UNPL 4T

@ Bell Laboratories Cover Sheet for Technical Memorandum
The information contained herein is for the use of employees of Bell Laboratories and is not for publication. (See GEI 13.9-3)
o~
(g Title- Semantics of the C pregramming language, Date- March 2, 1979
. part 2: declarations
T™M- 79-1271-06
Other Keywords-
e
Q Author Location Extension - Charging Case- 39199
= Ravi Sethi MH 2C-519 4006 Filing Case- 39199-11
ABSTRACT
Declarations allow meaning to be associated with identifiers. The syntax
and informal semantics of declarations are introduced through examples. Types
are treated as abstract entities. One purpose of a data declaration is to associate
a type with an identifier. Depending on this type, storage is then reserved for
the identifier. Since a structure may contain a pointer to itself, circularly
defined types must be dealt with. An understanding of type determination,
storage management, and the dynamics of statement execution is required to
give the meaning of function declarations.
o

Pages Text 22 Other 3 Total 25
No. Figures 0 No. Tables 0 No. Refs. 14

€102 71 44 TN CEF NRURROr CIME RAR MiAsn 0 SPtALt | 10T

BELL TELEPHONE LABCBATORIES, INC.

COMPLETE MEMORANDOM TO
CORRESECNDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FCR
EACE ADDITIONAL FILING
CASE REPERENCED

DATE PILE COPY
(FORY E-1328)

10 BEFERENCE CCEIES

<ABO,ALFRED ¢
<BALENSON,CHRISTINE M
<BARON, BOBERT V
<BECFER,BICBABD A
BROWN,W STANLEY
<CHEN,STEPEEN
<CEEERY,LORIND: L
<PELDMEN,STUART I
<FRASER,A G
<GOLDSTEIN,A JAY
<GEABHAM,E 1
+HANNAY,N B
<JOHNSON,STEPHEN C
<KEESE,VWN M
<KERNIGEAN, BRIAN ¥
<LODZRER,GOTTPRIED W §
<MABRANZANO,J F
<MABKY ,GERALDINE A
+MC DONALD,H S
MC GILL,k
MCILRCY,M DOUGLAS
<MENNINGER,R B
<MORGAN, SAMUEL ?
+PRIM,R C
<EALEIGE,T ¥
<RIDDLE,GUY G
<SCHLEGEL,C T
<SETHI,RAVI
<STORER,JAMES A
<SZYMANSKI, THCMAS G
TERBY,NILTCN E
<WEINBERGEE,PETER J
<YANNAKAKIS ,MIHALIS
33 NAMES

COVER SHEET CNLY TC

CORRESFONDENCZ FILES

4 COPIEBS PLUS CNE
COPY FOE EACHE FILING
CASE

AAGESEN, JOEN
ACKERMAN, 3 FRANK
ACKERMAK,J T
BHRENS, RAINER B
ALCALAY,D

+ NAMED EY AUTHOR
WERE SELECTED USING THE

MERCURY SPECIPICATION........--....-..-......-.....--...-..-.........n...--.»....-....-..........

CCMPLETE MEMO T0:
127-svp

COVER SHEET TO:

12-DIR 13-D1IR

COPLGP =

GET & CCMPLETE CCPY:

!. BE SURE YOUR CORREICT ADD
2. FOLD THIS SHEET IN HALF
3. CIRCLE THE ADDBESS &7 BIGHT.

4s INDICATE WHETHER MICROPICHE CR

> CITED AS REFERZNCE

COVER SHEET CKLY 1IC

AMRON,IRVING
ANDERSON, PEEDERICK L
ANDEBSON, KATHEYN J
ANDERSON,MILTCN M
APPELBAOM, MATTHEW A
ARAZY,URI
ABMSTRONG,D B
ABNOLD, GEORGE W
ARNOLD, PEYLLIS 3
ABNCLD, THCMAS P
ASTHANA, ABHAYA
ATAL,BISHND S
BAILY,DAVID B
BALLANCE, ROBERT 1
BARCLAY,DAVID K
BAROF SKY, ALL EN
BASBIL,RICHARD g
BAUEZR, ANDREW E
BAUER,BARBABA T
BAUER,HELEN A
<BAUGH,C R
BEDNAR, JOSEPH A, JB
BENCO,DAVID S
BENISCH,JEAN
BENNETT, RAYMOND W
BERGH,A A
BERGLAND,G D
BERNSTEIN, CANIELLE B
BERNSTEIN, L
BEYER,J ZAN-DAVID
BIANCHI,M H
BICKFOBD, NEIL B
BILLINGTON, MABJCEIE J
BILOWOS,R M
<BIREN,IRMA B
BISHOP, VERONICA L
BLA2IZR,S D
BLINN,J C .
BLOSSBE,PATRICK 3
BLUOE,JAMES L
BLUMER, THOMAS P
BLOM,MAKION
BOCKUS, KOBBRT J
BCDEN,F J
EOEHM,KIM R
BOGART, THOMAS G
BOXIVIE, BICHARD &
BCNANNI,L E
SORDELON,EUGENE F
BORISON, ELLEN A
BCUHNE, STEPHEN R
BCWEEMAN, REBECCA ELAINE
BOWYBR,L BRAY
<BOYCE,F i
SOY2H, PHYLLIS J
BRADIEY,M HELEN
BRADLEY,R H
SRAM, AL AN
<BBEANDT, RICEARD B
SRAUNE, DAVID P
BRIGGS,GLCRIA A
BROSS,JEFFREY D

LUTHCR"S SUBJECT OR

127

HITH
USE NO ENVELCEE.

EAFER IS DESIRED.

DISTRIBUTION

(BREFER GEI 13,9-3)
COVER SEEET ONLY TO

BROVMAN, INNA

BECHN,ELLINGTON L
BROWN, LAURENCE MC FEE

BHCWN,® R
BOLLEY, 2 M
BURG, P M
DURKE,MICHABL B
BURNETTE,¥ A
<BURNETT, DAVID S
BUROFP, STEVEN J
PUBBOWS, THOMAS A

BUTLETZ ,DARRELL L

BYENE,EDRARD 8
CAMPPELL ,JERRY H
<CANADAY,RUDD H
CANNCN, LAYNE %
CARTER, DONALD H

CASPERS, BARBARA E

CAVINESS,JOHEN D
CERMAK,I a
CHAI,D T
CEAMBEES,D C
<CBAMBERS,J M
CHAYUT,IRA G
CHENG,Y

CHEN, B

CHESSON ,GREGORY L

CHEUNG, EOGER C
CERISTENSEN,S ¥
CHBIST, C W,JB
CHUNG,MICHAEL
CLARK,DAVIC L
CLAYTON,D P
CLINE,LBOREL M I
COBEN,BOEERT M
COCHRAN, ANITA 2
<COLE,LOoUIS M
COLE,MARILYN C
CCLLICCTI,R B
CCNDON,J B
CCKKLIN, DANIEL L
CCNNERS, RONALD R
CCCPER, AATHUR B
COCPEE,MICLAEL 4
CCSTELLC, PETEE B

COTTIRELL,JENNIE L

CEAGUN, LCNALD W

CEISTOFCE,EUSENE
<CRUME,L L

CRUPI,JCSEPH

DAVIS,R DREW

DE PAZiOo,M J

DE GRAAF,D 2

DE TBEVILLE,JOBN D

DEAN, JEPFREY S
OENNY,MICHSEL §
DENSMORE, SUSAN
DIB,GILBERT

DICKMAN,BERNARD N

<DIMMICK,JAMES O
DINEEN, THOMAS J
DITZEL, DAVID B

< BEQUESTED BY READER

COMPUTING/PRCG EAMMING LANGUAGES/GENERAL PURPCSE

COVER SHEET ONIY T¢C

DOLOTTA,T 1
DONNELLY ,MARGARET M
DOWDEN, DOUGLAS €
DERAKE,LILLIAN
D’ ANDREA,LOUISE
DUCHA PME, ROBERT LAWRENCE
DOPPY,? P
DUGGER, DONALD D
DUMA IS, VA LERTE
DUNCANSON,ROBERT L
DWYER,T J
DYER, MARY B
EIGEN,D J
EISEN,STEVEN R
<EITELBACH,DAVID L
ELDBEDGE,BARBARA D
ELLIOTT, RUBY o
ELLIS,DAVID J
ELY,T C
EPLEY,ROBERT V
BSCOL AR, CARLOS
ESSERMAN, ALAN 2
FABISCH,M P
FABRICTUS, RAINE N
FAGAN, BLUWARD C
FAIRCHILD,DAVID L
FEDERICO, PRANK W
PEDER ,J
PELLIN,JBPPREY K
PERIDUN,K K
PINUCANE,J J
FISCHER,EERBERT B
PISCHER, MICHAEL T
FPISHER,EDWARD R
PISHMAN,DANIEL B
PLANDRENA, K
PLEISLEBER, RAYMOND C
PONG,K T
FORTNEY,V J
PCUNTOUKIDIS, &
FOWLER,GLENN D
PORLER,H EUGENE
. POWLKES,EDKARD B

POX, PHYLLIS A

- FOY,J C
FEANK, AMALIE J
FRANK, RJDOLPH J
EREEMAN,R G
FREEMAN, MARTIN
FROST B BONNELL
FRUCBTMAN,BAEY
GABBE,JOBR D
GADENZ ,RENATO N
GALLANT,R J
GANA ,JORGE L
GAEST, BLAINE,JR

<GATES,G K
GAY,PRANCIS A
GEARY,M J
GEERS,T J,JR
GECRGEN,MICHAEL B
GEPNER,JAMES B

{NAMES WITHOUT PREFIX
ORGANIZATICNAL SPECIFICATION AS GIVEN BELOW)

HC COERESPONDENCE FILES
HC 5C101

PLEASE SEND A COMPLETE

RESS IS SIVEN ON THE OTHER SIDE.
THIS SIDE CUT AND STAPLE.

(} MICROFICHE copy

T™M-72-1271-6

COVER SHEET ONLY TO

GERSEMAN,ANATCLE V
GEYLING,F T
GIBB, KENNPTH R
GIBSON,J C
<GILLETTE, DEAN
GIMPFL,J F
<GITHENS,J A
GITHENS,JAY L
<GLASSPR,ALAN 1
GLOCK,F 6
<GNANADESYKAN,R
GOGUEN, N 8
GOLABEK,80TH T

"

GOLDBEBG,KAROLD JEPPREY

GCEDON,MOSRE B
<GORMAN,J E
GORTON,D E
GRAYSON,C F,JR
GREENBAUM, HOWARD J
GREENLAW,R L
GROSS, ARTHUP G
GRUENWA 1D, JCHN
GRZ ELAKORSKI ,MAUREEN E
GUIDI,PIEBR V
GUSTAVSON,J H
GUTIMAN, NEWMAN
BAPER,E B
BAIGBT,R C
HAISCH,H P,JR
HALEY, CHAKLZS B
HALE,A L
HALLIN,THCMAS G
EALL, AFDREW D,JB
EALL, NILTCN 5,35
HALL, WILLIAM G
BALPIN,T
HAMILTON,LINDA L
<EAMILTON,PATRICIA A
CHANNAH,JUDY R
<HABKNESS,CARCL J
HARTMAN, DON W
HAROTA,K

HADSE, A DICKSON
<HAWKINS, DONALD T
<EAYDEN, DONALD F,JR
HERGENBAN,C B
<HESSEZLGRAVE,MAFY &
HOCHBERG, GLEMN &
HOLTMAN,J2MES P
HCPEWEDEL,J H
HCUGHTCN, THCMAS F
HOWARD, PHYLLIS a
HCYT, WILLIAM F
HC,DON T

RO,JZaNy

HO, TIEN-LIN
HSU,TAY

HOEZR, RICHAPD ¥
HUNNICUTT,C P
HUNT, JAMES W
IEFCLITI,O D
IRVINE,M M

592 TOTAL

™=-79-1271-6
TOTAL PAGES 25

() FAPER COPY

TO TEE ADDRESS SHOWN ON THE OTHER SIDE.

~

—

M A

Bell Laboratories

Subject: Semantics of the C programming language, date: March 2, 1979
part 2: declarations
Case- 39199 -- File- 39199-11 : : from: Ravi Sethi

™: 79-1271-06

MEMORANDUM FOR FILE

1. Introduction

“It has been remarked to me (to my great regret I cannot remember by whom ...) that
once a person has understood the way in which variables are used in programming, he has
understood the quintessence of programming [dij72, pp.11]."" This remark has particular
relevance to understanding declarations in a programming language.

By “‘declarations’’ we mean the part of a programming language that allows meaning to be
associated with identifiers. Identifiers are used not only to refer to basic values like characters,
and data structures like arrays, but also to executable **functions’’, which take parameters and
return values. A discussion of the meaning of declarations must therefore address issues sug-
gested by the following phrases: basic and derived types; data declarations; type determination;
block structure; storage allocation; function declarations.

Rather than assume familiarity with C [ker78], we will introduce declarations in the
language through a sequence of examples, covering: program structure and where declarations
can occur, §1.1; data declarations and the association of types with identifiers, §1.2; identifiers
used as synonyms for types, §1.3. ’

In this introductorv section, the terms “‘type’ and “‘location” will be used informally.
See §2 and §5.1, respectively, for precise definitions. Think of there being a set Ty, whose ele-
ments are called “‘types’. Included in Ty are basic types like “‘integer”’, and derived types like
‘‘array of 8 integers™, which is distinct from the type “‘array of 7 integers”. One of the pur-
poses of a data declaration will be to associate a type with an identifier. The term “‘location’’
corresponds to a storage cell in a machine, except that a location can hold any basic value. A
location will be associated with each identifier representing a basic value. This basic value will
be determined from the identifier in two stages: first the location for the identifier will be deter-
mined, and then the value held in the location will be looked up.

1.1. Program structure. Here we will suggest the syntax of declarations by discussing the
following program fragment. (See appendix A for details of the syntax.)

intn=3;

char select(x,c¢,d)

int x; char ¢; char 4;

{
char e;
if (x>n) e=c; elsee=4d;
return(e);

-2.

We will take a program in C to consist of a sequence of data declarations like
int n=3;

followed by a sequence of one or more function declarations. C-functions like select are
similar to functions and subroutines in Fortran, or to procedures in Pascal, except that C-
function declarations cannot be nested, As in Algol 60, the char in

char select (x,c,d)

specifies that select is a C-function that returns a character. Declarations of the formal
parameters x, c, and d precede the body of the C-function.. In the formal semantics it will be
convenient to have exactly one identifier in each data declaration, but lists of identifiers will be
allowed in examples of declarations,

The declaration of identifier n is external to all function declarations. External identifiers
can be referenced inside any function without being explicitly redeclared. Inside a C-function
we assume that any data declarations like that of e, precede all statements within the function.!

An entire program will be assumed to appear in one place, and issues related to separate
compilation of functions, or distributing a program across source files will not be dealt with.

1.2. Data declarations. The syntax in C for indicating the type of an identifier is a gen-
eralization of the mechanism used to declare arrays in many languages. For example, the fol-
lowing declaration specifies that ab is an array of 7 integer elements.

int ab[7];

The construction ab[7] is an instance of a *‘declarator’’.

Declarators. The syntax of an identifier declaration mimics the syntax of expressions in
which the identifier might appear. For example, suppose that identifier x has type integer, and
that px is a pointer, created in some as yet unspecified way. The unary operator & is such that
the statement .

pPx = &x;

assigns the location of x to the idenfifier Px: px is now said to “‘point™ to x. The unary opera-
tor * applied 1o a location, gives the value in the location. Thus if y also has type integer, then

Y = %px;
assigns to y the value in the location that Px points to. So the sequence
PX = &X; y = %px;
assigns the same value to y as does
y=x;
Declaration of the identifiers X, ¥, and px can be done as follows:
int x,y; int *px;

The declaration of x and y is reasonably obvious, but that of px invites comment. The

'c allows a goto to jump anywhere within the current function. even if the jump is into the middie of a
compound stalement containing declarations. The compilers for C [joh78,rit78a] resolve the issue of jumps

away.

)

)

)

declaration
int *px;

says that the construction #px is an integer: that is, when px occurs in the context »px, it is
equivalent to an identifier of type integer. This reasoning is useful in all cases involving com-
plex declarations. For example,

float xyz[3] [5];

says that, in an expression, xyz [x;ll [n] represents a value of type float. Then, xyz[m] must
represent an array of 5 elements of type float. Similarly, Xyz must represent an array of 3
subarrays; each subarray being an array of 5 elements of type float.

The use of the symbols () should be clarified by
int £();
which declares a function £ returning an integer. Note that the number, or type, of the
operands of f is not specified by the declaration.?
The semantic rules for declarators appear in §3.

Structure declarations. The only derived types that are not mentioned in the above discus-
sion of declarators are structures and unions. A structure is an object consisting of a sequence
of named members. Each member may have any type. Unions are similar to structures, with
the exception that at any given time a union may hold just one of its members. For the
moment we will talk only of structures.

The following declaration associates a type with the identifier complex.
struct complex {double re; double im;};

Identifiers like complex will be referred to as structure tags. The structure tag complex is
subsequently used to declare other identifiers. The declaration

struct complex z, #zp; .

declares z to be a structure of the given sort and zp to be a pointer to a structure of the given
sort. .

As another example, the structure tag tnode is declared by

struct tnode |
char tword[20];
int count;
}struct tnode *left, *right;
’

to have type: structure consisting of an array of 20 characters, an integer, and two pointers to
similar structures. The identifiers tword, count, left, and right are the names of the four
fields or members of such structures.

The declaration of a structure tag and the subsequent use of that structure tag as a type
specifier can be combined, as in

struct complex (double re; double im;} X,¥,2;

The structure tag must always be included and becomes part of the type corresponding to the
structure. 3 For example, the type of x, y, and z, in

2 Changes to C that are under consideration would permit the specification of the types of the arguments as
well as the type of the result of a function.

The C reference manual [ker78) allows a structure tag to be dropped entirely, raising the question whether
root and pole below have the same type.

- e e e temeas . e Yeme L4

struct complex {double re; double im;} X,¥,2z;

will be: structure with tag complex containing fields re and im, both of type double,
The order in which the fields appear is significant.
The semantic rules for determining the type of a structure appear in §4.

1.3. Typedef. typedef declarations do not reserve storage, but instead declare synonyms
for types which could be specified another way. The syntax of typedef declarations is just
like the syntax of declarations that do reserve storage: the difference is that rather than reserv-
ing storage of type, say, ¢ for the identifier within a declarator, the identifier becomes a
synonym for type 7. For example, after

typedef int MILES, *KLICKSP;
typedef struct | double re, im;) complex;

the constructions

MILES distance;
KLICKSP metricp;
complex z, »zp;

are all legal declarations; the type of distance is integer, that of metricp is pointer to
integer, and that of z is the specified structure. zp is a pointer to the specified structure.

typedef does not introduce brand new types: in the example above distance is con-
sidered to have exactly the same type as any other int identifier.

The semantic rules for typedef declarations appear in §4.

2. Types

2.1. Machine based types. C supports several basic types of objects, including characters,
various sizes of integers, floating point numbers, and enumerations of constants, §2.2. The
exact list of basic types is machine and compiler dependent, but the following type-specifiers are
accepted by all implementations. '

machine_based_specifier:
char
short
int
long
unsigned
short int
long int
unsigned int
float
double
long float /* double and long £float are synonyms s/

struct {double re; double im;} root;
struct {double re; double im;) pole, bode;

The view taken by the compilers for C [joh78.ri178a) is that two identifiers representing structures have the
same type if and only if they are declared using the same structure tag, or they appear in the same declara-
lion. Thus. pole and bode above have (he same 1ype, but root and pole do not. A human engineering
justification is given for this view: even if two identifiers start out having similar declarations. modifications to
the program may change one. but not the other declaration. If we want the identifiers to have the same type,
it is beiter to either declare them logether. or use the same structure lag while declaring them.

/"ﬁ

]

“)

)

-5.

If the type-specifier is missing from a declaration, it is taken to be int. Some implementations
will accept one or more of the following type-specifiers:

unsigned short
unsigned long
unsigned char

2.2. Enumerations. Enumerations of constants are analogous to the scalar types of Pascal.
Consider for example

enum grade (kabinett,spatlese,auslese} w;

The identifiers kabinett, spatlese, and auslese are declared as constants. These con-
stants are the only values that the identifier w may have. grade is called the enumeration-tag of
the type of w. The enumeration-tag may subsequently be used to declare other identifiers:

enum grade v;

The syntax of an enumeration specifier is as follows:

enumeration_specifier:
enum identifier | identifier-list }
enum /dentifier

Enumeration tags and identifiers must all be distinct. Identifiers of a given enumeration type
have a type distinct from objects of all other types.

2.3. Basic type specifiers.

basic_specifier:
machine_based_specifier
enumeration_specifier

2.4. Derived types. Derived types are constructed from the basic types in the following
ways: .

arrays of members of a given type;

Junctions which return objects of a given type;

pointers to objects of a given type;

structures conlaining a sequence of members of various types;

unions capable of containing any one of several members of various types.

In general these methods of constructing objects can be applied recursively. Not all the possi-
bilities suggested above are actually permitted. The restrictions are as follows:

there are no arrays of functions, although there may be arrays of pointers to functions:

functions may not return arrays, unions, or functions, although they may return pointers
to such things;

a structure or union may not contain a function, but it may contain a pointer to a func-
tion.

The above restrictions will not be checked in the semantic rules that will be given. Such check-
ing can easily be added to the rules, or can be specified separately.

2.5. Domain of types. The domain Ty of types will be the sum of the domain Tb of basic
types and summand domains corresponding to each way of constructing derived types.

-6-

Before giving the exact structure of Ty, let us consider the functions that will *“‘construct
new types from old™. arr maps an integer n and a type to a new type ' corresponding to
array of n members of type r; fn_ret maps a type ¢ to ¢’ corresponding to function returning
type f; point maps a type t to (' corresponding to pointer to type !. str, applied to a structure
lag and a list of pairs of member identifiers and associated types, yields a type ¢ corresponding
to a structure with the appropriate tag and members. wuni yields a derived union type and is
similar to str.

Intuitively, two types ¢ and ¢’ are equivalent if and only if they are constructed in the
same way from the same basic types. Thus the domain Ty will correspond (loosely) to the set
of expressions over the above operators and the elements of Tb.

Ty= Tb
+ {array} x N x Ty
+ {fn_returning} x Ty
+ {pointer} x Ty
+ {struct} x Ide x [Ide x Ty]*
+ {union} x Ide x [Ide x Ty]*

For clarity, single point domains like {array} have been included in the above specification of
Ty.

3. Declarators
Declarators play a central role in the process of associating a type with an identifier. Sim-
ple examples of declarators and their use were given in §1.2. The meaning of declarators can
be explained by considering the declaration
float xyz[3] [5];
The syntax in §3.1 will parse the declarator xyz[3] [5] as follows:
((xyz) [3]) [5]

In order for xyz to be an array of 3 subarrays of 5 elements each, we must read the fully
parsed declarator inside out.

As further examples, consider the declarations
char *(fecp()); int (*pfi) ();

From the discussion in §1.2, a construction like % { fcp ()) can appear in any context where a
character is expected, and a construction like (*pfi) () can appear in any context where an
integer is expected. Reading the declarators inside-out, fcp is a function returning a pointer to
— from the type specifier char — a character. Similarly, pfi is a pointer to a function return-
ing an integer.

The meaning of declarators is given in §3.2.

3.1. Syniax. Data declarations have the form
declaration:
type_specifier init_declarator ;

init_declarator:
declarator
declarator = initializer

The declarator contains the identifier being declared. Initializers will be discussed in §5.4.

o d

2y

)

Declarators have the syntax:

declarator:
identifier
(declarator)
declarator [constant]
declarator ()
* declarator

The * operator on a declarator has lower precedence than all other operators, so *fep () will
be parsed as % (fcp ()).

3.2. Meaning of declarators. After a declarator has been examined, in addition to uncov-
ering the embedded identifier, the type of this identifier will also be known. The meaning of a
deciarator will therefore be a function from a type to an identifier and its type.*

See §2.5 for the operators arr, fr_ret, and point.
declarator](1): (Ide,Ty)
| identifier
— (identifier,t)
| (declarator)
— ldeclarator} ()
| declarator [constant]
—lt n = [constant};
"= arr(n,t);
in {declarator}(r)
| declarator ()
—let = fires)
" in Qdeclararor}(r’)
| % declarator
—let 1 = point(0)
in {declarator] ()

3.3. Abstract declarators. In two contexts (to specify type conversions explicitly within
expressions, and as an argument of the built-in operator sizeof) it is desired to supply the
name of a data type. This is accomplished using a “‘type name,” which in essence is a declara-
tor without an embedded identifier.

ype_name:
- type_specifier abstract_declarator

4 The meaning of a declaralor should really be a function from a type and an environment to an identifier
and its type. The environment is needed 10 evaluate constant expressions, which can be used o specify the
number of elements in an array. Within a constant expression, the sizeof operator can be applied 10 “‘an
object™, and the environment is needed to determine the size of this “‘object™. By insisting that constants
rather than constant expressions be used in array declarations, we eliminate the need for knowing the type of
each identifier during the process of determining the types of struciure tags in §4.

abstract_declarator:
[* empty */
(abstract_declarator)
abstract_declarator [constant]
abstract_declarator ()
% abstract_declarator

To avoid ambiguity, in the construction
(abstract_declarator)

the abstract declarator is required to be non-empty. Under this restriction, it is possible to
identify uniquely the place in the abstract_declarator where the identifier would appear if the
construction were a declarator in a declaration. The named type is then the same as the type of
the missing identifier. For example,

int

int *»

int % [3]°
int (%) [3]
int % ()
int (%) ()

name respectively the types integer, pointer to integer, array of > pointers to integers, pointer
to an array of 3 integers, function returning pointer to integer, and pointer to function return-
ing an integer.

The semantic rules for abstract declarators are very similar to those for declarators.
labstract_deciararor](1): Ty
| /% empty */
-t
| (abstract_declarator) _
— labstract_declarator] (1)
| abstract_declarator | constant)
—let n = {constant};
"= arr(n,1);
in [abstract_declarator] (1)
| abstract_declararor ()
— let t'= fn_ret(r)
in labstract_declarator}(t')
| % abstract_declaraior
— let "= point(r)

in {abstract_declarator] (¢')

7

)

struct tnode {
char tword[20];
int count;
struct tnode *left, *right;

):

Note that tnode appears as a type specifier in the declaration of the members left and
right. Thus the type represented by tnode depends on itself.

As another example of circularly defined types, consider the structure tags x and y
declared by:

struct x {
int count;
struct y *py;
b

structy|
int count;
struct x *px;

b

typedef names, §1.2, can be used in declarations of structure members, and conversely,
structure tags can be used as type specifiers in typedef declarations. Thus the types of struc-
ture tags and typedef names must be determined together. From the syntax, structure tags
are part of type specifiers, which will be discussed in §4.1-2. Types are associated with typedef
names by declarations, which will be discussed in §4.3.

An example in §4.4 clarifies the handling of circularly defined types. The example also
suggests the need for the valuation dz in §4.5, which sets up the initial environment on func-
tion or *‘block” entry.

The scope of a tag x in a C-function is the current function: x may be used for other pur-
poses in a declaration external to all functions. Thus, on entering a function body, we must
distinguish between the type of x within the function from the type of x outside the function.
The purpose of valuation dz in §4.5 is to *‘reset’ the types of all structure tags and typedef
names within the current function by entering L for all such identifiers.

Finally, §4.6 suggests how the valuations of this section interact to determine the types of
structure tags and typedef names. Complete details will be given in §6 on function declara-
tions.

4.1. Syntax of type specifiers. The types of unions are determined just like the types of
structures, so semantic rules for unions will not be given.

type_specifier:
basic_specifier
struct identifier | member_decl_p)
struct identifier
identifier /* typedef name */

member_dec!:
type_specifier declarator ;

member_decl_p:
member_dec!
member_decLp member_decl .

-10 -

4.2. Meaning of type specifiers. A type specifier must clearly yield a type. In order to
determine this type, we may need to refer to the environment for the types associated with pre-
viously declared structure and union tags (or with identifiers in tyredef declarations). More-
over, since types must be associated with structure tags within a type specifier, a type specifier
may change the environment. Thus the meaning of a type specifier will be a function from an
environment to a type and a new environment.

tel ype_specifierl(e): (Ty,En)

Member declarations. Before we can give the type of a structure, we need to determine
the member identifiers and their associated types. The members of a structure are generated by
the nonterminal member_decl_p. A sequence, pairlist, containing pairs of member identifiers and
their associated types will be yielded by member_declp. At the same time, type specifiers
embedded within member declarations might change the environment, so the meaning of
member_decL_p will be a function from an environment to a pair list and a possibly new environ-
ment. The pair list will eventually become one of the arguments of the operator str, which con-
structs a type from a structure tag and such a pair list.

me [member_decl.pl(e): ((Ide,Ty)*,En)
| member_decl
— me{ member_deci] (e)
| member_decl.p member_decl
— let (pairlist,e’) = melmember_declpl(e);
(pair,e”) = mel member_deci](e);

in (pairlist - pair.e")

mel[member_decil(e): ((Ide,Ty),En)
| type_specifier declarator ;
—let (1,e") = telnpe_specifier](e):
pair = [declarator] (1),
in (pair,e’)

The meaning of a type specifier can now be given. A basic specifier, §2.3, can either
specify a machine based type or an enumeration. The meaning of a basic specifier will be
assumed to be an appropriate element of the domain Tb of basic types, and will not be dis-
cussed any further. Finally, if a type specifier is just an identifier, then a type has already been

associated with this identifier using a typedef declaration, §4.3, and can be looked up in the
environment.

e~
S

~

~)

“)

-11 -

tel type_specifier] (e): (Ty,Enj
| basic_specifier
— (M basic_specifierl,e)
| struct identifier { member_decl p)
— let (pairlist,e’) = melmember_decl p)(e);
t = str(icientiﬁer Lpairlist)
e" = e'(t/ identifier);
in (t,e")
| struct identifier
— (e(identifier),e)
| identifier /* typedef name */
— (e(identifier),e)

4.3. Data and typedef declarations. In data declarations like
struct complex z, %zp;

note that the types of identifiers like z and zp cannot influence the type of a structure tag or
typedef name.’ We can therefore ignore declarators containing identifiers like z and zp while
determining the types of structure tags and typedef names. However, the type specifier in a
data declaration may contain a structure tag so the effect on the environment of type specifiers
must be propagated.

A typedef declaration will change the environment by making the identifier embedded
in the declarator a synonym for the type yielded by the declarator.

deldeclaration}(e): En
| ope.specifier init_declarator ;
— e where (1,e") = telype_specifierl(e)
| typedef wpe_specifier declarator ;
—let (1,e) = telype_specifierl(e);
(id,t) = Udeclarator}(1);
in e'[r/id]
delldeclaration_sl(e): En
| /% empty */
-
| declaration_s declaration
— defldeclaration}(deldeclaration_s}(e))

4 Except through sizesf within constant expressions which might specify array bounds. Since the syntax of
declarators in §3.1 does not allow constant expressions in “‘array’ declarators, for the purposes of this paper
there is no interaction between identifiers like z and zp and structure or typedef declarations.

-12 -

4.4. An example. The structure tag x below, is used to declare one of the structure
members so the type of x is circularly defined.

struct x {
int count;
struct x %p;

)

Syntactically, the above program fragment is a type specifier, so valuation te will be
applied to it. From the rules for te in §4.2, a type specifier maps an environment e to a type ¢
and a new environment e”. Let us suppose that the starting environment e is such that
e(x) = &x.

The members of the structure do not affect the environment since they do not contain the
declaration of any structure tags. The pair list yielded by the members will therefore be:

(count, integer) (p, point(x))
This pair list will be used to construct the type
t = str(x, (count,integer) (p.point(rx)))

Then, the environment e” = e[¢/x] will be determined and r and e” will be the result.

If o is an approximation to the type of x, then ¢ above is a better approximation to the
type of x. In fact, if t;, = 1, and

tiy1 = str(x, (count,integer) (p,point(1,)))

then the least upper bound of the chain fy, - - - 4, + + + is the desired type of x.

There are iwo observations that are relevant at this point: the first hinges on the remark,
“if o is an approximation to the type of x’*; the second concerns the fact that the types of two
structure tags may be interdependent, so the types of all structure tags and typedef names
will have to be determined simultaneously.

There is no guarantee that o will indeed be an approximation to the type of x. After all
x may be used for some other purpose outside the current C-function and we have not yet pro-
vided a mechanism for ensuring that on entering a function, the types of any structure tags
declared in the current function are ‘‘reset’. The valuation dz in §4.5 will “‘reset” environ-
ments.

4.5. [Initial environments in a “‘block’’. For each identifier with which a type is associated
in the current set of declarations we will enter L as the type of the identifier. Types are associ-
ated with identifiers by typedef declarations, so we need a valuation dz for declarations.
Structure tags occur within type specifiers, so we need a valuation for type specifiers. Further-
more, a type specifier may be part of a member declaration, so in order to pick up nested struc-
ture tags we need a valuation for member declarations.

Since the purpose of each of these valuations is just to enter L for certain identifiers, we
will use the same letters dz for all of them.

<)

-13-

dzldeclaration} (e): En
| ype_specifier init_declarator ;
— dz{ yype_specifier] (e)
| typedef ype_specifier declarator ;
— let e’ = dzllype_specifierl(e);
(id,1) = Ideclarator](1); /* see note below */
in e'[1/id]
dzl declaration_s1(e): En
| declaration
— dzlldeclaration] (e)
| declaration_s declaration
— dzldeciaration} (dzldeclaration_s1(e))

Note. A declarator maps a type to an identifier and a type, so we have supplied L as a
“dummy”’ type to the declarator just in order to extract the identifier. The type ¢ returned by
the declarator will be igr.ored, since we enter L for id in the environment. O

dzl ype_specifierl(e): En
| basic_specifier
—e
| struct identifier member_decl p ;
—let &' = dzlmember_decl p}(e);
in e'[L/identifier) .
| struct identifier '
—e
| identifier /*typedef name */
—e
The remaining rules merely propagate the effect of embedded type specifiers.
dzlmember_decti(e): En
| type_specifier declarator ;
— dzl ype_specifier] (e)

dz[mengber_decl_p](e): En
| member_dect
~ dzimember_decil (e)
| member_declp member_dect
— dz{member_deci (dz{ member_decL_p}(e))

-14.

4.6. Conclusion. The ingredients for determining the types of structure tags and
typedef names have all been assembled, but the details will have to wait until function
declarations are discussed in §6. On entering a function with environment e the dz valuations
are used 1o reset the types for all identifiers that represent types in the function. The valua-
tions de, te and me are then used repeatedly to determine the final environment. This final
environment is the starting point for Storage management.

5. Storage Management

The value of an identifier y can be changed either by an explicit assignment 1o y, or by an
indirect assignment through a pointer to y. The presence of pointers makes it convenient to
have a two-stage mapping from identifiers to their values. It is the purpose of this section to
give semantics for the *‘storage” aspects of data declarations. '

For an identifier y representing an integer, we will first find the location of ¥, and then
look up the value in this location. For identifiers representing arrays, structures, and unions,
we need enough locations to hold all the members, For example, after the declaration

struct pair {int hd, t1;} z;

locations will be reserved for z.hd and z.t1. Let these locations be /, and /,. The identifier
. by itself, has a list of two locations associated with it.

Locations, §5.1, are analogous to storage cells. Every location is included in the class of
Ivalues, §5.1, but Ivalues include for example a function mapping hd to /) and t1 to /5, which
is clearly not a location. In general, the members of a structure or an arrav need not be of
basic type, so rather than there being locations, there will be Ivalues for the members.

As the next example suggests, Ivalues for the members of an array must be contiguous, at
least conceptually. The declaration

int ab[7];

will reserve 7 locations for members of the array ab, where each location will hold an integer.
After ab is declared. the assignment '

pab = &ab[0];

leaves pab pointing to the location for the first member of the array. The locations for the
array ab have to be contiguous since the expression

pab + 1

points to ab[1], the next member of the array. In general, the members of an array can be of
any type, so we will want the Ivalues for the members of the array to be contiguous.

5.1. Locations and Ivalues. Let L be a domain containing a countable number of locations
li.lh. - - - . There will also be a special location FREE, distinct from /, for any >0, which will
be used during storage “‘allocation’”. Informally, for each state s, s(FREE) will be the first free
location relative to s.

L = [FREE,/j, 1y, - - - N

The function succ is used to obtain the “next’ location: succ(l) = L4y, for all 120,

An identifier in a data declaration will be mapped by an environment e to an lvalue. For
an identifier of basic or pointer type, this Ivalue will be a location. Rather than mapping an
array identifier to a list of !values for the members of the array, the identifier will be mapped to
a function from integers to lvalues. (This function makes it easy to determine the lvalues of
the array members e.g. if the Ivalue for ab is /, then the lvalue for ab[5] will be 1(5).) The

Ivalue for a structure or union identifier will be a function from member identifiers to member -

lvalues. There is no distinction between the Ivalue for a structure and a union.

®

)

-15-

Lv=L + [N — Lv] + [Ide — Lv]

5.2. Allocation. Given a type ¢ and a state s, the auxiliary function new returns an lvalue,
and changes the state to s”. In the changed state, all locations in the returned lvalue are initial-

ized to the special garbage value GRB, and s”(FREE) is the first location following the locations
in the returned lvalue.

new(t,s) = .
te TbV t = point(t) —
let | = s(FREE); s’ = s[GRB/I]; I' = succ(D); in (1,s'[I/FREE]),
t=arr(n,t) —
let fo = \i.L; in newa(0,n,t', f,s),
t = str(id,pairlist) v t = uni(id, pairlist) —
let fo = \id'.L; in news(pairlist, f,s)

newa(i,n,t'.f,s) =
i2n—(,s),
i <n—let(l's') = new(t,s); in newa(i+1,n,t',f1/'/il,s)

news (pairlist, f,s) =
pairlist = () — (f,s),
pairlist = (id,t')-pairs — let (1,s") = new((',s); in news(pairs, f11/id,s")

5.3. Data declarations. The type of each identifier in a data declaration will be determined
just like the types of structure members, §4.2, and typedef names, §4.3, were determined.
Given a type, the function new will be used to associate an Ivalue with the identifier. Alloca-

tion and initialization of the Ivalue will actually be done as part of the meaning of
init_declarator, which is given at the end of §5.4.

dsldeclarationl(e,s): (En,S)
| type_specifier initdeclarator ;
—let (1,€) = telype_specifierl(e);
in Yinit_declarator}(t,e’,s);
ds[d’eclaration_sﬂ(e,s): (En,S)
| /% empty »/
- (e,s)
| declaration_s declaration

~ dslideclaration}(ds{deciaration_sl (e,s))

5.4. Initialization. An initialized declaration is the only way of specifying initial values for

identifiers declared externally to all functions. An “initializer” consists of an expression or a
list of expressions nested in braces.

-16 -

init_declarator:
declarator
declarator = initiglizer

initializer:
expression
{ initializer_pc)

initializer_pe:
initializer
initializer , initializer_pc

When an initializer applies to a scalar (a pointer or a basic type), it consists of a single
expression. When the declared identifier is an aggregate (a structure or an array), then the ini-
tializer consists of brace enclosed, comma-separated list of initializers for the members of the
aggregate, in increasing subscript or member order. If the member contains subaggregates, this
rule applies recursively to the members of the aggregate. If there are fewer initializers than
there are members in the aggregate, then the aggregate is padded with 0’s.

It is not permitted to initialize unions,
For example, in

float y[4] (3] ={
1,3,5],
(2,4,6),

} {3’ 517})

1, 3, and 5 initialize the first row of the array y[0], namely y[01([0], y[0J[1]. and
y[0][2]. Likewise the next two lines initialize y (1] and y[2]. The initializer ends early
and therefore y [3] is initialized with 0's,

Braces may be elided as follows. If the initializer begins with a left brace, then the
succeeding comma-separaied list of initializers initializes the members of the aggregate; it is
erroneous for there to be more initializers than members. If, however, the initializer does not
begin with a left brace. then only enough elements from the list are taken to account for the
members of the aggregate; any remaining members are left to initialize the next member of the
aggregate of which the current aggregalte is a part.

Precisely the effect of the example above is achieved by

float y[4][3] =
1,3,5,2,4,6,3,5,7
Vi

The initializer for y begins with a left brace, but that for y [0] does not, therefore 3 elements
from the list are used. Likewise the next three are taken successively for y{1] and y[2].
Also, viewing y as a two dimensional array,

float y[4][3] =|{
1), 42), 1030, {4}
)

initializes the first column 2nd leaves the rest of the array 0.

Since braces may be elided, the type of an identifier must be known before expressions in
an initializer can be associated with locations to be initialized. In associating expressions with
locations it is more convenient to follow the structure of the type of the identifier being initial-
ized than the syntactic structure of the initializer.

(3

)

-17-

Given an environment and a state, we will extract a list (or tree) of values from an initial-
izer. Informally, if the expressions in an initializer were evaluated, and the braces indicated the
nesting structure, then the resulting structure would be the list of values extracted. This list
will be an element of the domain Vt given by

Vt=V +Vt*
The list is constructed as follows.
Uinitializer} (e,s): (Vt,S)
| exp
- Bexpl(e,s)
| { initializer_pc

— Hinitializer_pcl(e,s)

Linitializer_pcl (e,s): (Vt,S)
| initializer
— Linitializer] (e,s)
| initiatizer , initializer_pc
— let (listl,s") = Uinitializer}(e,s);
(list2,s") = Uinitializer_pcl (e,s");
in (listl - list2,5s")
If an identifier of type r has lvalue /, then the auxiliary function enter will initialize the
lvalue / using values from a list initlist. Like new, §5.2, enter examines the structure of type ¢

and extracts elements from initlist as needed and enters them into locations. Entering a value
into a location changes the state, so enter yields a new state and the remainder of the initlist.

enter (1,t,s, initlist) = ,
teTb v ¢ = point(t') — enterb(l,t,s,initlist),
t = arr(n,t") — entera(0,n,l,t,s,initlist),

t = str{id,pairlist) — enters(pairlist,l,s, initlist)

enterb(1,t,s, initlist) =
initlist = () — (0,s(0/1),
initlist = v€V — (Q,slv/1).%

initlist = (v, lists, . . ., list,) A v€V — ((listy,..., list),s[v/I1)®

®In general, v need not be of type ¢, so an auxiliary function cast may be needed to determine v' from v,
where v’ is of type 1, and v is entered in location /.

e e e e memman e e mn c i e mttem me b mee 4 Ams——————— S e S e

-18 -

entera(i,n,l,t,s, initlist) =
i 2 n— (initlist,s),
initlist = (v, listy, . . ., listy) A vEV —
let (initlist',s") = enter (1(i),t,s, initlist);
in entera(i+1,n,l,s' initlist’),
initlist = (list,, listy, . . ., listy) —
let (rest,s") = enter (1(),1,s,list));

in entera(i+1,n,1,t,5',(listy, . . ., list,))

enters(pairlist, 1, s, initlist) =
pairlist = () —(initlist,s),
initlist = (v, listy, . . ., list,) A vEV —
let pairlist = (id,t) - more;
(initlist',s") = enter (1(id) ,t,s, initlist);
in enters(more,l,s',initlist’)
initlist = (listy, listy, . . ., list,) —
let pairlist = (id,t) - more;
(rest,s) = enter (1(id),t,s, list,);

in enters(more,l,s',(listy, . . ., list,)

>

An init.declarator consists of a declarator with a possible intializer. All locations in the
lvalue returned by new are intialized to the special garbage value GRB. If an intializer is
present, then this garbage value is overwrmen

Linit_declarator}(t,e,s): (En,S)
| declarator
— let (id,t') = [declarator}(1);
(1,s") = new(t',s);
= ell/id];
in (e',s)
| declarator initiatizer
—let (id,t") = [declarator}(s);
(1,5") = new(t',s);
= ell/idl,
(initlist,s") = [initializer](e,s);
Ginitlist',s") = enter(1,¢',s', initlist);

in (e',s")

Q)

-19.

6. Function Declarations
A function declaration, like the following from §1.1, conforms to the syntax given below.

char select(x,c,d)

int x; char ¢; char 4;

{
char e;
if (x>n) e=c; elsee=4;
return(e);

6.1. Syntax.

Jn_dec:
ype_specificr declarator parameters fn_body

parameters:
(identifier_sc) parameter—decls

parameter_decl_s:
[* empty */
type_specifier declarator ; parameter_decl_s

6.2. Parameters. Since parameters are called by ‘‘value” in C, on entry to a function, the
actual parameters, which will be values, will be entered into fresh lvalues allocated for the pur-
pose. Observe that parameter declarations cannot affect the environment. (In §4 embedded
structure tags within type_specifiers caused the environment to be changed. Recall from §1.2
and §2.5 that the structure tag becomes part of the type that the tag refers to. Any tag within
parameter declarations will be treated as if it was distinct from the same tag external to the
function. Since the types of the formal parameters must match the types of the actual parame-
ters, no new tags can be declared within the parameter declarations.)

From the parameter declarations we will extract a list of formal parameters and their asso-
ciated types.

Eparametersi(e): (Ide,Ty)*
| ¢ identifier_sc) parameter_decl_s
~ Iparameter_decl_s1(e)

fparameter_decL sl {(e): (1de,Ty)* -
| /% empty */
-0
| type_specifier declarator ; parameter_decl s
— let (1,e") = telype_specifier] (e);
(pid,pt) = Ldeclarator1(t);
pairs = [parameter_decl_s}(e),
in (oid,pt) - pairs

6.3. Function entry. Having determined the formal parameters and their types, the func-
tion new will be used to find fresh lvalues for the formal parameters.’

Y The semantic rules for fi_dec assume that the formal parameters are of scalar type i.e. either basic or
pointer. If this restriction on types is lifted, then the lvalue for a formal parameter need not be a location.

-20-

fel fi_decB(e): En
| type_specifier declarator parameters fn_body
—let (t,e") = telype_specifier}(e);
(fd,t') = LdeclaratorB(1);
(pidy,pt))- - -« - (pid,,pt,) = Uparametersi(e’);
fn)tvl.:..,vk.)\s.
let (l,s)) = new(pt,,s);

(lesse) = new(pte,s,_,);

e" = e'ly/pid) - - - [/ pid];

s'=sdvi/tl - - - /by,

(v,s") = [fm_body}(e",s");
in {v,s")

in elf/fid]

6.4. Function bodies. The rules for fi_body that follow summarize a fair amount of work.
(Since several environments and states are involved, the line number in which an environment
or state is defined is used as the subscript for the defined environment or state.)

The function body is reached with environment e and state s which already have lvalues
for the formal parameters initialized with the actual parameters. The first step is to use the
valuation dz, §4.5, 10 enter L as the type for all structure tags and typedef names in the
declarations at the head of the function body. As discussed in §4.4, the valuation de deter-
mines a new environment containing better approximations of the types for the structure tags
and the typedef names. Thus we can get the sequence of environments

eng=¢e; "’
en;; = delldeclaration_s} (en,) i20

The environment e, that contains the types of all structure tags and typedef names is actually
the least upper bound of the chain of environments eng.eny, - - - .

€= U{eni I i 20}

The above least upper bound is similar enough to the least upper bounds taken while determin-
ing least fixed points that the reader may be tempted to equate e; with the least fixed point of
deldeclaration_s]. Note however that eng is not L and contains valuable information about
external identifiers.

We therefore introduce a new operator clo (from fix closure) such that given a function
7:D — D and x€D.®

and a function like enter, $5.4. will be needed to enter the actual parameler into the Ivalue. The line
§'= Skh‘l/’]] T [Vk/lk];
will then have 1o be changed.

Also, the value v returned by fn_body need not be of the same type as ', which is the type returned by the
function, so an auxiliary function cast may be needed to determine v' from v, where v'is of type 1'.
P. Cousot pointed out that clo(x)(7) is exacily huis(z)(x) in the terminology of [cou?7). Some theoretical
properties of this operator have been studied in {cou77).

)

o

\

-21-

clo(x)(r) = L{ 7(x) | i>1)
Using clo
ey = clo(e)) (dell declaration_s])

Having determined e, which contains types for structure tags and typedef names, we
can now allocate and initialize storage for the data declarations at the head of the function body
by using valuation ds, §5.3, to end up with environment e; and state s;.

The declarations have now been attended to, but we still have labels within the statements
in the function body to worry about. A valuation sz will enter the continuation L for each label
in the function body, yielding environment e,. This time valuation se determines a new

»

environment containing better approximations of the continuations for the labels in the func-
tion body. Another use of the clo operator yields environment es which can finally be used for
the statements in the function body.

As discussed in [set79b], starting with an initial continuation ¢o which yields the garbage
value GRB and does not change the state, the value v and the final state s, returned by the
function are determined using sc st s},

[/nbodyl(e,s): (V,S)
| { declaration_s stm_s }
— let e, = dzldeclaration_s}(e):
e; = clo{e,)(del declaration_s});
(e3,s53) = dsldeclaration_s1(e,,s):
eq = szistm sl (ey);
es = clo(e,) (selstm_s}):
co = A\ 5. (GRB,s");
(v,57) = sclstm_s§ (es,cq,s5); .
in (v,s;)

6.5. Programs. The semantics of a C program are very similar to the semantics of a C-
function body: there are a sequence of data declarations that have to be ‘“‘processed” and then
instead of entering continuations for mutually dependent labels into the environment, the
meanings of mutually recursive function declarations have to be entered inio the environment.
The valuation fz specified below enters L into the environment for each C-function identifier.

/

-22-

Lprogram}(e,s): S
| declaration_s fn_dec_p
—let e = dzEdecIarazion_s](e);
e; = clo(e,) (del declaration_sl);
(e3,s5) = dsldeciaration_s}(e,,s);
eq = fzl fn_dec_pl{e,);
es = clo(e,) (fel fn_dec_pl):
S = es(main);
(v,59) = f(s3);

in §7

fzll fn_decl(e): En
| type_specifier declarator parameters fn_body
—let (fid.1) = [declaratorl(V);
in eli/fid]

fzll fn_dec_pll(e): En
| fn_dec
— fz[[fn_dec] (e)
| fn_dec fn_dec_p
— fzll f_dec_p3 (fzl f_decl (e))

Acknowledgments.

S. C. Johnson and D. M. Ritchie patiently fielded a number of questions about C. R. D.
Tennent patiently fielded a number of questions about his denotational semantics of Pascal
[ten77]. There are a number of similarities between C and Pascal at the level of the semantic
rules, and it was useful 1o have [ten77] as a reference.

I want 10 thank B. W. Kernighan and D. M. Ritchie for their permission to use the
material from [ker78]. Comments by A. V. Aho, S. R. Bourne, and M. D. Mcllroy are appreci-

ated.
L Ut
o M=,
MH-1271-RS-unix Ravi Sethi
Att.)
Appendix 2 (pgs. 23,24)
References

-23.

Appendix A. Abstract Syntax of Declarations

Convention. At several points, lists of items, sometimes separated by commas have to be

generated. By convention, the suffixes _s, -P, -sc, and _pc mean zero or more, one or more,

} Zero or more separated by commas, and one or more separated by commas, respectively. For

N example, if nonterm is some nonterminal, then the productions for nonterm_s, nonterm_p,
nonterm_sc, and nonterm_pc are as given below.

nonterm.s:
"~ [« empty */
nontern.p

nonterm...p:
nonterm
nonterm nonterm_p

)

nonterni_sc:
/% emply */
nonterm_pc

nonterntpc:
nonterm
nonterm , nonterm_pc

Productions for nonterminals ending with _s, _p, _sc, and _pc will not be given.

program:
declaration_s fn_dec_p

Jn_dec:
Wpe_specifier declarator parameters JSn_body-

parameters:
(identifier_sc) parameter_decl_s

parameter_decl:
ype_specifier declarator ;

o . declaration:
C"\/’ Wpe_specifier init_declarator ;

type_specifier:
basic_specifier :
struct identifier | member_decl_p)
struct identifier
union identifier { member_decl_p)
union identifier

h} identifier
member_decl:
Ype_specifier declarator ;

init_declarator:
declarator

-24.

declarator = initializer

declarator:
identifier
{ declarator)
declarator [constant)
declarator ()
% .declarator

abstract_declarator:
A empty x/
(abstract_declarator)
abstract_declarator [constant }
abstract_declarator ()
* abstract_declarator

initializer:
expression
{ initializer_pc)

ype_name:
type_specifier abstract_declarator

L T v

P S

Ny

<)

)

-25.

References

The following list combines references mentioned in the text with references from
[set79b].

cou77

dij72

joh78
ker78

mss76

rit78a

rit78b

. scs71

set79a

set79

sto77

ten76

ten77

P. Cousot and R. Cousot, ‘“‘Constructive versions of Tarski’s fixed point theorems,”
Rapport de Recherche 85, L.A. 7, Universite Scientifique et Medicale de Grenoble,
Grenoble, France (September 1977).

E. W. Dijkstra, “Notes on structured programming,” pp.1-82 in O.-J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare (eds.) Structured Programming, Academic Press, London
(1972).

S. C. Johnson, “‘A portable compiler: theory and practice,”” Fifth ACM Symposium on
Principles of Programming Languages, pp. 97-104 (J anuary 1978).

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
Englewood Cliffs, N.J. (1978).

P. D. Mosses, “Compiler generation using denotational semantics,” pp.436-441 in
Mathematical Foundations of Computer Science 1976, Lecture Notes in Computer Science
435, Springer-Verlag, Berlin (1976).

D. M. Ritchie, “‘A tour through the UNIX C compiler,”” unpublished manuscript, Bell
Laboratories, Murray Hill, NJ (1978).

D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Kernighan, ‘‘UNIX time-sharing
system: the C programming language,” Bell Sys. Tech. J. 57(6) pp. 1991-2019 (1978).

D. Scott and C. Strachey, ““Towards a mathematical semantics for computer languages,"
PP.19-46 in Proceedings of the Symposium on Computers and Automata, Polytechnic Press,
Brooklyn, N.Y. (April 1971).

R. Sethi, “‘Semantics of the C programming langhage, part 0: prelude,” unpublished
manuscript, Bell Laboratories, Murray Hiil, N.J. (1979).

R. Sethi, ‘*Semantics of the C programming language, part 1: statements,”’ unpublished
manuscript, Bell Laboratories, Murray Hill, N.J. (1979).

J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory, MIT Press, Cambridge, MA (1977). '

R. D. Tennent, *‘The denotational semantics of programming languages,”® Comm. ACM
19 (8) pp.437-453 (August 1976).

R. D. Tennent, ‘A denotational definition of the programming language PASCAL,”
Technical Report 77-47, Department of Computing and Information Science, Queen’s
University, Kingston, Ontario, Canada (July 1977).

