@ unos 1353

Bell Laboratories

subject: UNIX Command Syntax date: February 16, 1979

Filing Case 40125-001 from: A. 8. Cohen
MH 2524
2F-223 x6920

S. B. Olsson
- e MH 2524
: 2C-253 x3474

G. C. Vogel
MH 2524
2C-158 x6115

2524-79=021F-02MF

ABSTRACT

The current UNIX™ command-line syntax is riddled with inconsistencies.
Command-syntax rules and a library routine for achieving consistent syntax are pro-
posed.

MEMORANDUM FOR FILE

There are now thousands of Bell Labs employees using UNIX™ time sharing systems. Many
of these people are occasional users who are unfamiliar with the internal workings of the sys-
tem, the many features of the shell, the historical development of the system, or the quirks of
the command syntax.

Consider the following command lines:

lpr =1 ~m wiist

Ipr =cm zlist

tp tml goid

pr —h "Grocery List" —5 —w100 glist

A user might reason from the first two lines that options may be grouped for convenience. The
third line suggests a command syntax in which the command modifiers (options or keys) need
not be prefixed by a ‘—". Finally, the last line displays a mixture of options taking arguments.
The ‘h’ option allows white space before its argument, the ‘w’ option allows its argument to be
adjacent, and the ‘-’ takes its argument without white space. One is apt to feel that, in spite
of the variety, the command syntax is quite liberal.

This Document Contzins Proprietary 14
| Informatian of Boll Telephone Laboratsrize .
And {x Mot To Be Reproduced Or Fubligzsd
Without 2l Laborateries Azsroval,

L

|

&£

Consider the command lines:

spell —bv memo
Is =1 =t /usr
cat -su junk

tp —mt4 silver

Each of these lines fails because of invalid syntax, although the option or key characters are all
valid. '

We see no reason to continue burdening users with an inconsistent command syntax. “‘Histori-
cal’’ or “implementation’’ reasons are weak excuses. .

Proposal

We propose that specific command-syntax guidelines be adopted and applied to the user com-
mands in Section 1 of the UNIX/TS User's Manual. These guidelines would describe a com-
mand syntax that would be accepted by essentially all commands. ‘ A few commands (for exam-
ple, sort) may require a syntax outside the scope of these guidelines. The primary goal of this
effort is not to reinvent the UNIX command syntax, but to reduce inconsistencies among com-
mands.

Attachment A summarizes the proposed command syntax and offers some examples.

Valid **historical™ conflicts should be addressed. Commands may accept a “‘historical’ syntax
as well as a more consistent one. However, we see no need to encourage ‘‘historical” com-
mand syntaxes by recommending them in the UNIX/TS User's Manual. Therefore we propose
that command syntaxes given in Section 1 of the UNIX/TS User’s Manual be revised to reflect
the desired syntax in a consistent format.

Implementation

A routine to implement the proposed command syntax has been written. This routine, called
opget, is designed to scan command lines for valid options, return option characters and
pointers to option arguments, and issue error messages when syntax violations are detected.

Attachment B contains the oprger manual page, source listing, and an exampie based on the px
command.

Acknowledgements
The authors are especially grateful to D. M. Ritchie and R. C. Haight for their critical review

and helpful suggestions. : ;

A. S. Cohen
. B. Olsson
MH-2524-asc/sbo/gev-troff G. C. Vogel 8
Atts, '
Attachment A
Comeand Syntax Sumntary WITHESSED AHD UMDERSTOCD

Attachment B

OPTGET(3) Manual Page M Q@u[):’c o B et 7
Continued next page By . ey .

Atts. cont’'d
optget.c — source listing
Example — ptx command

Copy (with att.) to

All members of Department 2524
Laboratory 252 Supervision

USS mailing list

S. R. Bourne

D. S. Delager

A. G. Fraser

B. Haley

C. Johnson
W. Kernighan
D. Mcllroy
P. Nelson
H. Rank
M. Ritchie
Rosler

C.
S.
B.
M.
N-
P
D.
L.
K. Thompson

A-1-

Command Syntax - Summary
The format of a command is as follows:
command: name [option(s)] [file(s)]
name: The name of an executable file.

option: ‘="noargletter(s)
or
‘="argletter(Joptarg

where [] is optional white space.
noarglerter: A single letter representing an option without an argument.
P argletter: A single letter representing an option requiring an argument.
‘ optarg: Argument (character string) satisfying preceding argletter.

Sfile: File name (or other command argument) not beginning with "=~°, or
‘=’ by itself indicating the standard input.

Accordingly (ref. UNIX/TS User's Manual Edition 1.0), the following are legal and perform the
same operation:

ptx —ft —w 70 infile outfile
ptx =f —t —w 70 infile outfile
ptx —ft —w70 infile outfile

ptx —f —w70 -t infile outfile
ptx =f —w 70 -t infile outfile

while these are nor legal:

ptx =ftw 70 infile outfile
ptx —fw70t infile outfile
ptx —=f —w —t infile outfile

8-1

OPTGET(3)) Edition 1.1 OPTGET (3)

NAME
optget — get option letter from argv

SYNOPSIS
int optget (argc, argv, optstring)
int arge;
char eeargv;
char ~optstring;
extern char eoptarg;
extern int optind;

DESCRIPTION
Opiget returns the next option letter in argv that matches a letter in opstring. Opstring is a string
of recognized option letters; if a letter is followed by a colon, the option is expected to have an
argument which may or may not be separated from it by white space. Oprarg is set to point to
the start of the option argument on return from opiger.

Oprget places in optind the argv index of the next argument to be processed. When all options
have been processed (i.e., up to the first non-option argument), oprger returns EOF.

DIAGNOSTICS
Opiget prints an error message on siderr and returns a question mark (?) when it encounters an
option letter not included in optstring.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that
can take the mutually exclusive options a and b, and the options f and o, which require argu-
ments.

main (argc,argv)
char ==argv,

_intc;
extern int optind;
extern char =optarg;

while((c=optget(argc, argv, "abf:0:")) != EOF)
switch(c) {
case ‘a”:
if(bflg) errllg+ +;
eise aflg++;
break;
case 'b”:
if(aflg) errflg+ +;
else bproc();
break;
case T
ifile = optarg;
break;
case ‘0"
ofile = optarg;
bufsiza = 512;
break;
case ‘7"
erflg+ +;

Page |) . January 1979

B-1

OPTGET(3) Edition 1.1
if(errflg) {
fprintf(stderr,"usage: . . . ");
exit(2);

if(access(argvloptind], 4)) {

January 1979

OPTGET(3)

Page 2

B-2

Feb 2 13:26 1979 optget.c -- argument decoder Page 1

##include <stdio.h>
#define ERR(s, n, ¢} fprintf(stderr, s, n, ¢)

int optind;
char eoptarg;

~char estrchr();

optget(arge, argv, opts)
char eeargv, «opts;

{

staticsp = I
char ¢;
char «cp:

if(optind == 0) optind + +;

if((sp == 1) && ({optind > = argc) |
(argvioptind] [0} != "=") | (argv(optind][1] == "\0")))
return (EOF); ;
¢ = argvloptind](sp]; :
if ((c == ") | ((cp=strchr(opts, ¢)) == NULL)) {
ERR ("%s: illegal option —— %c\n", argv(0], c);
if (argvloptind} [+ +sp] == "\0") {
optind + +;
sp =1,

return(?');

if(otocp m= ")
if(sp '= 1) {
ERR("%s: can’t group options with arguments — — %c\n", argv{0l, ¢)
sp =1
optind + +;
return('?°);
)
else if (argvioptind}[2] != \0")
optarg = &argvloptind+ +1[2];
else if (+ +optind > = arge) {
ERR ("%s: argument required —— %c\n", argv{0], c);
sp =1,
return{"?°);
)
else optarg = argvioptind + +1;
else if (argvioptind] [+ +sp] == \0") {
sp =1,
optind+ +;
}

return{(c);

.
2

‘'B-3
Feb 213:31 1979 ptx.c -- sample option decoder Page 1

main (argc.argv)

char =eargv,

{
int ¢
extern int optind;
extern char =optarg;

;while((c = optget(arge, argv, "frw:g:i:o:b:")) != EOF) {

switch (¢){
case T:
foldf + <+
break;
case 't
if(wien == 0)
llen = 100;
break;
case t’;
rlag+ +;
break;
case ‘w’:
getwlen{(optarg);
break;
case g
gap = gutter = atoi(optarg);
break;
case i’
if (only){
fprintf(stderr, "Only file already given\n");
exit(1);
ignore= 4+,
xfile = optarg;
break;
case 0"
if ignore){
fprintf(stderr, "Ignore file already given\n");
exit(1):
only++;
xfile = optarg;
break;
case ‘b":
bfile = optarg;
break;
case ‘7"
erfflg++;
break;
}
}
if (errflg) |

fprintf(stderr, "usage: ptx [—ftr] [—w width) {—g gapl [—o0 oniy]");
fprintf(stderr,” [—i ignore] [—b break] [input loutput]]\n");
exit(1);

