UNOS /369

Sdb: A Symbolic Debugger

Howard P. Kaseff

Bell Laboratories
Holmdet, New Jersey 07733

1. Introduction

This document describes a symbolic debugger, sdb, as implemented for C and F77 pro-
grams on the UNIX/32V't Operating System. Sdb is useful both for examining core images of
aborted programs and for providing an environment in which execution of a program can be
monitored and controiled.,

2. Examining core images

In order to use sdb. it is necessary to compile the source program with the ‘—g’ flag. This
causes the compiler to generate additional information about the variables and statements of
the compiled program. When the debug flag is specified. sdb can be used to obtain a trace of
the called procedures at the time of the abort and interactively display the values of variables.

2.1. Invoking sdb
A typical sequence of sheil commands for debugging a core image is:

% cc —-g foo.c ~o foo

*% foo

Bus error — core dumped
% sdb foo

main:25: x[il = 0;

*

The program foo was compiled with the *—g’ flag and then executed. An error occurred
which caused a core dump. Sdb is then invoked to examine the core dump to determine the
cause of the error. [t reports that the Bus error occurred in procedure main at line 25 (line
numbers are always relative to the beginning of the file) and outputs the source text of the
offending line. Sdb then prompts the user with a *** indicating that it awaits a command.

[t is useful to know that sdb has a notion of current procedure and current line. In this

-example, they are initiaily set to *main’ and ‘25" respectively.

.

[n the above example sdb was called with one argument, 'foo’. In general it takes three
arguments on the command line. The first is the name of the executable file which is to be
debugged: It defaults to a.out when not specified. The second is the name of the core file,
defaulting to core and the third is the name of the directory containing the source of the pro-
gram being debugged. Sdb currently requires all source to reside in a single directory. The
default is the working directory. [n the example the second and third arguments defaulted to
the correct values, so only the first was specified.

[t is possible that the error occurred in a procedure which was not compiled with the
debug flag. In this case. sdb prints the procedure name and the address at which the error
occurred. The current line and procedure are set to the first line in main. Sdb will complain if
main was not compiled with ‘—g’ but debugging can continue for those routines compiled with

1"UNIX is a trademark of” Bell Laboratories

the debug flag.

2.2. Printing a stack trace

It is often useful to obtain a listing of the procedure calls which led to the error. This is
obtained with the t command. For example:

»t

sub(x=2,y=3) [foo.c:25]

inter(i=16012) [foo.c:96} :
main(argc=1,argv =0x 754, envp-0x7ﬂ'ﬂ"f5c) [foo.c:15]

This indicates that the error occurred within the procedure sub at line 25 in file foo.c. Sub was
called with the arguments x=2 and y=3 from inter at line 96. Inter was called from main at
line 15. Main is always called by the shell with three arguments, often referred to as argc, argv
and envp. Note that argv and envp are pointers, so their values are printed in hexadecimal.

2.3. Examining variables

Sdb can be used to display variables in the stopped program. Variables are displayed by
typing their name followed by a stash, so

«errflg/

causes sdb to display the value of variable errfle. Unless otherwise specified. variables are
assumed to be either local to or accessible from the current procedure. To specify a different
procedure, use the form

*sub:i/

to display variable i in procedure sub. F77 users can specify a common block name in the same
manner. Section 3.2 will explain how to change the current procedure.

Sdb supports a limited form of pattern matching for variable and procedure names. The
symbol **’ is used to match any sequence of characters of a variable name and *?" to match any
single character. Consider the following commands: ’

xx*/
=sub:y?/
wx/

The first prints the values of all variables beginning with "x’. the second prints the values of all
two letter variables in procedure sub beginning with °y’, and the last prints all variables. In the
first and last examples, only variables accessible from the current procedure are printed. The
command

i/

displays the variables for each procedure on the call stack.

Sdb normalily displays the variable in a format determined by its type as declared in the
source program. To request a different format, a specifier is placed after the slash. The
specifier consists of an optional length specification followed by the format. The length
specifiers are

b one byte
h two bytes (hailf word)
l four bytes (long word)

The lengths are only effective with the formats d. o, x and u. lf no length is specified. the
word length of the host machine, four for the DEC VAX-11/780%, is used. A numeric length

1'DEC and VAX are trademarks ot Digital Equipment Corporation

-3

specifier may be used for the s or a commands. These commands normally print characters
until either a null is reached or 128 characters are printed. The number specifies how many
characters should be printed. -

There are a number of format specifiers available:

character

decimal

decimal unsigned

octal

hexadecimal

32 bit single precision floating point .

64 bit double precision floating point

Assume variable is a string pointer and print characters until a null is reached.
Print characters starting at the variable's address until a null is reached.
pointer to procedure

B @@ " o= AN

-]

As an example, variable i can be displayed in hexadecimal with the following command
*i/x
Sdb also knows about structures. one dlmensnonal arrays and pointers so that all of the
following commands work.

=array[2]/

*sym.id/

*psym=—> usage/
*xsym/[20].p— > usage/

The only restriction is that array subscripts must be numbers. Note that. as a special case
*psym—>>/d
displays the locatio;'l pointed to by psym in decimal.
Core locations can also be displayed by specifying their absolute addresses. The command
=1024/

displays location 1024 in decimal. As in C, numbers may also be specified in octal or hexade-
cimal so the above command is equivalent to both of

«02000/
*(x400/

[t is possible 10 intermix numbers and variables. so that
»1000.x/

refers 10 an element of a structure starting at address 1000 and
«1000—>x/

refers to an element of a structure whose address is at 1000.
The address of a variable is printed with the *=" command. so

=

displays the address of i. Another feature whose usefulness will become apparent later is the
command

=/

which redisplays the last variable tvped.

3. Source file display and manipulation

Sdb has been designed to make it easy to debug a program without constant reference to a
current source listing. Facilities are provided which perform context searches within the source
files of the program being debugged and to display selected portions of the source files. The
commands are similar to those of the UNiX editors ed [2] and ex [1]. Like these editors, sdb
has a notion of current file and line within the file. Sdb also knows how the lines of a file are
partitioned into procedures, so that it also has a notion of current procedure. As noted in other
parts of this document, the current procedure is used by a number of sdb commands.

3.1. Displaying the source file

Four command exist for displaying lines in the source file. They are useful for perusing
through the source program and for determining the context of the current line. The com-
mands are

w Window. Print a window of 10 lines around the current line.
z Print 10 lines starting at the current line.. Advance the current line by 10.

control-D Scroll. Print the next 10 lines and advance the current line by 10. This command
is used to cleanly display long segments of the program.

There is also a p command which prints the current line. When a line from a file is
printed, it is preceded by its line number. This not only gives an mdncauon of its relative posi-
tion in the file, but is also used as input by some sdb commands.

3.2. Changing the current source file or procedure
The e command is used to change the current source file. Euher of the forms

=@ procedure
e file.c

may be used. The first causes the file containing the named procedure to become the current
file and the current line becomes the first line of the procedure. The other form causes the
named file to become current. In this case the current line is set to the first line of the named
file. Finally. an e command with no argument causes the current procedure and file named to
be printed.

33 Changing the current line in the source file

As mentioned in section 3.1, the z and control-D commands have a side effect of chang-
ing the current line in the source file. This section describes other commands which change the
current line.

There are two commands for searching for regular expressions in source files. They are

*/regular expression/
=7regular expression’

The first command searches forward through the file for a line contining a string which
matches the regular expression and the second searches backwards. The trailing */* and *?* may
be omitted from these commands. Regular expression matching is identical to that of ed.

The + and — commands may be used to move the current line forwards or backwards by
a specified number of lines. Typing a newline advances the current line by one and typing a
number causes that line 10 become the current line in the file. These commands may be
catenated with the display commands so that
*+15z .

advances the current line by 15 and then prints 10 lines.

-5

4. A controlled environment for program testing

One very useful feature of sdb is breakpoint debugging. After entering the debugger, cer-
tain lines in the source program may be specified to be breakpoints. The program is then started
with a sdb command. Execution of the program proceeds as normal until it is about to execute
one of the lines at which a breakpoint has been set. The program stops and sdb reports which
breakpoint the program is stopped at. Now, sdb commands may be used to display the trace of
procedure calls and the values of variables. [f the user is satisfied that the program is working
correctly to this point, some breakpoints can be deleted and others set, and then program exe-
cution may be continued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping. Sd¢b can be requested to exe-
cute the next line of the program and them stop. This feature is especially useful for testing
new programs, so they can be verified on a statement by statement basis. Note that if an
attempt is made to single step through a procedure which has not been compiled with the ‘~g’
flag, execution proceeds until a statement in a procedure compiled with the debug flag is
reached.

4.1. Setting and deleting breakpoints

Breakpoints can be set at any line in a_procedure which contains executable code. The
command format is:

«12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current procedure. The line numbers are rela-
tive to the beginning of the file, as printed by the source file display commands. The second
form sets a breakpoint at line 12 of procedure proc and the third sets a breakpoint at the first
line of proc. The last sets a breakpoint at the current line.

Breakpoints are deleted similarly with the commands:

*12d
=proc:12d
*proc:d

[n addition. if the command d is given alone. the breakpoints are deleted interactively. Each
breakpoint location is printed and a line is read from the user. If the line begins with a *v" or
*d’. the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B commund and the D com-
mand deletes all breakpoints. It is sometimes desirable 0 have sdb automatically perform a
sequence of commands at a breakpoint and then have execution continue. This is achieved
with another form of the b command:

=12 b ux/
causes both a traceback and the value of x to be printed each time execution gets to line 12.
The a command is a special case of the above command. There are two forms:

*proc: a

«proc:12 a
The first prints the procedure name and its arguments Sach time it is called and the second
prints the source line each time it is about 10 be executed.

4.2. Running the program

The r command is used 1o begin program execution. It restarts the program as if it were
invoked from the shell. The command

*r args

runs the program with the given arguments, as if they had been typed on the shell command
line. If no arguments are specified, then the arguments from the last execution of the program
are used. To run a program with no arguments, use the R command.

After the program is started, execution continues until a breakpoint is encountered, a sig-
nal such as INTERRUPT or QUIT occurs or the program terminates. In all cases, after an appropri-
ate message is printed, control returns to sdb.

The ¢ command may be used to continue execution of a stopped program. A line number
may be specified, as in:

sproc:12 ¢

This places a temporary breakpoint at the named line. The breakpoint is deleted when the ¢
command finishes. There is also a C command which continues, but passes the signal which
stopped the program back to the program. This is useful for testing user-written signal
handlers. Execution may be continued at a specified line with the g command. For example,

«17¢g

continues at line 17 of the current procedure. A use for this command is to avoid executing a
section of code which is known to be bad. The user should not attempt to continue execution
in a different procedure than that of the breakpoint.

The s command is used to run the program for a single line. It is useful for slowly exe-
cuting the program to examine its behavior in detail. An important alternative is the S com-
mand. This command is like the s command, but does not stop within called procedures. It is
often used when one is confident that the called procedure works correctly, but is interested in
testing the calling routine.

4.3. Calling procedures

It is possible to call any of the procedures of the program from the debugger. This
feature is useful both for testing individual procedures with different arguments and for calling
a procedure which prints structured data in a nice way. There are two ways to call a procedure:

»proc(argl, arg2, ...)
*proc(argl, arg2, ...)/

The first simply executes the procedure. The second is intended for cailing functions: It exe-
cutes the procedure and prints the value that it returns. The value is printed in decimal unless
some other format is specified. Arguments to procedures may be integer, character or string
constants, or values of variables which are accessible from the current procedure.

An unfortunate bug in the current implementation is that if a procedure is called when
the program is nor stopped at a breakpoint (such as when a core image is being debugged), all
variables are initialized before the procedure is started. This makes it impossibie to use a pro-
cedure which formats data from a dump.

5. Other commands
To exit the debugger, use the q command.

The ! command is identical to that in ed and is used to have the shell execute a com-
mand.

It is possible to change the values of variables when the program is stopped at a break-
point. This is done with the command

svariable!value

which sets the variable to the given value. The value may be a number, character constant or
the name of another variable. If the variable is of type float or double, the value can also be a
floating constant.

Acknowledgments

[would like to thank Biil Joy and Chuck Haley for their comments and constructive criti-
cisms.

References

(11 Wiiliam N. Joy, £x Reference Manual, Computer Science Division, University of Califor-
nia, Berkeley, November 1977.

[2] Ken C. Thompson and Dennis M. Ritchie, Unix Programmer's Manual, Bell Laboratories.
1973.

Addendum

Sdb is currently implemented for the languages C and F77 on the UNIX/32V operating
system for the DEC VAX/11-780. Impieméntations for other processors such as the DEC
PDP*-11. the Motorola MC68000 and the IBM?* System/370 are currently in progress.

+ .
'PDP is a trademark of Digital Equipment Corporation
IBM is a trademark of International Business Machines Corporation

Appendix 1. Example of usage.

% cat testdiv2.c

main(arge, argv, envp)

char #*#*argy, **envp; {
int i;
i = div2(-1);
printf("=-1/2 = %d\a", i);

}
div2(i) {
int j;
J = i>>1;
return(j);
}
$ cc -g testdiv2.c
$ a.out
-1/2 = =1
$ sdb
No core image # Warning message from sdb
*/%div2 # Search for procedure "div2"
T: diva2(i) { # It starts on line 7
*z # Print the next few lines
T: diva2(i) {
8: int j;
9: j= >>1;
1?: : return(j);)
11:
*div2:b # Place a breakpoint at the beginning of div2
div2:9 b # Sdb echoes proc name and line number
#r # Run the procedure
a.out # Sdb echoes command line executed
Breakpoint at # Executions stops just before line 9
div2:9: J o= i>>1;
L4 # Print trace of subroutine calls

div2(iz-1) [testdiv2.c:9]
main(arge=1,argv=0x7ff£f£50,envp=0x7Tfff£f58) [testdiv2.c:4]

*i/ # Print i

-1

*s # Single step

div2:10: return(j); # Execution stops just before line 10
*j/ # Print j

-1

*9d # Delete the breakpoint

*div2(1)/ # Try running div2 with different arguments
0

*diva(=-2)/

-1

*div2(=3)/

i’

Appendix 2. Manual pages.

NAME

sdb — symbolic debugger

SYNOPSIS

sdb [objfil [corfil [directory 1]]

DESCRIPTION

Sdb is a symbolic debugger which can be used with C and F77 programs. It may be used to
examine their files and to provide a controlled environment for their execution.

Objfil is an executable program file which has been compiled with the -g (debug) option. The
default- for objfil is a.out. Corfil is assumed to be a core image file produced after executing
objfil; the default for corfil is core. The core file need not be present.

It is useful to know that at any time there is a current line and current file. If corfil exists then
they are initiaily set to the line and file containing the source statement at which the process
terminated or stopped. Otherwise, they are set to the first line in main. The current line and
file may be changed with the source file examination commands.

Names of variables are written just as.they are in C or F77. Variables local to a procedure may
be accessed using the form ‘procedure:variable’. If no procedure name is given, the procedure
containing the current line is used by default. It is also possible to refer to structure members
as ‘variable.member’, pointers to structure members as ‘variable—>member’ and array ele-
ments as ‘variable{number]’. Combinations of these forms may also be used.

It is also possible to specify a variable by its address. All forms of integer constants which are
valid in C may be used, so that addresses may be input in decimal, octal or hexadecimal.

Line numbers- in the source program are referred to as ‘filename:number’ or
‘procedure:number’. In either case the number is relative to the beginning of the file. If no
procedure or file name is given, the current file is used by default. If no number is given, the
first line of the named procedure or file is used.

The commands for examining data in the program are:
t Print a stack trace of the terminated or stopped program.
T Print the top line of the stack trace.

variable/Im
Print the value of variable according to length / and format m. If /and m are omitted, sdb
chooses a length and format suitable for the variable’s type as declared in the program.
The length specifiers are:

b one byte

h two bytes (haif word)
1 four bytes (long word)
number

string length for formats s and a
Legal values for m are:

character

decimal

decimal, unsigned

octal

hexadecimal

32 bit single precision floating point

64 bit double precision floating point

Assume variable is a string pointer and print characters starting at the address

LI - I - — T — Y — PO)

7th Edition UNIX/32V 1

o

SDB(1) UNIX Programmer’s Manual SDB(1)

pointed to by the variable.
a Print characters starting at the variable’s address.
p pointer to procedure

The length specifiers are only effective with the formats d, u, o and x. If one of these
formats is specified and / is omitted, the length defauits to the word length of the host
machine; 4 for the DEC VAX/11-780. If a numeric length specifier is used for the s or a
command then that many characters are printed. Otherwise successive characters are
printed until either a null byte is reached or 128 characters are printed. The last variable
may be redisplayed with the command °./". .

The sh(1) metacharacters * and ? may be used within procedure and variable names, pro-
viding a limited form of pattern matching. If no procedure name is given, both variabies
local to the current procedure and global (common for F77) variables are matched, while
if a procedure name is specified then only variables local to that procedure and matched.
To match only global variables (or blank common for F77), the form ‘:pattern’ is used.
The name of a common block may be specified instead of a procedure name for F77 pro-
grams. . :

variable =/m

linenumber =im

number=im
Print the address of the variable or line number or the value of the number in the
specified format. If no format is given, then ‘Ix’ is used. The last variant of this com-
mand provides a convenient way to convert between decimal, octal and hexadecimal.

variable !value .)
Set the variable to the given value. The value may be a number, character constant or a
variable. If the variable is of type float or double, the value may aiso be a floating con-
stant.

The commands for examining source files are

e procedure

e filename.c
Set the current file to the file containing the named procedure or the named filename. Set
the current line to the first line in the named procedure or file. All source files are
assumed to be in directory. The default for directory is the working directory. If no pro-
cedure or file name is given, the current procedure and file names are reported.

/regular expression/
Search forward from the current line for a line containing a string matching the regular
expression as in ed(1). The trailing */° may be elided.

?regular expression?
Search backward from the current line for a line containing a string matching the regular
expression as in ed(1). The trailing *?’ may be elided.

Print the current line.

z Print the current line followed by the next 9 lines. Set the current line to the last line
printed.

control-D
Scroll. Print the next 10 lines. Set the current line to the last line printed.

w Window. Print the 10 lines around the current line.
number

7th Edition UNIX/32V 2

»

SDB(1) UNIX Programmer’s Manual SDB(1)

Set the current line to the given line number. Print the new current line.

count +
Advance the current line by count lines. Print the new current line.

count —
Retreat the current line by count lines. Print the new current line.

The commands for controlling the execution of the source program are:

count v args

count R
Run the program with the given arguments. The r command with no arguments reuses
the previous arguments to the program while the R command runs the program with no
arguments. An argument beginning with ‘<’ or ‘>’ causes redirection for the standard
input or output respectively. If count is given, it specifies the number of breakpoints to be
ignored.

linenumber ¢ count

linenumber C count .
Continue after a breakpoint or interrupt. If counr is given, it specifies the number of
breakpoints to be ignored. C continues with the signal which caused the program to stop
and ¢ ignores it.

If a linenumber is specified then a temporary breakpoint is placed at the line and execu-
tion is continued. The breakpoint is deleted when the command finishes.

linenumber g count
Continue after a breakpoint with execution resumed at the given line. If count is given, it
specifies the number of breakpoints to be ignored.

s count - .
Single step. Run the program through count lines. If no count is given then the program
is run for one line.

S coumt
Single step, but step through subroutine cails.

k Kill the debugged program.

procedure (argl,arg2,...)

procedure (argl,arg2,...)/m)
Execute the named procedure with the given arguments. Arguments can be integer, char-
acter or string constants or names of variables accessible from the current procedure. The
second form causes the value returned by the procedure to be printed according to format
m. If no format is given, it defaults to ‘d’.

linenumber b commands
Set a breakpoint at the given line. If a procedure name without a line number is given
(e.g. ‘proc:’), a breakpoint is placed at the first line in the procedure even if it was not
compiled with the debug flag. If no linenumber is given, a breakpoint is placed at the
current line.

If no commands are given then execution stops just before the breakpoint and control is
returned to sdb. Otherwise the commands are executed when the breakpoint is encoun-
tered and execution continues. Multiple commands are specified by separating them with
semicolons.

linenumber d

Tth Edition UNIX/32V 3

> ar R

SDB(1) UNIX Programmer’s Manual SDB (1)
o
Delete a breakpoint at the given line. If no linenumber is given then the breakpoints are
deleted interactively: Each breakpoint location is printed and a line is read from the stan-
dard input. If the line begins with a ‘y’ or ‘d’ then the breakpoint is deleted.
~ B Print a list of the currently active breakpoints.
D Delete all breakpoints.
1 Print the last executed line.
linenumber a
Announce. If linenumber is of the form ‘proc:number’, the command effectively does a
‘linenumber b I’. If linenumber is of the form ‘proc:’, the command effectively does a
‘proc: b T°.
7
Miscellaneous commands.
! command
The command is interpreted by sh(1).
newline :
If the previous command printed a source line then advance the current line by 1 line and
print the new current line. If the previous command displayed a core location then
display the next core location.
" string '
Print the given string.
q Exit the debugger.
- .
The following commands also exist and are intended only for debugging the debugger.
V Print the version number.
X Print a list of procedures and files being debugged.
Y Toggle debug output.
FILES
a.out
core
SEE ALSO
adb(1)
- DIAGNOSTICS
Error reports are either identical to those of adb(1) or are self-expianatory.
BUGS
If a procedure is called when the program is not stopped at a breakpoint (such as when a core
image is being debugged), all variables are initialized before the procedure is started. This
makes it impossible to use a procedure which formats data from a core image.
Arrays must be of one dimension and of zero origin to be correctly addressed by sdb.
o~ The default type for printing F77 parameters is incorrect. Their address is printed instead of
their value.
Tracebacks containing F77 subprograms with multiple entry points may print tco many argu-
ments in the wrong order, but their values are correct.
-~ '

Tth Edition UNIX/32V 4

