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MEMORANDUM FOR FILE
1. Introduction

1.1. Background. The purpose of this paper is to define the semantics of statements in
the C programming language. In addition to serving as a reference manual, the semantic
specification will be precise enough that a program like sis by Mosses [mss76] can automatically
construct an interpreter from the specification. '

C is a generat purpose programming languags that is available in a number of environ-
ments. Most of the software running under the UNIX*® operating system is written in C. Notes
on the development of C and an assessment of the language may be found in (rit78b]. Our
starting. point for language details was the book on C by B. W. Kernighan and D. M. Ritchie.
(ker78] and the compilers by S. C. Johnson (ioh78] and D. M. Ritchie [rit73a].

It is suggested that the reader proceed sequentiaily through this paper since the semantics
of the various kinds of statements are inter-refated.

The syntax of statements is shown in Figure 1.

1.2. Notation. In addition to giving some idea of the meaning of expressions. this subsec-
lion introduces notation that will be useful in the sequel. Much of the notation will be intro-
duced by exampie. For a more detailed presentation see (s2t79a] where the semantic method
and the notations we will use are discussed. References to the literature may also be found in
(set79a]. The semantics of statements fall into the class of denotationai specifications of pro-
gramming languages [scs71,st077,ten76].

The value of an identifier will be given in two stages, as shown in Figure 2. Given an
environment ¢ and state s. the value of jdentifier id is s{e(id)). There are a number of rea-
sons for a two stage mapping: one of them i3 that a two stage mapping makes it 2asy o give
meaning for identifiers that ara tyPe names or statement labeis. E

Expressions in C may have side effects since’ assignments may be embedded within
expressions. Given an environment e and a state s as in Figure 2, an expression yields a value
v and a modified state s'. The meaning of an expression will thersfore be a function that takes
¢ and s as parameters and-returns a pair (v.s').

The nonterminal exp occurs in severai places in Figure 1. The meaning of a program frag-
ment generated by exp will be denoted by fexpl. We therefore have

(v.5") = [expl(e,s)

‘UNIX is a trademark of Beil Laboratories,



stm: .
return ; .§3.1
return exp; §3.1
: §3.2
ey ; §3.3
if (exp) stm §3.4
if (exp) stm else stm §3.4
break ; . §3.5
continue ; §3.6
do stm while ( exp) ; §3.7
while ( exp) stm §3.3
for (exp; exp; exp) stm §3.9
switech ( &xp) stm §3.10
case consmnt.exp : sum §3.10
default : som §3.10
{ soms | .11
goto identifier ; §3.12
identifier : stm §3.12

sum.s:

/» empty =/ §3.11

soms stm §3.11

Figure |. The above syntax for statements is 2 restriction of that in the C Reference
Manual [ker78]. In particular. declarations are not permitted within compound statements
i.e. “‘blocks™ are not included. Since a goto may jump anywhere within a function. 't is

- convenient to preprocess declarations away. Section numbers on the right refer to the
place where the meaning of a construct is discussed. R

e s

e

identifier location value

Figure 2. An environmen: e maps an identifier to a location. and then a siare s maps a lo-
cation to a value. Another use of environments occurs in §3.5. 3.6. and 3.12 where the
meaning of break. continue, and goto is given.

Let V. E, and S be the domains of values, environments. and states, respectively. The
special symbol i (read ‘‘bottom’™) will denote the *“‘undefined™ vaiue in V.

We can declare that fexpl(e,s) = (v.s") has its first component in the domain V and its
second component in domain S by writing

flexpl(e,s): (V.9)

Furthermore. we can declare that {exp} taken by itseif is a function that maps an element
of (E.S) to an element of (V.S) by writing

fexpd: (E.S) — (V.S

Suppose that starting with state s we assign a vaiue v 1o a location / and obtain the
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modified state s". The relation betwesn s, v, /, and s’ can be expressed using either of the fol-
lowing two equivalent forms:

s = s{v/l]

S=Am ( m=m{—y, s(m))

The latter form reads, ‘:Given parameter m, if m equals / then s'(m) is v, otherwise s'(m) is
3(m).

Conditionai expressions will be written using the syntax ¢ — b,c rather than the C syntax
exp? exp : expin order to keep the metalanguages for defining semantics quite distinct from the
syatax of C.

2. The Semantic Method

The approach to defining the semantics of statements will be illustratad by examining the
following program fragment. The approach is essentially that of §6 in [set79a], but will take
into account side effacts of procsdures.

intnext =Q;
squazra() (
int sq;
SQ = next « next;
nextes;
retuzrn (sq); .
Sg@=0; /¥ cannever be reached #»/

}

Procedures in C are called “‘functions’ since they return values and may be called within
expressions. When it is necessary to distinguish between a program fragment and a mathemati-
cal function, we will refer t0 the program fragment as a **C-function”. ‘square in the program
fragment above is therefore a C-function.

Statements in C must occur within the body of a C-function. A goto may jump any-
where within a function, but it is not possibie to jump out of the function. Consequently. a
natural unit for specifying semantics is the sequence of statements that constitute the body of a
function definition. '

Successive cails to the parameteriess function square will return the sequence 0, 1, 4,
9, - . In addition to returning the value of sq, the function square increments the value
of next which is external to sqhare. Like expressions, C-functions return values and change
the state, so we will view C-functions as returning elements of the domain (V.S).

A portion of the parse tres for the above program fragment is given in Figure 3. The
statements of squaze are in the subtree at node x in Figure 3. From this subtree we will con-
struct a function f to determine the pair (v,s’) returned by squazre. When f is applied to the

‘state s with which the statements in the subtres are reached, we will get

f(s) = (v,5)

A function like f which maps a state to the “‘answer’ of a C-function will be called a
(statement) continuation. With f as a typical example, it is clear that the domain C of continua-
tions must be

C=S§—(V,S)
A C-function returns to its cailer either on execuling 4 return statement, or on reaching

the end of the statemnents in the function. In the latter case, the value returned is grd, which is
a special ‘‘garbage’” value.
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sg=nextynext; next++;

retuzn(sg);

Figure 3. A sketch of a parse tree for a program fragment.

The continuation f for the subtres at node x in Figure 3 will be determined during a
post-order traversal of the subtree, as shown in Figure 4. We start the traversal with a starting
continuation ¢y which corresponds to a C-function containing just the null statement. Clearly.
for all states s,

co(s) = (gri,s)

After the assignment sq=Q; is traversed. we get continuation ¢;. On state s, we want
¢;(s) to be determined as follows: the state s is updated to s’ by entering O for the location of
sg, and then co(s) = (grd.s’) is returned. In other words. the effect of the assignment sg=J;
has to be accumuiated by changing the siate, and then the continuation for the rest of the state-
ments has to be used.

The xmersnng case is return (sg) ; which is the next statemnent 1o be traversed. When
a return is executed, control returns to the caller of sgquare, regardless of the statements
that follow the return. Continuation ¢, will therefore be such that for all siates s,

cy{s) = (v.s) where v = s(e(sq))

Note that ¢; does not depend in any way on ¢,. Thus the assignment sg=0;, which can never
be reached, cannot affect the continuation f for the whole tree in Figure 4.

Let x be any of the statements in Figure 4. Suppose we know the continuation ¢, for the
statements to the right of x, the environment e,, and the state s, that x is reached with. With
€r. Gy, and s,, we can predict the ‘‘answer’ of the C-function. (Note that the assignment
sqg=0; can never be reached, so the fact that we may possibly predict an incorrect *‘answer’" at
this statement does not matter.)

The meaning, as outlined above, of the program fragment generated by stm will be
denoted by scisrm], and can be declared by writing

scisemi(e.c.s): (V.S)

In se, the s is from statement, and the ¢ is from continuation. We will refer to sc as a
valuation and treat it as a function from szm to its meaning sc{som}. The reason for writing
scistn] instead of just fsom} is to avoid confusion with other valuations in §4-5 where the
meaning of goto and switch statements will be discussed in more detail.

7
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Figure 4. The meaning of a statement will be given using continuations. The continua-
tion for the entire tree will be determined during a post-order traversal of the tres.

3. Semantics of Statements

The semantics of each kind of statement will be given by first discussing the staternent
and then presenting precise definitions. This section was prepared by extensively editing §9 of
the C Reference Manual in [ker78].

As mentioned at the end of §2, the meaning of statements will be such that
scistmi(e,c,s): (V.8)
Appendix A contains a concise listing of the meaning of statements under valuation <c.

Since we will be considering one kind of statement at a time, a minor extension of our
notation wiil be useful. Rather than writing something like SRS

fsom iszeturn ; them scistmi(e.c,s) = (grd,s)
we wiil writa
sclreturn ;J(e,c.5) = (grirs)

3.l. return. A function returns to its caller by means of the retuzrn statement, which
has one of the forms

return ;
return exp ;

In the first case, the special ‘‘garbage’” value grd and the current state are returned. [n the
second case, the value of the expression and the state after expression evaluation are returned
to the caller of the function. If required, the expression is'converted, as if by assignment. to
the type of the function in which it appears. This type conversion will become explicit when
the semantics of function definitions are given,

More precisely,
sc{zetuzn ;1(e,c.s) = (gras)

Note that the continuation ¢ is ignored, thereby indicating that control returns w0 the
caller of the function. Finally,

sclreturn ep ;1(e,c,s) = [expl(e.s)
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Recall from §1.2 that fexpl(e,s) will be a pair (v,s’) waere v is a value and s’ is a
modified state.

3.2. Null The null statement has the form
scf;1(e,c.s) = ¢c(s)

The null statement does not change the state and control passes to the following state-
ment. The continuation ¢ for the statements following the null statement is therefore applied
to the state s with which the null statement is reached.

3.3. Expression. An expression followed by a semicolon is a statement. Such statements
are usually assignments or function calls.

scfexp ;1 (e.c,s) = c(s) where (v,s") = [expl(e.s)

Evaluation of the expression yields a state ', and the continuation for the statsments following
the expression statement is then applied to s’ to predict the *“‘answer’ of the function. The
value v of the expression is thrown away.

3.4. Conditional. The two forms of the conditional staternent are

if (exp) stm
if (exp) stm else stm

In both cases the expression is evaluated and if it is non-zero, the first substatement is exe-
cuted. In the latter case the second substatement is executed if the expression is 0. As usual
the *‘eise’ ambiguity is resolved during syntax analysis by connecting an else as follows:
given a choice between if’s to connect the eise to. the nearest i£ is chosen.

We will give the semantic equation only for conditionals with else clauses since the
other form is equivalent to a conditional with a null statement, §3.2. following the else.

if (exp) sim else ;

The semantic equation for the if statement is
sclif ( exp) stm; else stmyl(e.c,s) =
let (v,5") = [expl(e.s)
in v=0—scisoml(e,c.s) . sclsmal(e.c.s)

3.5. break. The break statement has the form
break ;

This statement causes termination of the smallest enclosing do. while. for. Of switch state-
ment, §3.7-3.10; control passes to the statement following the terminated statement. In each of
the statements .

while (...) | do | for (...){ switeh (...) |
} ' Jwhile (...); ) !
breakout: ; breakout: ; breakout: ; breakout: ;

a break is equivalent to goto breakout. (Following the breakous: is a null statement.
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§3.2.)

The continuation ¢ for the statements following the break must be ignored since control
passes 1o the swatement x following the do, while, for, or switch enclosing the break.
We therefare need the continuation ¢’ for x and the statements that follow x.

Sitting at a parse tree node cdrresponding to @ break statement, we want to be able to
use the continuation ¢’ without having to leave the node to find ¢’ The continuation ¢’ will
therefore have to be ‘“‘passed” in some way. The environment e and a special identifier brk.
which is invisible to the user, will-be used for this purpose. The smallest enclosing do, while.
£or, or gwitch will already. have set up the environment e so that ¢’ = e(bzk). Thus all that
needs to be done hers is to look up the continuation ¢’ in the environment and apply it to the
sate s.

scibz:ea:k i1(e,c.5) = ¢'(s) where ¢ = e(bzik)

The purpose of an environment is to map an ideatifier to the semantic object denoted by
the identifier. Some identifiers denote locations: others, like statement labels, and the special
identifier bz denote continuations.

3.8. continue. The continue statement has the form
continue ;

This statement causes control to pass to the loop-continuation portion of the smallest enciosing
.do, while, or for staternent, §3.7-3.9; that is to the end of the loop. In each of the state-
ments .

while (...) | do | for (...) |

contin: ; coentin: ; contin: ;
} " }while (...); ]

3 continue is equivalen: 0 goto contin (Following the contin: is a null statement,
§3.2)

As with the break statement, §3.5, the continuation ¢’ to be used will have already besn
entered in the environment at the speciai identifier con by the do. while, or for statement.

sc{centinue ;1(e,c.5) = ¢'(s) where ¢ = e(con)

3.7. do. The do statement has the form
do stm while ( exp) ;

The substatemnent szm is executed repeatedly until the value of the expression becomes zaro.
The test takes place after each execurion of the statement.

The intent of the following two statements is similar, but an exact analogy is frustrated by
break and continue statements, §3.5-3.6, and the fact thar sum may contain labeled state-
ments, §3.12.

do sun while ( exp) ;
simwhile ( exp) szm

We will give the meaning of the do statement in terms of the while statement. §3.8.
Appropriate environments will be sat up so that break and continue statements within som
are handled properiy.
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scldo stm while ( exp) ;i(e,c,s) =
let [ =)s.sclwhile ( exp) stmi(e.c,s);
e’ = elc/bzXkl;
e” = ¢'{f/conl;
in sclstmi(e”.f,s)

Given the state s’, sclwhile (exp) stm}(e,c.s) will be the ‘‘answer’ of the C-function.
Therefore, f is the continuation for while (exp) szm and its following statements. The above
semantic equation for do corresponds to executing som using the environmeant e” and foilowing
stm by while (exp) som.!

3.8. while. The while statement has the form
while (exp) stm
The substatement stm is executed repeatedly so long as the value of the expression remains
non-zero. The test takes place before each execution of the statement.

Since there is no bound on the number of times the body of a while loop might be exe-
cuted, we will determine the continuation f. corresponding to the while and the statements
that follow it, using a sequence of approximations fj, f s of f.

An intuitive view — no to be taken too literally ~ of the functions SoS1. -+ is as fol-
lows. Let loop() be some parameteriess C-function that loops forever. Then .
fo corresponds to leop();
f1 correspondsto  if ( exp ) | som loop(); |
Sy correspondsto  if (exp ) | stm
if (exp ) { stm loop() ; )
|

and so on.

As discussed in §3.5-3.6. the loop body must use an environment in which appropriate
continuations have been entered for the special identifiers brk and con. Since a continue
causes re-execution of the while. at con we would like to enter f. the continuation for
while and its succeeding statements. However, we have not yet determined S, since we need
- the meaning of the loop body before we can determine the meaning of the loop. During the
determination of /.., we wili use the best availabie approximation Ji of f for con.

Execution of a while loop either loops forever. or terminates after some 7 steps. The
approximation f,., or for that matter f,,,,, wiil correctly predict the “‘answer” of the C-
function, so it suffices to make f the limit of the sequence fo.f),, ., written
Ufili=0.1,---) (see [set79a] for a discussion of LI).

! The meaning of do sum while ( exp ) ; can be expressed strictly in terms of the meanings of exp and sim
by repiacing scfwhile ( exp ) somi(e.c.s’) by the appropriate expression from §3.8.



scfwhile ( ep) stmi(e,c,s) =
r fo=ou
sl =S It & = elc/nzil;
e” = ¢'(fi/conl;
(v,5") = {expl(e,s);
invQ— sc{stml(e”, 1,57, c(s™);
F=uf{fili=0,1, --- }
in f(s)

An equivalent definition is given below. (The fix operator is discussed in [set79a].)
sciwhile ( exp) stm](e,c,s) =
et f=fix \g
As. et ¢ = elc/brikl;
e’ = o'(g/conl;
(v,5") = [expl(e,s);
inv = 0 —scstml(e”, 2.5, c(s);

in f(s)

3.9. foz. The for statement has the form
for (expy ; expy ; exp3 ) sum

The intent of the for statement is similar to that of the following program fragment. but
an exact analogy is frustrated by continue statements. §3.6.

epy ;

while ( expy) |
stm

’ eps ;

Thus the first expression specifies initialization for the loop; the second specifies a test, made
before each iteration. such that the loop is exited when the expression becomes 0Q; the third
expression often specifies an incrementation which is performed after each iteration. .

Any or all of the expressions in the for statement may be dropped. However, we
assume that during syntax analysis missing expressions are repiaced by 1. Note-that 1; is
equivalent to the null statement since it does not change the state. Replacing a missing exps by
1 makes the test of the implied while clause unconditionally true.

The meaning of the for statement is similar to that of the above program fragment with
the impiied while; the excsption is that oam encountering a continue in s, exp; is
evaluated before the implied while is repeated.
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sclfor ( exp; expy; oxpy ) siml(e.c.s) =

et f = fix \g. -
‘ As. et g =tsclexp; ;1(e.g.0):

e' = elc/prXl;

e" = ¢'(g'/conl;

(v,5") = [exp i(e.s);

inv = 0—sclaml(e”.g'.s"), c(s:

in sclexp, ;1(e.f.5)

3.10. switch

3.10.1. Discussion from [ker78]. The switch statement causes control to be transferred
to one of several statements depending on the value of an expression. It has the form

switch ( exp ) stm

The resuit of expmust be int. (Such type checking will be done elsewhere.) The statement
stm, which is the switch bedy, is typically compound. Any statement within stm may be
labeled with-one or more case prefixes as follows:

case constantexp :

where the constant expression must be int. No two of the case constants in the same switch
may have the same value.

There may aiso be at most one statement prefix of the form
default :

When the switch statement is executed. its expression is evaluated and compared with
each case constant. If one of the case constants is equai to the value of the expression. controf
is passed to the statement following the matched case prefix. If no case constant matches the
expression. and if there is a default prefix. control passes to the prefixed statement. If no
case matches and if there is no default then none of the statements in the switch is exe-
cuted. _

' case and default prefixes in themselves do not aiter the flow of control. which contin-
- ues unimpeded across such prefixes. To exit from a switch, see break. $3.5.

. 13.10.2. Conrinuation semantics of switch. Recall that the semantics of flow of control are
given by using the continuation for the point that controf prs te. In

switch ( exp) smm

the value of exp determines the case that control flows to. We will therefore construct .a func-
tion X, that will map the vaiue of exp to the continuation c” of the selected case.

A function like k, is sometimes called an expression continuatiorr, which is distinct from
the ‘‘statement” continuation ¢”. As a convention, the term continuation by itself will aiways
refer to a statement continuation.

The domain K of expression continuations will be
K=ueV-—=_C

The function ks will obviously depend on the switch body generated by sem. The

A

'

~—
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process of constructing &, is reminiscent of the process in Figure 4, where starting with an ini-
tal continuation c¢;, continuations ¢(,c;, - -- were constructed. until the continuation
corresponding to the entire statement sequence had been constructed.

Starting with a suitable initial function k,, we will proceed {rom the end of the statements
generated by szm to the beginning. It will be convenient to start with kg mapping every value
to 2 special constant continuation DUMMY. In this traversal. suppose a statement x is reached
with function k. If x happens to be the statement case const : st then k; will be updated to
the function ;,,, which maps const to ¢,, the continuation for sz and its following statements.

Now suppose x is the statement default : st. Since we started with ko mapping every
value to the DUMMY continuation, k;(v) will still be DUMMY exactly when no case prefix for v
has been encountered. k.., will therefore be such that

kiai(v) = k(v) = DUMMY — ¢, , & (v)

where c,, is the continuation for s¢ and its following statements. Note that if a case prefix for
v is subsequently encountered. then at v, Ce Will be “‘overwritten’ by the appropriate continua-
tion.

The above discussion describes the meaning for statements that will be given by valuation
sk in §5. The valuation will be such that after the switch body srm has been processed, we
will have determined k', where &' is almost the expression continuation ky we set out to deter-
mine. k' will differ from k, only if the switch body does not contain a default. When a
default is missing, there will be values v for which k'(v) will be DUMMY. Since the switch
body is skipped if default is missing, all we need to do is to modify &’ so that instead of get-
ting DUMMY at v we get ¢ the continuation for the statements following the switch.?

sc{switch ( exp) stmi(e,c,s) =
As. let k= )a:V. (DumMmy:C);
e’ = e{c/brikl;
k' = skf{stml(e' k,c);
ky = Aa. k'(a) =puMMY — ¢, k'(a);
(v,5) = [expi(e,s);
" - ko (v); |
n c"(s)
Note that while processing the switch body szm we must do two things: the x:unction kq
must be updated as case and/or the default prafixes are encountered; moreover, the state-
ment continuation corresponding to flow through the st must also be accumuliated. Details of

the- updating of &, will be given in §5 when valuation sk is discussed. Accumulation of the
statement continuation ignores all case and the default preﬁxes: '

-

2 The check that no two case consian(s in the same switch have the same value, and that there is at most
one default prefix. can also be done during the traversal that constructs k. The details of how this is
done are not significant. but one possible “implementation” is as follows, Let DEF be another special con-
stant continuation. When dafault : u is encountered. construct kiwy such that k. (v)=0erF whenever
& (v)=oummy. (The continuation Ce ‘Or st and its following statements will nesd (0 be remembersd some-
where. say in k.., at a special value vd distinct from any other value.) A case prafix for value v wiil be en-
countered for the first time if k(v) is either DUMMY or DEF. When ail statements in the switch body have
been traversed, then ail instances of ogF will Rave to be replaced by the remembered continuation at the spe-
cial value vd. ‘

la the semantics of switch we have assumed that the above check has been made.
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sclcase consuantexp : stml(e,c,s) = sciszm](e.c.s)’ '
scidefault : soml(e,c,s) = sefstm}(e,c,s)

3.11. Compound swtement. So that several statements can be used where one is expected,
- the compound statement is provided: - o

'f{st_rru}

Note that (contrary to [ker78]) declarations are not permitted within compound state-
ments i.e. “bilocks™ are not allowed. Since we do not have a clear idea of what the semantics
of a goto into a block ought to be, we do not want to allow blocks and also allow a goto to
" jump anywhere within 4 function. We have chosen to remain true to the language as it is
. implemented [joh78,rit78a] and allow a goto to jump anywhere within a C-function. It is then
: conveninent to assume that declarations have been preprocessed away by renaming identifiers

to restrict scope; moving the declarations of the renamed identifiers to the head of the function

. definition; and converting initializations into explicit assignments. The braces | and } are

" ignored: .
sci{ stm_s 13(e,c,s) = sclsomsl(e.c,s)
. The semantics of sim.s are given as follows.
~ scistm_s}(e,c.s5): (V.S)
| /= empty »/
- c(s)
| stms som
— sclsmsl(e.c'.s) where ¢ = Az scistmB(e.c.r)

3.12. goto. Control may be transferred unconditionally by means of the statement
goto identifier ;

The identifier must be a label {see below) located in the current function. As with break and
continue, §3.5-3.6, we assume that the continuation corresponding to the statement labeled
with identifier has already been entered in the environment. Thus all that nesds to be done
here is to look up this contiruation in the environment and apply it 1o the state.

- selgoto identifier ;1(e.c.s) = c'(s) where ¢ = e{idemtifier)

Labeled statement. Any statement may be preceded by label prefixes of the form
" identifier : -
‘which serve to declare the identifier as a label. The only use of a label is as a target of a goto.

The scope of a label is the current function. excluding any sub-biocks in which the same
identifier has been redeciared.

We will discuss in §4 how continuations corresponding to labeled statements will be
entered into the environment.

- The following'semantics for labeled statements reflects the fact that flow of control is not
impeded by the presence of statement labels:

sclidentifier : stml(e,c.s) = sclstml(e.c.s)

-~
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4. Eavironments for goto Statements

In §3, the semantics of flow of control were given by using the continuation for the point
that control flowed to. Suppose xis a statement with label /d. Then the meaning of goto id ;
was given by using the continuation ¢, for x and its following statements. In §3.12 it was
assumed that the continuation ¢, could be looked up in the eavironment: in particular, with
environment e, it was expected that ¢, = e{id).

We will now discuss how continuations like ¢y are entered into the eavifonment. A
labeled statement like id : som will update the environment. by associating with id the continua-
tion for som and its following statements. We will therefore use a new valuation, se, for state-
ments: S

selsml(e.c): E

Given a labeled statement id : sam, valuation se will determine continuation c’.for smr
and its' following statements. and will then modify the eavironment so that continiation ¢’ is
associated with label id. We already have a way (from §3) of constructing the continuation ¢*
¢’ = As. se{stml(e,c,s), using valuation sc. ?

A concise listing. of the meaning of statements under vaiuation se may be found in
Appendix B. '

4.1. Labeled starements. The following meaning for labeled statements takes into account
the fact that a labeled statement may be compound, and may itself contain further labeled state-
ments. . -

se{id : stmi(e,c) =
let o' = selstm](e,c);
¢ =As selstmi(e,c,s);
ir e'[c'/ id]

4.2. Basic statements. If stm is just a retuzrn, null, expression, break. continua. or
goto statement, it has no label and cannot affect the environment:

selstmi(e,c) = ¢

&3. Empedded labeis. The statement i£ ( exp ) sm is not a labeled statement, but there
may be labeis within som. A jump to a label within son will bypass the test of exp, so exp will
play no role in sefif ( exp ) soml. In fact the effect on the environment of this conditional

will be exactly the same as that of som by itseif:
sefif (ep ) soml(e.c) = sefsmi(e.c)

Similar remarks apply to the switch statement. case and defaunlt prefixes are aiso ignored.

In if ( exp ) stm else surny, there may be labels within both'stm, and szmy, so the
effect of both somy and sty needs to be accumuiated. Since control flows to ‘exdctly the same
point from somy and szm, the same continuation ¢ is used in selszmy1(e’,c) and selsom I(e.c):

selif ( ep ) som else stm](e,c) -»se{smzﬂ_(e','c) 'wlwre* é’_- selsom J(e,c)

Since the labels in som; and sz, will be distinct, the order in which' the effect of som and som,
is accumulated is not significant, and we could equivalently have accumulated the effect of sim,
before that of sum,. _ -

} The interdependencs of vaiuations se and sc wiil be discussed in §4.5.
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4.4. Jumps into loops. Recall from §3.7 that the intent of the following two program frag-

ments is similar {even though the fragments are not equivalent): o

do stmwhile (exp) ;
Stmwhile ( exp) stm

The meaning of the do statement beiow is inspired by the second program fragment.

In the second program fragment, let ¢’ be the continuation for the while statement.
Since szm is followed by the while, we will use ¢ when *‘processing’” szm. In order to prop-
erly handle break and continue statements within som. 2s in §3.7, appropriate continuations
are entered into the environment (see e” below) for the special identifiers brik and con.

seldo stm while (exp ) ;M(e,c) = ,
et ¢'=s cfunile ( &xp ) stml(e,c,s);
&' = elc/brxl; ' .

e" = ¢'[¢’/conl;
in selstm}(e”.c") -

i

The meaning of while statements is almost identical to that of do statements. since a
jugup“in_to_sun bypasses-the. loop. test.

sel while (exp) stml(e.c) =
ket ¢ =\s scwhile (ep) stmHe,c.s);
e’ = elc/bzkl; |
e" = ¢'(c/ éon:lz
in selstm3(e”.c?y -

A little more care is nee_ded with for statements because of the initialization and incre-
‘mentation expressions exp, and exp;. Based on the semantics in §3.9,

for (exp, ; exp; ; exp; ) stm
is equivaient to .
" ey ; for (1; ey ; expy) stm

since 1; is equivalent to a null statement. Furthermore, the intent of the for statement is
simiiar to that of the following program fragment:

. &Py i if (epy) | stm
&ps i
£or (1; expy ; exp3 ) som

-

T e
a e v

DA
s

.

- A jump to a label within szm” will bypass exp; ; and the test of exp, so we need only consider
: tl_'zé ﬁrst instance of szm and ihe two statements that follow it in the above program fragment:
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se{for (xp, ; expy ; expy ) smi(e,c) =

let ¢ =)\s sclfor (1; expy ; expy ) stmi(e.s,s);
e’ = e{c/bril;
¢ = \s. selexpy ;1{e,c',s);
e’ =e'lc"/eonl; | Lol

in selsoml(e”.cy | S

4.5. Interdependence of se and sc. The speciﬁéation of valuation se is not enough for set-
ting up the environment needed for the semantics of §3. Here we will discuss what nesds to be
done, but the environment will not be set up until declarations are discussed.

Recail that given a labeled statement id : sz, valuation se determines continuation ¢’ for
stm and its following statements, and then modifies the environment so that continuation ¢’ is
associated with label id. The continuation ¢’ is of course determined using valuation sc of §3.
The problem is that szm may well be 2 compound statement conuaining a goto, SO an eaviron-
ment is needed to determine ¢’ ’

This circuiarity is resolved by starting with an intial environment @y that is used by sc ta
determine continuations. These continuations in turn are used by valuation se to construct a
new environment e,. Iterating this process, we will get a sequence of environments eg.e;, * - - .
This sequence will actually be a chain of environments, with least upper bound, say en.

In constructing e, from e, we have to be sure to include the continuation for each label,
so the valuations se and sc will have to be applied to the collection of ail statements in a C-
function. The only time we are handed the collection of ail statements in a C-function is when
the C-function is defined. For this reason, the construction of the environment en will not
become explicit until the semantics of C-function definitions are given... . .

The construction of en aiso ensures that proper continuations are associated. with any
labels that might be in loops set up by goto statements; ’

5. Selecting case's in switch Bodies s
The switch statement, §3.10, causes control to be trznsferred to one of several state-
ments depending on the value of an expression. In .~ = - ’

swit;:h (exp) st

the value of exp determines the case that control flows to. We will therefore construct a func-
tion, referred to as &, in §3.10.2, that will map the value of exp to the continuation of the
selected case.

Determination of the expression continuation k, is similar to, and simpler than. the
determination of an appropriate environment for goto statements in §4. [nstead of entering
continuations into environments when labeled statements are encountered. we will enter con-
tinuations into an expression continuation when a case or default prefix is encountersd. In
fact, Appendix C contining a concise specification of the valuation sk to be discussed here was
created by minimaily editing Appendix B, which contains a specification of valuation se. §4.

Valuation sk wiil be such that:

skistml(e.k.c): K  wheree K=V —C

The construction of an expression continuation by valuation sk wiil of course depend on
valuation s, which is used to construct statement continuations, but sc and se will not depend
on sk. I[ntuitively, there is no circularity in the specification of sk because control flows from a
switch to a case in the switch body, so a switch by itseif cannot cause a loop.
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5.1. case and default prefixes. The following ‘meaning for case and default

.- prefixes strongly influences the meaning.of the other statements. . -

T >

. | case consantexp : stm’ -
' ~lt k= skismml(e.k.c); .
¢’ = \s. sclsml(e.c.s); B
v = [constane.ecpl(e);
k"= k'{c’/v],
im k" o
| Gefanlt : sm
~ler k' =skisomB(e,k.c);
¢’ = rs. sclstmB(e.c.s):
k” = xv. k'(v) = DUMMY = ¢’, k'(v);
in k"

" 5.2. Other statements. As in §4, statemerits without prefixes will not affect the expression
continuation constructed by sk. If 2 switch occurs within the body of an outer switch.
then control cannot. flow from the outer switch 10 a2 case in the inner switch Continua-
tions for case prefixes in the body of the inner switch are therefore not visible to the outer
switch, so switch statements do not change the expression continuation:

skiswitch ( exp ) stmB(e.k.c) = k

For all remaining statements. valuation sk behaves similariy to valuation se. §4.
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Appendix A. Statement Continuations A

Let V, E, and S be the domains of values, environments, and states, respectively. Since
C-functions have side-effects, we will view C-functions as returning answers which are elemeants
of (V.S). Corresponding to the statements in a C-function is a (statement) continuation in
domain C, which maps the state s, that the statements are reached with, to the answer of the
C-function. )

The continuation for the statements in a C-function wiil be determined using valuation se,
§2-3, which is specified below. In sc{stm(e,c.5), s is the state that som is reached with, and ¢
is the continuation for the statements that follow szm.

Figure | contains an index to the detailed discussion of each construct.

sc{soml(e,c,5): (V,S)
l return ;
- (gra,s)
| zeturn op ;
= [epi(e.s)

- c(s)
| exp ; .
—c(s) where (v,5) = [api(e,s)
| i2 (exp ) stm
- let (v,5) = Lexpi(e,s);
in v =0 —sclaml(e,c.s), c(s)
| i€ ( exp ) somy else somy - '
= let (v,5') = [expl(e,s); - B
in v =0 —sclsomi(e,c,s), slsmi(e,c.s)
l bzeak ; : . : . .il',
- c'(s) where ¢ = o(brk)
| continue ;
= c'(s) where ¢ = e(cen)
| do stm while (exp ) ;
—let f=)s.sclwhile ( exp) stmB(e.c,s):
e = e{c/brkl: Lo R
e" = ¢'(f/conl; e

in sc{stmi(e”, f.s)
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| while ( exp ) sm
—let [ =fixAg
AS. et ¢ = elc/prkl;
e =elg/eonls,
(v,s") = [expl(e,s):
inv = 0—sclsoml(e”, 2,5, (s
in £(s) ' '

| £or (expy ; expy ; &xpy ) som
— it [f=fix)g
As. et g = rsclexp; ;1(e.g.0):
A e’ = elc/bzkl;
e" = ¢'[g'/conl:
(v,5") = [exp,d(e,s):
, inv 0 —sclsml(e”,g'.s"), c(s):
in sclexp, ;1(e.f.5)
| switch (ep ) sm
~As. det k=2xra:V. (DUMMY:C):
e’ = e[c/brkl;
k' = sklstml (e’ . k.c);
ky = \a. k'(a) = DUMMY ~ ¢, k'(a);
(v,5) = [expl(e’.s);
c” = ke(v);
in ¢"(s)
| case consiant.exp : stm
- scistml(e,c,s)
| defanlt : som
- =sclstml(e.c,s)
| { soms ) ‘
- selstmosi(e.c,s)
| goto identifier ;
— c'(s) where ' = e(identifier)
| identifier : stm '

- selsmml(e.c,s):

[
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sclstris(e,c,s): (V.9)
VI /% empty =/
- (s
P
— sclsom si(e,c’,s) where ¢ =t selsonl(e,c,?)
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Appendix B. Egvironments for goto Statements .- . -+ . o

Flow of control due to say goto id ; is formalized by using the continuation for the
point that control flows to. In this case, if there is a labeled stitemert-id : x. and ¢ is the
continuation for x and its following statements, then e T

 lgoto id ;¥(e,c.s) = c(s) ci e e -
We want environment e to be such that ¢, = e(id). DL
This appendix specifies valuation se, §4, which is used in the construction of environ-
ments like ¢, , TR
se{szmi(e.c): E e -~
/+ The meaning of labeled statements influences the meamng of
of all other statements, §4.1. T T
=/ S
P
—ez | ' =selaml(ec);. - ..
- ¢’ =As sslsml(ec,s)
Cmeleral”
/= Statements without labeis cannot change the environment. §4.2. =/
| retnzm ; - | |
- o -
.| return exp ;
-
| ;
- @ -
| o ; -~
- —
| break ;
-
| continue ;-
- »
| goto identifier ; C“

-8
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/= The efféct of embedded labeis needs to be propégﬁa’zed,_§4.3._'ﬁ:/’"" '

| if (o) som .
- selstml(e,c)
| switeh ( exp) som
- selstml(e,c)
| cade can;wnt.aqy : s
— selstml(e,c)
| default : som
— sefstm](e,c) T
| { stms }
—selomsi(ec)
| i2 ( exp ) smy else som,
—selsml(e',c) where & =selaml(e,c) . . . . .

e
PN
<

/= A jump iato a loop causes execution’ of ihe loop body followed by
execution of the entire loop (provided no other jumps take piacs).
This intuitive idea is used to give meaning for the looping constructs. §4.4.
=/ L

- e e

| do stm while (ep) ; ..
—let =25 xwlvhile (ep) smiecs); . ... .
¢ = elc/bzl;
e” »+ ¢'{¢'/conl;
in selstm3(e”,¢)
| while ( exp ) sm
—let ' =)s sclwhile (exp ) stml(e.c,s): -
e’ = e{c/bzxl; : :
e" = ¢'{¢'/conl; .
in se{somi(e”,c) e
| fox ( ey ; ex97 ; expy ) sm
—lr =)\ sclfor (1; ey ; apy ) smlle,c,)s-
e’ = e{c/prxl: R -
¢” = As seiexp; ;1(e,c,s);
e” = a'{¢"/econl;
in se{somi(e”,c")



 .selstmsl(e;c): E e e
TSR mt};.,‘,../ . :
-8
| strmes stm
—let ¢ =2s sclsmml(e,c,s);

& = gelsmi(ec):. |

e Tl oL S

i selsmsl(e'e)

iy

PR

[
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Appendix C. Selecting casa’s in swiéch Bodies
In switch ( exp ) s, §3.10, the value of exp determines the case that control flows

to. Valuation sk, §3.10.2,§5, wiil be used to construct an expression continuation k that will
map the vaiue of exp to the continuation for the selected case. '

")

sklstm(e.k.c): K

/# The primary purpose of sk is to enter the continuations for
:730 and default prefixes into &, §5.1.
- | case consuant.exp : stm
~ -t Kk =skismi(e.k,c);
¢’ = As. sclsoml(e,c,5);
v = [constant_expi(e);
k" = k)l
Cm K
| default : sm
—ler k' =sk{smi(e.k,0):
¢’ = As. sc{smi(e,c.s);
k” = Ay, k'(v) = DUMMY = ¢', k'(V):
in k" |
/= Statements without prefixes cannot change k. */

Iretur;;
-k
| zetuzn exp ;
- -k

-k

| e ;
-k

| break ;
-k

| continue ;
-k

| goto identifier ;
-k
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/% Control may not flow from 2 arLouter switch
into the body of an inner swztch. . -
Since sk is apphed to the body of an outer switch. any case
prefixes iu som are not visible to the outer sw:.tch.

k will therefore remain unchanged. .. . _ ..
=/ A
| switch (exp ) som- L
-k SN

/% The effect of embedded labels needs to be’ propagafed. Y

| i€ (exp ) sum
- sk{sml (e, k.c)
| identifier : stm
- sklstml(e.k.c);
| { somes )
- skismu](e.k.c)
| if ( exp ')Ifsi}nl else stmy .
— skisom 1 (e k', c) _wlue k' = sk{sxm;]‘(ek.c)

A‘, -

4

.~

e



-25.

/# Aj jump into a loop musa execution of the loop body followed by
execution of ‘the ‘edtire loop (provxded no othet jumps. take place).
This mtumve ideais used to give rneamng for the loopmg constructs.

N owl

| dostmwhile (exp) 5
—let ' =)s xlvhile (ep) smi(e,c.s);
¢ = e{c/prxl; ”
e” = ¢'(¢'/conl;
.in: sk{stm}fe”, k;c")
| while ( exp ) stm
—let ' =As sciwhile (exp) sm](e.c,s)
e’ = ec/vzXl;
" m¢'[¢/eonl;
in skiseni(e” k,c)
for (ep ; expy ; expy) stm
-l '=As s{for (17 expy e:cp3 ) stm](e c,s)
o= e[c/h:k]
¢ m AL sc{e:pg i1(e.c ,s)
e” = ¢'{¢"/conl;
in sk{soml(e”,k,c")

sk{stm si(e,k,c): K
| /# empty »/
-k
| soms som
—let ¢ =g c{smi(e,c,s);
k' = sklstml(e,k,c);
in sklstm_s1(e, k',
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