never be
reached, cannot affect the continuation f for the whole tree in Figure 7.

Let st be any of the statements in Figure 7. Suppose we know the continuation ¢, for the
statements to the right of st and the state s; that st is reached with, With ¢, and s,, we can

predict the “‘answer’ of the C-function. (Note that return (next) can never be reached, so

the fact that we may possibly predict an incorrect “agswer" at this statement does not matter.)

6.2. Continuation semantics. For the remainder of this section we revert back to the sim-
ple language of while statements introduced in section 1.2. The treatment in this subsection is
based on [sta78].

Suppose we have a sequence of statements
Stmy stmy - - Stmy

Starting with state s; before stm, is *‘executed’’, suppose s, is the state after all the statements
are “‘executed’’. We assume that a continuation c¢,,, is given, where c,,, will map the final state
sy to the *‘answer’’ of the program.

The objective is to determine c¢,; which takes into account the effect of all the statements,
and maps the starting state s, to the ‘‘answer™.

Figure 8 shows one stage in the construction of a continuation for a sequence of state-
ments. Suppose we are given continuation ¢, corresponding to the computation following the
execution of stm. The continuation ¢’ then corresponds to prefixing the execution of stm to
this computation.

Associated with a statement stm is a function scEszm} that maps a continuation like ¢ in
Figure 8 to its corresponding ¢’. The valuation sc gives continuation semantics for our simple
language of while statements. In the remainder of this section we will consider each production
in the syntax of statements and will show how scEstml can be specified in each case.
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So s = sslstml s

. ¢ = sclstm])
.

.
‘.

]
1
L)
A

©

c

(answer)

Figure 8. A continuation is a function from the current state to the answer.

sslstm s

sslstm, 1 (sslstm;]s)

sclstm;lc c

answer

Figure 9. Semantics of stm, stm, in terms of the semantics of stm; and stm,. Note the
order in which stm; and stm, appear in sslstm,)(sslsim1s) and sclstm;Y{sclstm;}c).
Whenever convenient, we will use braces “{* and **}" to enclose continuations.
I
|
Compound statements. Continuation semantics for the sequence stm, stm, is suggested by
Figure 9:

sclstm, stmy}e = sclstm Msclstm,)c) 6.2

Assignment statements. Let stm in Figure 8 be the statement id:=exp;. Given continua-
tion c. we need to determine ¢’ = sclstmBc. From Figure 8 we expect the answer ¢'(sp) to be

given by: '

determine s, from sg as in direct semantics;
then apply c to s; to give lh;e answer;

In the direct semantics in Figure 4, s, is such that
sy = solv/id] where v=Hexpl(so)
Therefore.
c'(sg) = let v = Lexp)(sg):
s1 = solv/idl.

in c(sy)

Conditional statements. Let stm in Figure 8 be the statement if ( exp ) | stm; |

Given any state so. if exp has a zero value (false in C) then the conditional stm does not
change the state sp. In this case 5, = sp. so the answer will be ¢(sp).
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On the other hand, if exp has a nonzero value (frue in C) then execution of the condi-
tional has the same effect as execution of stm;. So if

¢ = sclstm)c
the answer in this case is given by ¢"(sg).
Summarizing,
c'(sp) = let ¢" = sclstm)c
in if Lexp)(sp) =0 then c"(so) else c(sp)

While statements. Let stm in Figure 8 be the statement while ( exp ) { stm; ). Once
again, we expect stm to have the same meaning as

if (exp ) | stmy while ( exp ) stm; )
which is the same as

if (exp ) { stm stm )

Using the semantics for conditionals and compound statements we will arrive at the
semantics of while statements. The objective is to determine ¢’ = sclstm}c, which must be the
same as

¢’ =sclif (exp ) { stm stm)}e (6.3)
It will be clearer if we use the symbol F rather than ¢’ in the following discussion.
From (6.3) and the semantics of conditionals
Fsp) = c'(sp) = let " =sclstmy stm)c
in ifLexp)(s) #=0 then c"(s,) else c(sg) (6.4
From the semantics of compound statements and the fact that F = sclstmlc, we can rewrite
sclstm; stmYc in (6.4) to give
F(sp) = let ¢" = sclstm){F}
in if Lexp)(sq) %0 then c"(s;) else c(sq) (6.5)
We now have a recursive definition of F and can determine an appropriate function as in sec-
tion 4.

A treatment similar to that of while statements in section 5.1 suggests that we define

sclstm)c 10 be the least fixed point of the following function
AF. \sq. let ¢” = sclstm){F)

in if Lexpd(sp) =0 then c"(sq) else c(sp)

We leave it 10 the interesied reader to write a continuation semantic specification in the
style of Figure 4. Continuations will be discussed again in [set78].

7. Discussion

Operational and denotational methods specify the semantics of a language by writing
semantic rules for each syntactic rule. The notations used for these rules are more complex
than the notations for syntax, but much of this complexity is due to the fact that programming
languages are compact notations for expressing subtle concepts.

The precision of operational and denotational specifications is expected to be of consider-
able assistance 1o a language implementer. Aside from serving as a reference manual, there is
evidence that a specification can automatically be converted into an implementation of the

gy
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language [and76,mss78]. This implementation may be inefficient, but at least it is true to the
specification.

One advantage of a denotational over an operational specification is that the meaning of
each construct is specified just in terms of the meanings of the subconstructs. This property
makes it possible to comipile a program in the defined language into a metalanguage expression
and may indeed make automatic compiler generation easier.

8. Bibliographic Notes

There is a large body of various shades of published literature on the subject of program-
ming language semantics. A minimal number of references will be supplied below. Both
Milner (min76] and Bjorner {bjo77] survey much of the material covered in this prelude.

Syntax. BNF notation, introduced by Backus in [bac59], allowed syntax to be specified in a
precise, concise, and readable manner. The easy success with syntax raised expectations of a
quick solution to the problem of specifying semantics. In fact, Backus wrote, ““The author had
hoped to complete a formal description of the set of legal [Algol] programs and of their mean-
ings-in time 1o present it here. Only the description of legal programs has been completed how-
ever. Therefore the formal treatment of the semantics of legal programs will be included in a
subsequent paper. [bac59)"* It would be grossly unfair to imply that Backus was alone in
underestimating the difficulty of specifying semantics.

Lisp interpreter. The interpreter for LISP in [mcc60] is often held up as an example of a
concise and readable specification of a language. This first operational specification was some-
what of an accident. McCarthy’s intent in [mcc60] was to show that LISP was ‘“‘neater than a
Turing machine’’ by writing a universal LISP function eval and showing that eval ‘‘was briefer
and more comprehensible than the description of a universal Turing machine [mcc78].”* The
interesting fact is that “‘S. R. Russell noticed that eval could serve as an interpreter for LISP,
promptly hand coded it, and now we had a programming language with an interpreter. The
unexpected appearance of an interpreter tended to freeze the form of the language [mcc78].”

Operational semantics. In sections 11-13 of [mcc62] (less than two pages), McCarthy sug-
gested an operational approach to semantics. The concept of abstract syntax was introduced and
a semantic function for determining the value of an expression relative to a state was given.
Elsewhere, semantics were given for Micro-Algol, which allows assignments, conditionals. and
goto’s to labels [mccé4].

Landin’s specification of Algol 60 was the first to actually construct an abstract machine
on which translated programs in the defined language were interpreted. In [lan64]., Landin
specified a class of applicative expressions based on the A-calculus, and an abstract machine called
the SECD machine, which was capable of interpreting applicative expressions. Landin also
showed how Algol 60 programs might be translated into an extended class of applicative expres-
sions, and modified the SECD machine to interpret the extended applicative expressions {lan65].
Using continuations, Abdali [abd76] was able to translaie Algol 60 programs into the pure A-
calculus, or the unextended class of applicative expressions.

The work of McCarthy and Landin considerably influenced the definition of pL/l at the
1BM Vienna Laboratory between 1965 and 1968. The notation used to specify PL/1 came to be
called vDL (for Vienna Definition Language) and was described in [luc69]. An overview of
storage models was given in [bek71). A number of reviews of VDL are available
[weg72.01175.mar76]. The notation used in the more recent [ans76} operational specification of
PL/I is similar in spirit 1o VDL and is reviewed in [mar77]. Further references and a discussion
of subsequent work by the Vienna group may be found in [bjo78].

A useful starting point for studying operational semantics is the survey by Reynolds
[rey72].
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SEMANOL [and76,and77] is a metalanguage that has been used to write interpreters for
Minimal BASIC and JoviaL. The interesting point is that SEMANOL metaprograms cam be exe-
cuted: given a program in the defined language and its input, execution of the metaprogram
yields the program’s output. Unlike the metalanguages of most of the previous operational
specifications, SEMANOL allows assignment as a basic operation.

The specification of Algol 68 [vaw75] is operational, but has little in common with the
operational methods mentioned above: the specification is an elaborate string rewriting system,
which as noted in {deb69] is an extension of Markov algorithms. A simple language is specified
using this approach in [mar76].

Denotational semantics A historical account of the development of denotational semantics
cari be pieced together from the foreword by Scott in [sto77] and from Scott’s Turing lecture
[sco77]. The groundwork for denotational semantics was laid by Strachey in a 1964 paper
[str64]. We have already mentioned that Strachey’s ideas were placed on a secure mathemati-
cal foundation by Scott [sc070,sc076], and [scs71] covers the same ground as [str64] but with
more precision.

The treatment in [scs71] could not cope satisfactorily with goto statements. Although
glimmerings of the idea can be seen in earlier work, Morris [mor70} and Wadsworth [stw74]
are generally given the credit for independently introducing continuations for handling goto
statements and error exits from procedures. At about the same time Abdali [abd76] indepen-
dently discovered continuations.

A good starting point for studying denotational semantics is the text by Stoy [sto77].
Once the reader is familiar with [scs71] the tutorial by Tennent [ten76] shows how the concepts
can be applied to construct semantic specifications for complete programming languages. Milne
and Strachey [mil76) is an advanced reference. Mosses [mss76] has constructed a useful pro-
gram called sis which essentially constructs an interpreter for the defined language directly from
a denotational specification.

Denotational specifications have been constructed for a number of languages, including:
Algol 60 [mss74,hen78]; Algol 68 [mil72); Gedanken [ten76]; Pascal [ten77]; Snobol 4 [ten73];
Sal [mil76].

Recursive definitions. Conditional expressions were introduced by McCarthy and used to
formulate recursive definitions, which were studied in [mcc63].

An example due to Morris [mos68] in section 4.2 showed that different computation rules
for the same recursive definition may sometimes lead to different results. This raises the ques-
tion of how computation rules might be compared. It is usual to compare computation rules
relative to the least fixed point of a recursive definition, because with each computation rule we
can associate the function computed by the rule. The expository paper [man73] considers some
of these questions.

Based on the results of Knaster and Tarski [tar55) and Kleene {kileS2] it follows that each
recursive definition has a unique least fixed point (provided ail functions are continuous — see
appendix A). The importance of this work was recognized by Scott [sco70] who placed
Landin’s [1an64) and Strachey"s [str64] use of fixed points on a firm mathematical basis.

Two properties of computation rules have been studied extensively.

The first is whether a computation rule computes the least fixed point of the recursive
definition in question. Morris [mos68] showed that “‘innermost’* expansion does not compute
the least fixed point. Cadiou [cad72] proved that the function computed by a computation rule
must be dominated by the least fixed point. Vuillemin [vui74] defined a class of *‘safe’* com-
putation rules, where any safe computation rule is guaranteed to compute the least fixed point
(proved in [dow76]). Downey and Sethi [dow76] give necessary and sufficient conditions for
deciding if a computation rule computes the least fixed point.
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Since innermost evaluation corresponds to ‘‘call-by-value™ in Algol 60, and innermost
evaluation does not compute the least fixed point of a recursive definition, there was some con-
cern about the properties of ‘‘call-by-value™. de Bakker [deb76] shows that the function com-
puted by *‘call-by-value is also a least fixed point, but of a different recursive definition.

The second property of computation rules that has been studied is the amount of work
that needs to be done in order to compute the least fixed point. See [vui74,ber79].

Recursive definitions and computation rules as we have discussed them can be applied to
A-calculus like languages, but the formalism is not very natural. The work by Berry and Levy
[ber79] seems promising in this regard. The discussion in [rey72,plo75] is related to the subject
of computation rules for A-calculus like languages: the question is whether arguments must be
computed before a function is applied. Using continuations, recursive definitions can be made
independent of whether arguments must be computed before function application.

Conclusion. The above references for recursive definitions have been included to indicate
the extent of work that is being done in the broad area of programming language semantics.
This is neither the time or the place for a complete survey of the techniques for specifying
semantics and their underlying mathematics. We trust that the interested reader will find a
wealth of material through the references above and their bibliographies.
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- Appendix A. Domains

A number of concepts that will be clarified here were introduced somewhat hastily in sec-
tion 4. In this appendix we will start with the element L, pronounced ‘‘bottom®, and explore
some of the logical consequences of its introduction. L as a value is intended to be a formaliza-
tion of the notion of “‘don’t know™ or ‘“‘no information’*. Some perspective on the definitions
and results that follow will be provided by the discussion in section A.1.

The ideas in this section are due primarily to Scott [sco70].

A.l1. Discussion of domains. The running example in this subsection uses the following
recursive definition, which is motivated by the factorial function:

F(n) = ifn=0 then 1 else nxF(n—1)

For the moment, values will be drawn from the set N of integers.

For nonnegative values of n, the computation of F(n) halts with result n!, while for
negative values of n the computation does not halt. Writing L for the result of a nonterminat-
ing computation, the above recursive definition computes the function

f(n)=jifn =20 then n' else L

Since L can be the result of a function application, rather than being elements of N the set
of integers, results will be elements of N U {1} which we will refer to as N,. In fact we want to
allow L as an argument as well: if f£(<1) = L, then f(f(-1)) is £(1), so we are forced to con-
sider functions from N, to N, instead of from N to N.

The use of L will be clarified by considering the sequence of functions
fi(n) = if0K<n<j then n! else L

The computational intuition behind this sequence of functions is as follows: if a computation of
F(n) is limited to making no more than j *‘calls” of F, then the function J; is computed. For
example if at most one call of F is allowed then we can determine that f,(n) is 1 if n = 0, but
is L otherwise, because we have no information about the result for all other values of ».

As the value of j increases, f; becomes more and more like the function f, so it makes
intuitive sense to view the sequence fy.f). - * - as a sequence of ‘‘better and better approxima-
tions' to f.

Consider £1(5) and f(5). Since f,(5) = L, but f(5) = 120, if we view f, as an “‘approx-
imation’ of f, then L must be an “‘approximation’’ of 120. By similar reasoning, L is an
*‘approximation’’ of every integer in N, as illustrated in Figure A.l1 (which is a repetition of
Figure S in section 4). :

0 1 2 3
L
Figure A.l1 The flat domain N with a partial order .

The notion of ‘‘approximation’ is formalized by imposing a partial order Z on N._.
defined by

x Cy if and only if (x=ﬂ.)v(x=y) (A.1)
Partial orders like the one defined by (A.1) are called flaror discrete because whenever xCyCz.
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either x=y or x=2,
Once we accept the flat partial order in Figure A.l1 as being natural, we are immediately
led to accept richer partial orders as being natural.

A function with two arguments can be viewed as taking an ordered pair from N, x N, as
an argument. The natural extension of C on N, to £ on N, x N, is defined by

(uv) ' (x,y) ifandonlyif (wgx) (vET¥) . (A.2)

The partial order defined by (A.2) is not flat, because not only do we have (0,1 [ (0,1) and
(L.1) ' (0,1), but (0,1 and (L, 1) are not comparable under J'.

As another example, suppose that the infinite sequence of functions f; defined above is
drawn from some domain D. The partial order " on D must be such that fT"/1C" - -,
which is an infinite ‘‘chain’ of distinct functions.

When we define ‘‘domains’’ to be partial orders with a unique least element, L, in section
A.2, there will be one more condition on ‘*‘domains’’. This condition will require that ‘‘limits”’
exist. For example, given the infinite sequence foZ"f)\C" - - - of elements in a D we want £,
their *'limit’’, to be in D as well.

A.2. Domains. A chain-complete partial order is a system (D, [T, 1) where D is a set, [ is
a partial order on D, and 1 is an element of D, subject to the axioms:

(i) (Lisa zero for D) Vx€D, L[ x

(ii) (D is complete) for every linearly ordered subset (chain) C C D, there exists a least
upper bound LIC such that-

Yx € C,xgUC, and
(¥x € C, x T y) implies (UC )

The term “‘chain-complete partial order’” will be abbreviated to *‘cpo™. All the domains
we will consider will be cpo’s. S
Given domains (D, I, 1) and (D', [T, L) it will be convenient to drop primes while writ-

ing " and L' and let the context of [T and L determine which domain is involved. Further-

more. we will take [C and L as being understood and will simple write D and D' for the domains

(D. . Jand (D', . V.

A.3. Discussion of functions. We have considered a number of examples of recursive
definitions, the most recent being that of F in section A.l, where on some argument a. the
computation of F(a) does not terminate. It follows that the computation of, for example,
F(a)+5 will not terminate either. ’

Since L is an element of N, functions like + which previously applied to integers in N
will have to be extended to permit L as an argument as well. Our computational intuition sug-
gests that 1+5 should also be L. The function + has the following ‘‘monotonicity’” property.

A function g from domain D to D’ is monotonic if for all x and y in D. x I y implies
g(x) T gly). We require all functions to be monotonic. When x C y. the y is ‘‘more
defined™ or has ‘‘more information™ than x. so we expect g(y) to be similarly **more defined"
than g(x).

Actually. we will impose a stronger condition than monotonicity on functions. This new
condition. called continuity, becomes important when a domain D can have infinite chains of
distinct elements under [.

A function g from domain D to D’ is continuous if for all chains C C D,
g(UC) = U {g(x)|x € C}
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Note. Continuity implies monotonicity, so all continuous functions are monotonic.

As an example, recall the chain of functions fo C /) - - - in section A.1, with least
upper bound f. For any j, f; gives a non-1 result for a finite number of arguments, but f
gives a non-1 result for an infinite number of arguments. Thus f must be different from f;,
for all j. The case of interest is when some higher order function r takes f as an argument.
Since f is the least upper bound of the sequence fy.f), ..., we expect f to have no more
*information’’ than that contained in the sequence of approximations to f. Continuity of
requires that

() =U{r(f)|j=01, -]}
since .
f=Ulfli=01,---}

A.4. Functions. Only continuous functions between domains will be considered.

A.5. Least fixed points. With the definition of domains and the restriction to continuous
functions we can prove the following theorem due to Knaster and Tarski [tar55].

Fixed point theorem. Let f be a continuous function from domain D to domain D'. There
exists a unique least element of D under (. such that x = f(x) i.e. x is the least fixed point of

S

Moreover,
x = ,_E:lo S0

Proof. First we will show that U2, f/( is a fixed point of f. Here Sfi(u) is defined to
be u if i=0 and to be £(f"~!(u)) otherwise.

From the properties of L, L[S u, for all u in D, so in particular J.C (0. From the

_monotonicity of f (which is implied by the continuity of f) £(0 T f(f(D) = f2(1. Iterating

this process we get L= 20 C AW E -+ .
Let y = U2y f/(1), and consider f(y). From continuity of f,

= Y 1)) = Y 141 = N ' = Ll { =
Sfly) = f( 'I:Iof () ,L_Jof w 'l:ll FaLeY il-JOf D=y
where the second last equality is based on the observation that the first term f%(1) = 1 of the

limit is superfluous.

Having shown that y is a fixed point of f, we now need to show that y is the unique least
fixed point of f.

Suppose z is some other fixed point of f. Clearly L [T z. and from monotonicity of f.
f(D T f(z) = z. lterating, we get f'(1) [ z. From the definition of least upper bound, it

follows that
y = l.!o gz
-
Since z is an arbitrary fixed poi'nt of f. it follows that y must be the unique least fixed point of

f. O

A.6. Conclusion. Typical of the operations that can be used to construct new domains
from old are the following:

Dy+D, the sumof bo and D,
DoxD; the product of Dy and D,
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D,—D, the domain of all continuous functions from Dy to D,

Just as functions can be recursively defined, domains can also be recursively defined. Scott’s
major contribution was demonstrating the existence of recursively defined domains, including
for example domains satisfying

o

D - D - D o ﬁ
The reader is referred to a text book like [sto77] for further study.

L
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