)

UNOS /1429

Bell Laboratories

subject: A UNIX™ Tutorial - Versiom 4. 0 date: February 5, 1982
Update - Case 40288-100 ‘
from: K. E. Wendland
IH 55625
6D-507 x2068
55625-820205.01EN

ABSTRACT -

This memorandum is a revision and considerable expansion of the
document "A UNIX™ Tutorial" (5613-800715.01EN).

Covered are topics from "How to obtain a UNIX user ID" and
login/logoff procedures. -to a thorough discussion of the text
editor, the file and directory structure of UNIX, online/cffline
prihting “sheil" properties and simple "shell" scr.pts, the user’s
environment, and most commands (greatly expanded rcm previous
issues) useful to the average user. all xn:ormatxon is based on
the latest Version 4.0 of UNIX available at Indian Hill.

The notes are meant to help the new user make effective use of the
available UNIX facilities; they are written in a tutorial fcrmat
(introducing simple concepts and expanding upon them, with maay
examples and homework). The "table of contents” is quite detailed,
which alsc makes this document a good reference <Ior the more
experienced user. .

Coov (abstract only) to
all Supervision Division 556

Copy to

7. Giammarresi
G. Hamstra

L. A. Nelsen
C. L. Scheiderman -

[

X3
s S erAnaT TORIES

D e e

agup e yer
.o - 14‘-..‘:'-,.-; T GARG L ke """\“". TETARC
TS noecwe T G NN

T e e

sat T int-iiva

‘ v'
s —'"-r-Q;'FD
AMD WoLiv S PFC1 N353

lJ -:::-OUT H..uh -4.!3-1&\..--;5!;-. Ca Sl e

‘ Thxsdnmmmccmmmgmmmmfanmnfﬂwmmmas
autlsmtmb&renmmqrmmlwheﬂwmmwtahmam&apmmaﬁ

1

"« s e o

—_ .)
[o MV Y S VRl]

[3] ™~
& (V8]

to

(¥}

CONTENTS

NTRODUCTORY COMMENTS ABOUT UNIX™. .. cvieneennnnenaannannas

What is UNIX 77, ciieeecreensecncacnasasnsosasssnonsas
Obtaining a UNIX User ID.....ccivereannnsrcosssoannns
Login Procedures Within BTL....eevtvrecccccnnn cevens
Login Procedures Outside BTL....cevcvveetnecncnnnn,
Logoff Procedures...eceeereescoscnoscnsensanssonnns
TYPINg ErrOrS.cceeecceressansnssscsssssonscsssosanns
Erase Character (#).iieeercrencacenoreosnscscosscons
Kill Line Character (B).iiieiceenssenecerosnencanass
Readahead Capabilifies....cccveecennrrarioscccencens
Stopping Terminal OULPUL..ceveeveerossavaocroncnnnns
Temporarily Stopping OQutpul.....cceectavcescceneeenn
Terminating a Command......ccevvvcacnccoscnsscccnancs
Issuing UNIX CommandsS....ooeeerecesssscnnnocnsconcss
File DescripliOfN...cccececcnccennoorssrsscscaracecnns
RELOPeNCES .. ceteeerasossnsssrssssscsnssssstsossssnsaancs
Using This Document as a Tutorial........ ceeeeaeanns

UNIX TEXT EDITOR. :eetevtcocesacecaneassssscssonnssncsns
Creating a New File.....ee00n.. Ceeecsssetncarsreanans
Entering the Editor (ed)....ccevieeiiananecrnncnnnns
Entering Your First Text Lines (@)..cecveancecannnnn
Writing Text onto a New File (W)...oovivevinnnannne.
Leaving the Editor (g)eeceeneereaicnrosscosacacannns
Editing EXisting FileS..eeceecercrenntcannsaccoscans
Bringing Files into the Editor Buffer (ed, e).......
Overwriting an Existing File (W)....cccieieeancnnnns
Filename Associated with an Editor Buffer (£).......
Adding Text to the End of the Buifer (3)............
Repeated Edits (@).ccuieueiienennecneaconsnensacsnnes
Suppressing Diagnostics and Character Counts........
Unexpected Exit from the Editor......cocevencnacncns
Appending a File’s Contents .to the Buffer (r).......
Printing TeXleeeteeeeeratseseassccsvonsssasssasncnnse
Basic Printing (P)eceeereereearsorsncscescasansannns
End of Buffer Svmbol (S)..iiiuieierieirnennrennnnnans
Terminating a Printout....ccccveeernnn Ceesesesnesnen
Current Line Symbol (.)......... Ceeeeraeacas Cereeaee
Printing Line Numbers (=)....cciveereeerennconscencas
Relative Line Number Addressing.....ceececeecccecacs
Special Meaning of , and ; as Line Ranges...........
Listing Lines (1)iseeereeneenenoncacocenocenanannnns
Deleting, Moving and Adding Lines........ccvevaevanen
Writing Selected Lines Only (W)....cveereneeenatroans
Read Command Flexibility (F)eciiceeiccrvroncccncscnns
Append Command Flexibility (@)....ceeeveeccanecacnns
Inserting Lines of Text (1)ieueeirenereenronensnsanns
Deleting Lines of Text (d)..verierenerneniiencenennns
Changing Lines of TexXt (€)..verieienenenrnnnenennnans
Moving Lines Of TeXt (M).v.evueriiieineneenenanonanns
Copying Lines of Text (t)......... Cetteriireteaaenen
Text Searches and Special Characters....c.veeoveneens
Searching FOrWardS.cesveeieeereorsororsescssnnsnconans

EPLLWWWWWIRIEI R — - - —

—“~ OOWVWWOROO~I~IIRARNG O WLhinwahn

—_— .

2.6

2.7

2.10

BASIC
3.1

Searching BackwardsS..cceeevevesncns ceesan erescacises
Printing with Line Numbers (n).......... ceeeesaasaaa
Context Addressing...cccavececscscsnes ceseessssesans
Semicolon Separator (3)eeeececccncncass Ceecescesanse
Metacharacters in Regular EXpressionS.....cceeeecene
BACKSLASH Metacharacter (\)..ceceeecncenee. cerecans
PERIOD Metacharacter (.).ceevseecscaccscons
DOLLAR SIGN Metacharacter (S)..c.eceevcecccnns cesenn
CIRCUMFLEX Metacharacter (")...ceeccvecnn ceesecesans
Locating Blank Lines..cccccccecccans ceseseraccesasns
Matching a Line Exactly..cceevee tesecenesssssassenes
ASTERISK Metacharacter (¥)..cieeeeceneccencessoncnns
BACKSLASH/BRACE Metacharacters (\{...\D)............
SQUARE BRACKETS Metacharacter ({...])ecececcncncnnn.
Matching Lexical RangeS........ teereerescstssonanane
Exception Metacharacter.ccceecs.. sesesreessernesonsss
Square Brackets AnomalieS....ccoveecee cesevescssasse
Modifying Existing Test..... cecssessesscccsscsnacoas
Substitution Command (S).ececeeeccncccccccasscnsonns
Metacharacters in REs Revisited.......cccvvcennecnns
Substituting Globally Across a Line........... seeasn
Asterisk Metacharacter Anomalies......... eeseensssns
Breaking Up a Line...cccceeese cscesssssssscsncane cee
Multiline Substitutions...veeveceen cesececsenesaases
Removing Strings from a Line....ccccvvevoccccanss ces

Removing Nonprintable CharactersS...cccecececsscccccee
Metacharacters in Replacement TeXf....ccocvevcncanes
BACKSLASHE Metacharacter Revisited....ceeaveveenscces
AMPERSAND Metacharacter (&)..cieecscescoceccccscaces
Repeated REs in SubstitutiofNS...cccccrceccscccccsnns
Repeated Searches.....ccveeetsretcssccecsssccscnnsecs
Repeated Replacement TeXL...ccceccrancncccnssvnnones
Undoing Bad Substitutions (U)..eeceeeecnncnacancanns
Global MOdificatioNS.cecescerecccssoscensoccascnsans
Basic Global Command (§).ceveceerecscsoseccccrconcas
Basic Exclusion Command (¥).ceeecerorcasacsscnronaas
Multiline Global Commands....... cessssesensesecesanes
Locating Unwanted Control Characters.....cceeeeesene
Undoing Global Mistakes (uW).....oevvveenn. Cereceenna
Interactive Global Actions (G)e.o.eveereenrencennnnns
Interactive Exclusion Actions (V)...oueeiennenennnes
Miscellaneous Editor Commands.....ccceccencrecccanns
Temporarily Leaving the Editor (!)........ ceecassane
Using an Editor Prompt (P)...cccveeeececsrcnasacnnas
Obtaining Help (h, H).voevvrenennn. cevresesaaaas ceees
Unconditional EDIT and QUIT Commands (E, Q)eccvsvens
Joining Lines (j)..... Cecetsceesecasesescesnsanans .
Marking Lines (K)eu.vieeneeceecoseoroannananccsnsones
Delimiter Replacement in SubstitutioNS..cccceeaceses
Missing Delimiters..cicecenccscecrcnscorersoassnsnnsa

Visual EditorS..ccovccencees tesessssscacnes cesaseannn
UNIX COMMANDS. oeecvvecccncaaces tececsscrssesassses .
Listing Filenames and the File Structure..... ceseens
Simple List of Filenames (ls)........ ceseeassreanens
Listing All Filenames (ls -a)...... Cetesrensenaranas

- ii -

~)

3.2

3.3

3.5

3.6

3.7

3.8

Chronological Filename Listing (ls =t)....civvvneenns

Producing Long Listings (ls =1).......evunn

s s 0 s 000

Producing Owner Listings (ls =0).c.eeveenennnnnnnnn,
Determining File Block Size (ls =s)....ivucecinnennn
Combined Filename List OpLioNS....cccrvonessscncanns

Terminating a Listing.coeeveeeeecennnnnnnen

Directories and the File Tree Structure...
PathNamMesS.cccoeroeseciitossoscscscsscasons
Comprehensive List Command Example........
Directory Status Listing (ls =d)..........
Selective ListingS..cceecccecsssrsnccncens
File ProtectiON..cicerececcccstossosssssasas
Changing File Protection (chmod)..........
Octal MOde...iveveoeeereacerscoscsansonacnnse
Symbolic Mode....oceennrccrasscnneacncces
Permissions When a File is Created........
Directory Permissions and Changing Them...
File/Directory Permission Anomolies.......
The Formation and Use of Groups...........
Adding Members to a Group (addgrp)...... ..
Deleting Members from a Group (delgrp)....

tilizing Group PermissionS....cecocecsces
Removing Files and Directories............
Simple File Removal (rm).......ccocuvennns
Permissions to Remove a File......... ..ot
Forced Removals (rm -£)......... ceretencae
Removals of Directory Contents (rm -r)....
Deleting Files Interactively (rm -ir).....
Permission Modes Revisited......cceeveecse
Careless File Removal...cceieecncerocennne
Copying, Renaming and Linking Files.......
Copying a File (EP)eeecerrececroceacnannns
Copying Many Files (CP)eeeveeccccoraccnnss
Renaming Files (MV) .. iuieieineaennancnanes
Moving Many Files to a New Directory (mv).
Changing Directory Names (mv).......c......
Linking Files (ln)..ceienerueeneacnonncnns
Ownership/Permission Anomalies.........v.e
Changing the Owner of a File (chown)......
Copv and Convert Command (dd)....... e
Printing File Contents.cccivvereerivanenne
Concatenating Files (cat)....cocvevvuonnnns
Paginated Printing (Prl.e.c.eececececcencans
Stopping the Printing Process.............
Offline Printing (opr)............ cereiaes
Offline Printer StatuS....cceceecrorrrnncns

e e 000000

.

ee s e e o0 e

L R R

s e v e e e 00

ee s 0 s 00000

ee e ves s e

se 00 a0

s e e s 0000

s 06 00000

es e e e s se e

e e e e e e s 0

0000 e
se e e e s
s e e s o800
ccstoseee
s v s 00800
eeec s s s

e e s e e

e e s 00 s e

®te s s a0

es e e o0

e s e s e e

e s e 0 e 0 s

se 0000 00

Special Characters Associated with Filenames.......

QUESTION MARK Metacharacter (?)......ceen.
SQUARE BRACKETS Metacharacter ({...1).....
EXCLAMATION POINT Metacharacter (!).......
ASTERISK Metacharacter (").....civveenanns
Other Directory Manipulations........eeess
Changing Directories (cd)....oiveuenennnns
Current and Parent Directorv Abbreviation.
Determining Your Working Directory (pwd)..

Creating New Directories (mkdir)............

ee s 0000 00

CRCEC R BN B S

e o e e o o

s e s 00 e s 0

e e 0 s 000000

e s e s e b 0

e s 00000

WWwWwwWw
il n s Uy 0~

~1~ U

~ PP PLLLWL
WLIW = = = O0O'0W0VO\

~ 5 F
3

£ &
s w

- e
(100 S Ol S

£
o

(V]

R MR N BN
0WOOWIIONO

W L Wt B
0000w

¥/

W ta n
whN —

e
w W

U n
s W

v Un
&

[V
G tntn hn

wnintnt

3.9

Removing Empty Directories (rmdir)...c.ceeecereccnns
Locating Specific Files/Directories (find).........

Free Disk Space (df).ccceceecesecrescncecncncnncans
Disk Usage (du)eeierceeecensacsoacncencoscancsaanns
Redirection of Inputs and Qutputs....... cesesceanaas
Output Redirection (3).ccuieiecercecenaannnns ceseeen
Combining Files....... svesascsssssasacss cesecsasesnns
Creating Empty FilesS...ccvvveccccccncannoanas ceesnas
Append Redirection (3>).eceivcecccranccnnes ceseacnans
Input Redirection (<).ieeerieeceseccocccsosesoncnnnns
Shell Description..... sesvecasases cesavecns ceeecnaes .
Pipelines (|)...ccs.. teeseseesstccsssnssrasaansns ceee
New Inputs for Printing Commands..... crctevesasssens
Multiple Commands on One Line (3)..ccivececnccncnnans
Automatic Hang-=Upe.ccccceocsns Cetetecessesssscnacnss
Grouping CommandS.....eov. eeceaccssstesenssserssesen
Background Processes....... ceetsesessesassetsassaces
Commands Processed in Background (&)......... cessenn
Process Status (ps).....eeen. Ceereeceseascseststanans
Killing a Command (Kill)..e..vveececerarocnnnnns seeee
Imnunity to Hang-Ups........ cestescsesesscsesseensasnas
Time-Delayed Commands (at).....oceveecencancns ceeeas
Batch Processing (batch)..c.cevvcenecnns ceerecevscnns
Listing and Monitoring At/Batch Jobs......ccocevnene
Terminating At/Batch Jobs (3C2)..vevrececncccccnnnns
Communications with Other UserS.cccecevedenccarcncns
Inter=User Mail (Mail).eivvevsocensnssacncnocenonnns
Mail to Another UNIX SysteM.c.cecocesccccscocess cees
Who is Logged on the System (who)............... cees
Interactive Communications (Write).....ecveeeecccnnne
Stopping Interactive Communications (mesg)...... o
Sending Files to Another UNIX System....cccvvveenns .
Sending Files Via USEND....ccccoececvanscncans ceetene
Creating an RJE Directory..cceeceecenns ececsnassaae
An Alternative Via NUSEND.......... cresescessactonae
USEND/NUSEND StatuS..oeecersccs Cetcesesssassssensens
Sending Special Archives Via CPIO...ccieeercensennns
Creating a CPIO Archive..... Ceesscscsrsetssnrsasasens
Dearchiving CPIO FileS...cieeeieiievrenrtacassasasns
Selective Dearchiving....ceocveercacscscnsss ceesssses
Miscellaneous File ManipulatioNS...ccececscccccccss .
Duplicating Directories with CPIO.....ccvccvenee veee
Searching for Strings (grep).....cceeceenenes ceeeees
Searching for Fixed Strings (fgrep)........ ceceranee
Searching with Enhanced REs (egrep)....ccece.n. ceens
Searching for Control Characters..... creesserasnanen
Counting Words in a File (we)...... Ceceectcescenanan
Determining Differences between Files (diff)........
Splitting Files (split)...cciuecvesnocnonnaannes coes
Splitting Files by Context (esplit)ececereecenccanns
Stream Sditing (sed)..vivivcrceconnrscacncancnsncnns
Printing the End of a File (tail)ieeeviererenennnens
Continuous Tailing (tail =f)..iiveeeceeracnecennnnns
Updating File Timestamps (touch).....ccoveevenroecans
Other Useful ComMaNdS...ccrtvetcececsscessoscsscnccnnse
Printing the Date and Time (date)....cceevennernnnss

- iV -

~)

UNIX NeWws repOrCTS.ccceeececccossoooorssssssosssanaaians 81
Online Manual Pages (MaR)...veveenrervocncnacnnns .. 82
Changing Your Password (passwd).......cccoceveeeees. 83
Finding Spelling Errors (spell)..i.iceceececnaceesess 83
3.15 User Profile and OpPLiONS..cvesevuncecccccascsssannss 83
User Informatiof......cc0ne certessasennens creenteneen 83
Group Information...veeeeereeovrececccccccscsccovanns 84
Who is Doing What...ceeeeeevunoiscearoanen ceceresees B84
Customizing Terminal Options (stty)......... ceevece. 85
User Profile...cciecaceessecsessccsssccnossssonnsans 86
File/Directory Creation Mask (umask)...........cc... 86
Where You Find COmmMandS...eoceeeeeecroeccsccoanccnsns 86
Defining Other Profile Variables.......cvvenvencanes 87
Exporting Variables (export)......ccceeeecececeresess 88
User Environment (efiv)...coeceen. ceeesesossssseassses 88
Printing Arguments and Parameters (echo)............ 88
3.16 Rudimentary Shell Programming......cccevceversoossas 8o
Simple Shell SCriptsS..c.cveeerereeccensoncstonsocans 89
Positional ParametersS....eoeeeeeees cesescssseasannes 89
Positional Parameters Using Metacharacters.......... 90
Your Private Blfleeieieeeoiscssessssnoearveccosososcnnsa 91
3.17 Where To Go From Here.....cccveeniecencsanns cecsecene 91

HOMEWORK . c c cecteveeosecrosassnsascssassonsssscscsssassacnssses 2
4.1 LEARN ProgramM....ioeeesecececsccscaccccnons ciesecane 92
4.2 FiNAl EXaM.coeroosooesnsnssccacassonssssssssosncssnss 82
4.3 Examination SOlutionNsS...cecececcrcccsssvsccssrcnsasss 100

- Y -

Bell Laboratories

subject: A UNIX™ Tutorial - Version 4.0 date: February 5, 1982
Update - Case 40288-100 ’
from: K. E. Wendland
IH 55625
8D-507 x2068
55625-820205.01EN

ENGINEER’S NOTES

{. INTRODUCTORY COMMENTS ABOUT UNIX™
i.1 What is UNIX 77

UNIX is an operating svystem, with a nhierarchical file structure. a
powerful context editor, high level programming languages. and
other useful features. Tc the wuser, it is a general-purpose,
multi-user, time-sharing, interactive computer syvstem.

1.2 Obtaining a UNIX User ID

If you do not have a valid UNIX user ID, go to room 6M=402 (the
current location of the UNIX administrator at Indian Hill) and
obtain a "COMPUTER SERVICES REQUEST" form. Complete the 'User
Data." '"Charging Information" and "IH" sections, have your
supervisor complete the "Authorizer Data" section, and retura to
room 6M-402. Do not f£ill in the password section, as UNIX initialiy
assumes your payroll account number is your password; ‘the first
time you enter the system, you will be prompted £cr a new
personalized password. Also, go to room 6F-136 and obtain all
available documentation on the PWB/UNIX time-sharing system.

It should be noted that Indian Hill has been mentioned, which (s
logical, as this memo was written here; for other locations,
administrative procedures may vary, but the bulk of this document
is still valid.

1.3 Login Procedures Within BTL

The following general procedures will get vou logged on "dumb"
terminals, such as a Texas Instruments Silent 700 or Lear Siegler
ADM-3: ‘ ‘

e Connect terminal modem to a green Dimension data phone and
dial the Iocal number for your UNIX system. There are many
general purpose and project UNIX machines at Indian Hill -—-
check with vour supervisor or mentor to determine the correct
number to use. The terminal should be powered on, set ¢to
lower case (if possible)., set to full duplex, and set te 20

characters per second (or higher speed, if your terminal and
UNIX system is set up for such operation).

e Once you are logically connected to UNIX, an '"on Line" or
"earrier" indicator will light, and a printout will appear as:

login:

Type in vour "user ID" (or “login name"”) followed by a
carriage return (CR).

e The next request printed out is:
Password:

and UNIX expects your '"personal password"” followed by a CR. to
be entered; printing of this password will be inhibited.

o After printing one or more lines cf informative comments, a
prompt

S
will be printed. UNIX is now ready to accept your commands.
1.4 Login Procedures Outside BTL

You may gain access to UNIX from outside BTL using any telephone
that will £it your modem, and by dialing a special number,
obtainable from people in your group or your local UNIX counselor
(at Indian Hill, UNIX is conected through a Wheaton exchange). If
this mode of entry is used, the login dialogue will be identical to
the scenario described above except the computer will additionally
request: :

External Security:

to which vou must respond with the current "external security code
word" (printing inhibited) followed by a CR; this code word changes
monthly and is available from your supervisor.

1.5 Logoff Procedures

Once you are through with your UNIX session, you can simply break
the phone connection to disengage the computer. Alternately, vou
may type "CONTROL-D" (typing D while depressing the CONTROL Key),
which will result in a new LOGIN request; at this point you may
login again or simply hang-up.

1.6 Typing Errors

Erase Character (#) To correct typing errors caught before a
"carriage return,’ you can use

-
PY3
b
o

~

to erase the last character typed; repetitive use of "#" can erase
any number of characters back to the beginning of the line, but not
beyond. An example is:

my#anxx#f

which will be interpreted by UNIX as "man" typed correctly. A
common error is to I'"backspace" (simultaneously depressing the
"CONTROL" and "H" keys) over an unwanted "space"; use the "#" erase
character instead, as both '"space" and 'backspace" are legal
characters in UNIX. Also, it should be noted that "#" will work
during the login interval. .

Kill Line Character (@) The "at-sign"

a .

will erase the entire line printed thus far, return you to the

beginning of a new line, and allow you to retype that line Irom
"scratch". Again, the "@" will work during the login interval.

1.7 Readahead Capabilities

Once the initial command prompt is received, UNIX allows <£ull
readahead, i.e., you may type at any speed regardless of what is
printing on the terminal. It should be noted this may cause a
strange intermixing of input/cutput characters to be printed, but
UNIX will eventually interpret your typed commands correctly.

1.8 Stopping Terminal Output

Temporarily Stopping Output At times, it may be convenient to stop
the "printing" of terminal output temporarily (especially when you
are trying to keep information from rolling off a CRT type terminal
screen, before it can be read). This may be accomplished by typing
"CONTROL-S" (simultaneously depressing the "CTRL" and "S" Kkeys).
To resume printing, simply type another '"CONTROL-S"; typing any
other character will also cause printing to coatinue, but UNIX will
save these characters for the beginning of the next command. Also,
a common error is to hit "CONTROL-D" rather than "CONTROL-S." which
will promptly Log you off the system after the printing of output
is completed.

Terminating a Command To terminate (permanently) a command in
progress and any output it is producing, simply hit the "BREAK" or
"DEL(ETE)" key.
1.9 1Issuing UNIX Commands
Your response to a "$" command prompt is to issue UNIX commands.
These commands are numerous, and many wiil be discussed in later
sections. For now, respond to your first "$" with

date

followed by a CR. The resuit of the "date" command is a8 priat-out

of the current date and time.

By this time. it should be obvious that all commands and responses,
when complete, should be followed by a "carriage return" --- the CR
will be implicit in the remainder of these notes.

1.10 File Description

A file is simply a collection of characters (data, text, programs.
executable code, etc. =-=--- a maximum of several million characters)
stored in UNIX. The simplest way to form a file is via the TEXT
EDITOR, which will be considered in Section 2.

1.11 References

The following references (available from the UNIX library) might be
of use:

"A Tutorial Introduction to the UNIX Text Editor"” by Kernighan
"Advanced Editing in UNIX" by Rernighan

"UNIX for Beginners" by Kernighan

"UNIX User’s Manual"” by Dolotta, et.al.

Note the User’s Manual is an extremely useful reference source -—=-
use it only as a reference, not a tutorial sogurce for learning
UNIX.

Also of interest is a program called "learn," which can be used as
a source of supplemental '"homework" problems. See Section 4.1 for
more details.

1.12 Using This Document as a Tutorial

This document is written in "tutorial" format, starting with and
thoroughly explaining simple concepts, and expanding upon them.
Try to understand these concepts in the order presented, read the
associated examples, and then get your "hands on" a terminal to
actually test your understanding. Try not to "skim" throughk this
memo, as there are ‘'pearls of wisdom" embedded in every section
(these are problems that I ran into when I was £first exposed to
UNIX and had only poor documentation available -—— you can benefit
from my experience and frustration, by being aware of such problems
in advance).

As a final note here, the "Table of Contents" is detailed enough to
use this memo as a reference later; command abbreviations appear in
pareatheses following the section descriptionms.

2. THE UNIX TEXT EDITOR
2.1 Creating a New File

Entering the Editor (ed) The UNIX TEXT EDITOR allows you to get
information stored into a file. Upon first entry type:

ed {don’t forget the CARRIAGE RETURN]
in response to a "$" prompt, and you are now in the editor.

Entering Your First Text Lines (a) To enter text, the APPEND
command must be given, i.e., type:

a fagain, don‘t forget CR]

followed by as many lines of text as you desire. Remember "#" and
"@" can be used to correct typographical errors. When you have
typed in the desired text, type a line with only a single "period"
on it, i.e.,

The "period" must be in the first space followed immeciately by a
CR --- any variation will sor allow you to leave the "append" mode
and all additional lines typed will be added as garbage to your
text, until vou properly terminate the appending session as
described.

The sequence of commands:

3
I love telephones

will result in the line "I love telephones" being stored in the
"editor buffer" (a temporary storage area). The initial "a" and
€inal "." will not appear in the buffer, as they are editor
commands, not text.

Writing Text onto a New File (w) Once text is accumulated in th
editor buffer, it is likely we would Like to store it in an
external (disk) file for later use. We can use the editor WRITE
command as follows:

w file_name [a "blank" after "w" is necessary!

A "file_name" is composed of up to 14 alphanumeric and/or special
Characte!‘s . A llblank", "?", l'\ll’ "/ll’ "1‘:"' "["’ !li ll’ ll""' or non_
printable characters may/should aot be used; in fact, to play it
safe, use only alphanumeric characters, the "underscore” (_) and
"period" (.). The editor responds to 2 "w" command with a count of
characters written onte the £file, Jif all goes well; the count
includes "blank" and "carriage return” (or "new line") characters.

It should be noted that writing onto a file simply copies the
contents of the editor buffer to the named file, leaving the
contents of the buffer undisturbed. If writing onto an existing
file, the original contents are destroyed by overwriting.

Leaving the Editor (q) To leave the editor, simply type the QUIT
command

q

which will return you to the UNIX command level, indicated by a "S"
prompt.

At this point the contents of the editor buiffer vanishes, which is
why vou should write it out onto a file before quitting. If you
have modified the contents of the editor buffer in any way. and did
not use the write command before quitting, the editor will respond
with a "?" and give you another chance; another "q" command ‘will
allow you to successfully "quit" the editor. In £fact, any
unrecognizable or illogical editor command will result in a "7"
response and an invalidation of the typed line.

2.2 Editing Existing Files

Bringing Files into the Editor Buffer (ed, e) When editing
existing files, rules for the "ed,"” "a" and "w'" commands can be
enhanced. For the purpose of exposition, assume a file '"junk”
contains a single line: "I Llove telephones'". To transfer the
contants of "junk" into the editor buffer, any of the following
commands may be used:

ed junk
or

ed
e junk

or
e junk
The editor will respond with a character count of the text entered

into its buffer (in this case, 18). Note that "ed" is referred tc
as the EDITOR command, and "e" is called simply EDIT.

If the file you’ve requested does nof exist, UNIX will notify you
with a message like "?junk". You have still successfully entered
the editor, just as if "junk" did exist, but the buffer is empty.

Overwriting an Existing File (w) The editor remembers the name of
the file it is working on (see the FILENAME command below).
Therefocre, the command:

w ffollowed directly by a CR;

~4

in this case, is equivalent to:

w junk
Filename Associated with an Editor Buffer (£) The editor remembers
the filename associated with the last "e'" or "ed" command -- if you
forget, use the FILENAME command:

£
which will vield a response "junk" (in this case).

If vou want to change the name associated with the editor buffer,
say to "garbage,'" you may type:

f garbage

to which UNIX will "echo'" the new filename. The contents of the
"editor buffer” remain unchanged, but the "filename" the editor
remembers is now altered. This command can also be used to
associate a filename with the buffer, if the "ed" command (without
a filename argument) was used to invoke the editor.

Adding Text to the End of the Buffer (a) The APPEND command, used

.Immediately after an existing file is brought into the editor, will

add text to the end of the current buffer. For example:

ed junk

18 [(character count of f£ile read into buffer]
a

--— especially Bell telephones

W {implicit overwrite of file "junk"]
49 {character count of buffer written]
a]

will result in a two line file "junk" now containing:

I love telephones
--- @specially Bell telephones

Repeated Edits (e) If at any time you have finished working with
an editor file, you may issue a new "e'" command without "quitting"
the editor. Consider:

e junk {transfers 18 character £ile "junk" into

18 editor buffer]
{ editing session }

w [writes 40 character editor buffer contents

40 into £ile "junk'}
e nuts ttransfers 23 character file "nuts" into

23 editor buffer]
{ editing session }

w iwrites 37 character editor buffer contents

37 into file "nuts"]
q

Note, when the command "e nuts" is typed, the old contents of the
editor buffer (from file "junk") is destroyed and replaced by the
contents of file "nuts"; if the contents of an existing editor
buffer has been modified in any way, and you do aotf write it onto a
file before invoking a new "e" command, UNIX will respond with "?,"
giving you another chance.

Suppressing Diagnostics and Character Counts As a final note. if
vou enter the editor via a command similar to:

ed - junk

the "-" option indicates that character counts due Lo the "ed,"

"a,” "w" or "r" commands, as well as "?" diagnostics from the "e
or '"q" commands, will be suppressed.

Unexpected Exit from the Editor For socme reason, transmission
between your terminal and UNIX may be severed, while you are in an
editing session. Therefore, it is a good idea to use the 'write"
command Jiberally while modifying text --~ if you didn‘t and the
svstem goes down, don‘t panic yet, as UNIX may have saved you.
Many times (not always), the editor buffer will be saved
automatically in a £file "ed.hup," created in your working
directory. So when you log in again, check "ed.hup" first, and you
may be surprised that your old editor buffer has survived intact.

Appending a File’s Contents to the Buffer (r) The final command of
interest here is the READ command. This command reads the contents
of a specified file, and adds it to the end of the existing
contents of the editor buffer. Consider:

e junk {transfers 18 character file "junk" into editor

18 . buffer!
r nuts [adds 23 character file "nuts" to the end of the

23 existing contents of editor bufifer]
w [writes combined 41 character editor buffer onto

41 £ile "junk"]
q

Note that an "r" command does not change the file name currently
associated with the editor; an "£" command, issued anywhere in the
above program, would yield a response "junk,” the name of the IJas¢
fiie entared via an "e" or "ed" command. Now that you are a little
more sophisticatad, I can tell you that the above statement is naot

alwavs true. If you enter the editor via an "ed" command, with no
filename argument. the editor wiil remember the first filename it
sees thereafter, which may be associated with a READ or explicit
WRITE command. Once a name is associated with the editor buffer,
however, it can only be changed by an explicit "f" or "e" command.

2.3 Printing Text

Basic Printing (p) The PRINT command “p" will print <the contents
of the editor buffer (or specific parts of it) on the terminal. We
specify the line numbers where printing is to begin and to end,
separated by a "comma," immediately followed by "p'". Assume we have
a file "stocks" containing the following lines

AT & T {line #1]
General Motors {line #2}
Georgia Pacific [line #3]
Ford iline #4)

Consider the following commands:

e STOcks

41

2.64p {print lines 2 to 4]
General Motors "line #2 =--.starting line]
Georgia Pacific {line #3]

Ford {line #4 —- ending line]

q

Note that 0 (zerc) cannot be used as a starting line number, that
the ending Lline number must be greater than or equal to the
starting line number, and that the ending line number must be Less
than or equal to the last line in the buffer; a breach of these
rules will cause a "?" to be printed on the terminal, indicating an
irrational command.

The editor command
4,4p

will print only line #4 of the text and has an equivalent
abbreviated form:

4p
End of Buffer Symbol ($) It should also be noted that in many
typing sessions, you will lose track of the size of your buffer,
i.e., the number of the last line. To alleviate this problem, a

special symbol "$" can be used to designate the last line in the
buffer. For our file "stocks"

Sp

will print line #4, the lasc line in the buffer.

. -10-

1,Sp
will print the entire buffer contents.

As a further form of abbreviation, when printing a single line, the
terminating "p" may also be deleted, i.e., the following editor
commands are equivalent for the file "stocks": "&,4p"., "&4p", "4",
lls'sp", "Sg"' "s".

Terminating a Printout It should be noted that many times a long
print sequence is started, and for some reasor you wish to stop its
depressing the "DEL(ETE)" or "BREAK" key will cause printing to
cease and return coatrol to editor. This action will aor cause you
to leave the editor, but only the printing sequence will be stopped
and UNIX will reply with a "?".

Similarly, vou may stop output lemporarily using the "CONTROL-S"
key, as described previously in Section 1.8.

Current Line Symbol (.) The editor also provides the concept of

"eurrent Lline'"; the "most recent" line that we have done anvthing
with is symbolically denoted by "." (referred to as "dot"). If we
issue a print command

P
or, in an abbreviated form,

P

the current line will be printed. Consider a more complicated
sequence of print commands, based on our file "stocks":

e stocks

41

1,2 {causes line #1 and #2 to be printed]

AT & T

General Motors ‘sets "." to line #2 at this poiat]

) iprints current line, i.e., line #2]
General Motors

.+Sp iprints current line #2 to end of buffer]

General Motors

Georgia Pacific

Ford

q fupon quitting the editor, "." = "S" = "4"}]

As shown above, the "." can be used as a line number in any print
command.

It should be pointed out that when you first try to bring a file
into the editor, "dot" will be set to the last lide read into the
buffer (the last line UNIX has done anything with).

- 11 =

Printing Line Numbers (=) In complex editing situations, you may
lose track of the current line number. The command

will result in a printout of the value of "dot". Similarly, "$="
will vield the number of the last line in the buffer, but this
command will mot change the value of "." to "$" (note that the
command "=" alone defaults to "S$=").

Relative Line Number Addressing The editor also allows printing of
lines relative to the current ("dot") line. Consider the following
commands :

.+1p {prints "next line"!
.~1p {prints "previous line"]
.+3p {prints "third line after current line"]

In all of the above cases of single line printing, the "." and "p"
may be optionally deleted without effect.

Multiple line printing may also incorporate this relative fbrmat.
such as:

~1,.=1p

will print the "previous, current and next Llines". For multiline
printing, the "." again is unnecessary in either argument, but the
suffix "p" must be present. Also, if the "." is retained, the "+"
may be deleted in forward relative addresses, i.e. ".,+3p", "+3p",
".3p", ".+3", "+3" and ".3" are all equivalent.

The "S$" (end of buffer) may be used instead of the "." in similar
expressions, such as:

$-1p (prints the "next to last" line in buffer]
$-3,5p {prints the "last four" lines in buffer]

Also, there are abbreviations of relative printing commands, such
as:

which is equivalent to ".-1p", "--" which is equivalent to ".-2p",
"-==" which is equivalent to ".-3p", and so forth. Similarly, the
command:

-

is equivalent to ".+1p", "+~" is equivalent to ".-2p", "+==" is
equivalent to ".+#3p", etc. The "+" or "-" (single or multiple
occurrences) may be appended to any Line number, to indicate an
increment or decrement to that address, such as:

o

-~

-12 =

will print "two lines from the end of the buffer".

Finally. a simple carriage return will print the next line (it is
equivalent to ".+ip").

A warning in all relative printing statemeats is that: (1) the
value of "." can change. only afzar a command has been executed,
(2) lines referred to must be valid lines in the buffer, i.e., in
the range "1" to "S," inclusive, and (3) in multiple line printing
statements, the beginning line number must always be less than or
equal to the ending line number. To ensure vour understanding,
assume a file "number" exists, with contents:

one

twe

three

four .
£ive

six

and consider the following editor dialogue:

ép {(prints line #6, "dot' set to "6";

-3 {prints line ".-3" = line #3, "dot" set to "3"]
- (prints line ".+2" = line #5, "dot" set to "5"]
E (prints current line, "dot" unchanged]

(carriage return) (prints next line, "dot" set to "6"!
six)

- (attempts to print line #7 (non-existent)]
7. finvalid command, "dot'" unchanged at "6"]
.=3,-9 (prints lines ".-3" = #3 to ".-1" = #5]
three

four

five

Q {"dot" set to "S5" when quitting editor!

Special Meaning of , and ; as Line Ranges As a final note, the
line range "1,S" may be abbreviated by the single character "comma"
(,). An example is

P

which will print the entire editor buffer for you. The range ".,S"
can be replaced by the single "semicolon" (;) character.

These range abbreviations for line numbers, as weli as all relative
addressing seen thus far, may be used wherever applicable, not only
in PRINT commands.

&

- 13 -

Lxstxng Lines (1) There is another printing command called LIST
("1l" ——— that‘s lower case "L," not the number "1") which follows
all the rules of the "p" command. For normal text. the "l" and 'p"
commands will yield identical results, but the "list' command has
the capability of.indicating unprzntable characters. Examples are:
"tab" lists as "»" (entered into text via "CONTROL-I"), "backspace"

lists as "<" (entered into text via "CONTROL-H'"). and other control
characters will print as a 'backslash” followed by a string of
digits, such as “\07"; note that the "tab" will appear as '">" and
the "backspace" as "<" on CRT type terminals. If a line is over 72
characters in length, the "list" command will print it on multiple
lLines with each line, except the last, terminated with a
"backslash" (\) to indicate continuation. '

¢ any invisible characters (other than "backslash™ at the end of a
line, "tab" or "backspace'") appear in a listing, the odds are that
vour finger slipped in typing, as you almost never want them. Some
of these special characters can cause havoc in a large program, and
the "p" command will be of 720 use in trying to locate them.

2.4 Deleting, Moving and Adding Lines

Writing Selected Lines Only (w) With the introduction of various
tachniques of line numbering, it may be wise to return to the WRITE
command momentarily. When using the "w'" command, the entire editor
buffer contents need not be written onto a Zile; you may choose
specific lines, if you wish, such as:

$-9,Sw

will write the last 10 lines of the buffer onto the last file
indicated by the last."ed," "e" or "f" command, and

-1w good

will write the line previous to the current "dot" line into file
L] 1
‘good”.

4s a f£inal note, the value of "dot" will not be affected by any
kRITE command. also. shouid vou attempt to "quit" the editor after
a "selective write," UNIX may -espond with a "7." if vou’ve
modified the buffer contents and have failed to wrz;e" the entire
buffer oto a file. As mentioned previously, another "g" will allow
you to exit the editor, if you really want to.

Read Command Flexibility (r) The READ command:
4r junk

will read the contents of the specified file (in this case, "junk")
and add it to the editor buffer after the indicated line number (in
this case, line #4). 1If the line number is omitted, "S" (or the
tast line in the editor buffer) is the default (as was illustrated
in Section 2.2 Also, "0" is a valid line number, if vou wish to
insert the f.:.l‘= text at the beginning of the editcr buifer. Afle
the READ command has completad execution. "dot" Is set to the las

- 14 -

line read into the editor buiffer.

Append Command Flexibility (a) Now let’s revisit the APPEND
command. Consider:

4a Tadds text after line #4]
{ text to be added }
. 'quits "append" mode]

"o

which adds text after line #4. The integer "4" was illustrative:
actually, any Lline number in the range "I" to "S," "." or valid
relative addressing (as described for the PRINT command» may be
used. In addition "0a" is allowed to add text to the beginning of
the editor buffer. It should be noted that at the end of the
appending session, "dot" will be set to the last line of text
added, and all line aumbers of original text followiag the appended
lines will be changed.

A final comment is that "a'" alone defaults to ".a". This is wuseful
when first entering the editor via "e file_name"”. which sets the
"dot" to the last line read Zrom the file; an "a" (without line
anumber) will now append text to the end of the editor buffer (as
was shown in Section 2.2).

Inserting Lines of Text (i) A similar command is INSERT ("i"),
which adds text before the indicated line number, such as:

14 (inserts text before line #1}
{ text to be inserted }
. [quits insert mode]

which will add lines before line #! or at the beginning of the
aditor buffer. Valid line numbers are "1" through "S," "." or valid
relative addresses. As a default, "i" is equivalent to ".i". Again.
at the end of a session, "dot" is set to the last line inserted.

Deleting Lines of Text (d) Another useful command is DELETE ("d").
which may be used for siangle or multiple line deletions, such as:

4.5d {deletes line #4 through the end of the buffer!
-1d fdeletes "next line" (after "dot' line):

d {deletes "current line" -- equivalent to ".d"!
:d {deletes from "current line" to "end of ouffer":
.d [deletes entire buffer]

In ail cases of deletions, "dot" is set to the line after the last
line deleted, unless vou deleted lines from the end of the buffer,
in which case "." is set to "S". The range of allowed line numbers
is again "1" to "S," "." or valid relative addresses (including the
special "," and ";" line range abbreviations, as illustrated).

Changing Lines of Text (¢) A reiated command is CHANGE ("c¢"),.
which can be used in siagie or multinle line format; this command
deietes designated Line numbers and replaces them with desired
text, such as:

™

- 15 -

4,9¢ {deletes lines #&4 through #9]
{ replacement test }
[quits change mode]

It should be noted that the number of replacement lines need aotf
equal the number of Llines deleted, and you may issue the CHANGE
command for a single line, such as the command "7c¢", which will
delete Lline #7 and replace them with text which follows. After
completion of a CHANGE session, '"dot" is set to the last
replacement Lline. The valid range of lLine numbers is again "1" to
ng " " " and relative addresses. As a default, "c¢" is equivalent to
".clf'

Moving Lines of Text (m) You can move lines within the buffer via
the MOVE ("m") command, of general form:

A,BmC

where "A" and "B" represent the beginning and ending line numbers,
respectively, of lines to be moved ("B" must be greater or equal to
"A," and, if only one line is to be moved, a single Lline aumber
replaces the couplet "A,B"), and these lines will be placed arlter
line "C". The line numbers "A," "B" and '"C" may fall in the wusual
range 1" to "S," "." or relative addresses. In additiom, "C" may
have value "0" to move text to the beginning of the editor buffer.
but "C" may not fall within the inclusive range dictated by "A" and
"3" (as it makes no sense to attempt this type of move). The "dot"
is set to the last moved line, and the original lines of text are
moved, i.e., they no longer exist in their original location.

L J
Copying Lines of Text (t) A related command COPY ("t") provides
the same effects as the MOVE command, except the original lines
remain intact. Also, if we view the gemeral form "A,BtC," "A," "B"
and "C'" have ranges of validity as described for the MOVE command,
but "C" may fall within the inclusive range dictated by "A" and "B"
(as it now makes sease to do so).

To check your understanding of commands described in this section,
consider manipulating the previous "number" f£ile containing:

one
two
three
four
five
six

with the following editor session:

s

. - 16 -

e number

28

2a iappend after line #2)

help

. [quits append mode - "dot" set to "3"}

3i {insert before line #3 - equivalent to ".i":
I'm

. {quits insert mode - "dot" set to "3"!

be .delete line #4 - replace with new text:
lost

e

. {quits change mode - "dot" set to "53".
5,.=-1d {deletes lines #5 and #6 - "dot" set to "3"]
1,2ms {moves lines #! and #2 after line #5 —== ".," = "3"]
781 lcopies line #7 after line "S-1" = "§"]

w {writes buffer onto file "number'!

35

G fquits editor!

Check vcur interpretation of the commands with my curreat contents
0 file "number':

T'’m
lost
four
ane
two
Eive
Six
six

One final warning about the "a," "i" and "c¢" commands —==== the
terminating "." is easily forgotten, and will cause garbage to be
erronecusly added to the buffer, until you realize your error. At
this point "bite the bullet" and make use of the "d" command
(carefully).

2.5 Text Searches and Special Characters

Searching Forwards Many times you wish to search for a Lline(s)
containing a particular character string -- this is called "Text
Searching'”. An editor command:

/string_of_characters_you_want_to_find/

will locate the agext occurrence of the string of characters between
the "slashes" (called a ‘'"regular |expression," henceforth
abbreviated as "RE"). The search starts with the next line after
the search command is given (i.e., line .-1), continues to the end
of the file (i.e., line S), "wraps around" to line #! and contiaues
to the current "." line. The first line containing a match to the
RE is set to "dot," and the line is automatically printed for
verification. If many lines in the buffer contain the "regular
expression,"” only the firs:z one encountered will be <found by the
search command. If nc matech is found. the editor will prompt with
2", The “reguiar sxpressicn” mav be composed of any printabie or

~)

-17 -

non-printable characters, with some characters ("metacharacters”)
having special meaning, as delineated below.

Searching Backwards We may also search for lines in a reverse
order, i.e., start our search at ".-1", continue backwards to "1",
"wrap around” to "S" and continue backwards to "." . This reverse
search is instituted by a ''regular expression" enclosed by
"question marks,"” as:

?string_of_characters_for_reverse_search?

Printing with Line Numbers (n) While context searching 1is the
preferred method of locating lines, you may wish to issue the
NUMBER command of the form:

7,20n

which will print the lines indicated ("7,.20" may be replaced by any
valid line range), each prefixed with its [ige number followed by a
"tab" .

The command:
n

prints the value of "dot," followed by the current line itself.
Also the command:

%

may be of interest; in this case, the contents of the entire editor
buffer will be printed, each line prefixed by its line number.

Finally, it should be noted that an "n" may be added as a suffix tc
any command, which could accept a "p" or "l" as a suffix.

Context Addressing in addition to finding Llines containing
specific character strings, the search command itself may be
substituted for a line number (called "context addressing"), when
using the READ, APPEND, DELETE, PRINT, CHANGE. INSERT, MOVE, COPY
or WRITE commands. The following commands are all valid:

/help/d
/new/,/0ld/+3p
2five?i

- 18 -

Semicolon Separator (;) Assume a file of the following form:

e f"...." lines do aot contain "a" or "b"]

ab
be

Starting at line #!, we might expect the command

/a/,/v/p

to print all lines between "ab" and "bc" inclusive. Actually, only
the line "ab™ is printed. This is due to the fact, that searches
for "a" and "b" both start at the same point, and "/a/" and "/b/"
both find the same Lline, "ab". Worse, if a line before "ab"
contained a "b,” the entire print command would be in error. The
prcblem is that the "comma" separator for line numbers doesn’l sel
"dot" as each address is processed --—— "dot' is reset only afzer a
command is actually executed.

Ia the editor, the "semicolon" c¢an be used just as a '"comma”
separator of line numbers, but the use of ";" forces "dot" to be
reset to the first line number, after it is evaluated. The command:

/a/;/b/p

prints the range of lines from "ab" to '"bc" inclusive. The Lline
containing "a" is found first, "dot" is changed to that line
number, and then the search command for "b" is instituted, starting
at the next line.

Another interesting use for the '"semicolon" is a command like:
23:/a/

which would generate a search for the string "a" beginning at Lline
#24., The initial "23" causes "dot" to be set to that line, and the
search then proceeds with the next line. You can also use a command
Like

0;/a/

to start a search at the beginning of a f£ile (this is one of the
few places where "0" can be used as a legal line number).

2.6 Metacharacters in Regular Expressions

Some characters, called "metacharacters," have special meaning when
included in "regular expressions; they are the "period (.)," "left
bracket ([)," "asterisk (¥),” "backslash/brace (\{)" <ccmbiration,
"sireumflex (°).," "dollar sign (S)," "pound sigan (#)," "at-sign
()" and "backslash (\)".

~

- 19 -

BACKSLASH Metacharacter (\) IZ you desire to eliminate the special
meaning of any character, the '"backslash" (called the "escape
character") can be used. Simply preceding the "metacharacter” by
the "backslash” will accomplish this.

The "pound sign." which is a '"global metacharacter,” has the
property of ‘"erasing" the previous character typed anywhere in a
UNIX session; the following line:

is equivalent to "I#2", as the first "#" erases the previous
character, but the second grouping "\#" removes the special meaning
of the "pound sign" and introduces the '#" character into the
buffer. Similarly, for the "at-sign," the sequence "\@" will return
you to a new line, making you think you’ve erased the line: in
reality, the text will contain the "@'" symbol and you are actually
tvping on the same line.

4lso, if you wish to remove the special meaning of the 'backslash”
character itself., the segquence "\\" will accomplisn this. II we
wish to search for an unlikely sequence of tex: "#\"., the proper
search command is:

INE\N/

The '"backslash" found at the end af a Lline has special meaning
also; it removes the meaning of the "newline" ("carriage return')
character, and vou are in effect typing continuously on the same
line. @

Finally, in the search mode, we would have difficulty <trying to
match a "slash”, such as:

/ab/e/

would not match "ab/c"; the '"slash" between "b" and "c¢" would
indicate a complete search command, followed by "c¢/" (garbage), and
a "?7" would be printed indicating an error. i proper search could
be accomplished by:

/ab\/c/

since the combination ""\/" is equivalent to searching for the "/"
character, once its special meaning is removed.

PERIOD Metacharacter (.) The 'period metacharacter" is a RE
standing for any single character (except "new line"). Thus the
search

/a.b/

finds any line where "a" and "b" are separated by any single
character, and wouid match any of the following strings:

-20 -

a-b
abb
a-b
a.b
ab

If vou wish to locate the text string "a.b" oaly, you must use the
"sackslash" to remove the special meaning of the "." metacharactler.
i.e..

/a\.b/

The "." is very useful in matching ‘“"metacharacters" and is very
useful in eliminating non-printable characters, as will be seen in
Section 2.7.

DOLLAR SIGN Metacharacter ($) The ""dollar sign.” when used in an
RE represents the "end of the line" (as opposed to "end of buffer”
when used in line numbering). Revisiting our original file
"number,"” which is repeared here for convenience:

one
WO
three
four
Sive
Six

could locate the line "two" with the search command:
/aS/

since only an "o" at the end of a line is sought. The search /o/
could match '"one", "two" or "four”. The "S" must be used as the
last character in a "regular expression" to retain its special
meaning.

CIRCUMFLEX Metacharacter (°) A related metacharacter, """ (the
“cireumflex"” or "hat" or ‘"caret" symbol), will restrict vour
searches to characters appearing at the "bteginning of a line”". The
search command: -

/"ol

would match "one" in the file "number", but not "twoe" or ‘"four".
The """ must be used as the £first character in a "regular
expression" to retain its special meaning.

Locating Blank Lines Also the search

/°8/
may be of interest to vou. It is seeking a "blank line," i.e., no
characters between the bdegianing of the line (represented by the

"= metacharacter! and the ead of the line (represented by the "S"
metacharacter).

- 21 =

Matching a Line Exactly Similarly, the search:
/~line of textS/

provides special characteristics. It is seeking a line which will
match "line of text" (the entire string between the """ and "S"
metacharacters) exactly, on a character-for-character basis.

Other uses for the special meaning of "S" and """ will be discussed
later in Section 2.7. Alsc remember the special meaning of "S" and
"= may be "turned off" by preceding them with a "backslash".

ASTERISK Metacharacter (*) Next, a character in an RE followed by

a "' ("asterisk" or "star") stands for aay number of consecutive

occurrences of that character. Be aware that as "any number" means

Zerc or more occurrences; a misinterpretation here can lead to many-
problems. Assume we are looking for a line containing a character

string "abbbbbbbbbbe"; certainly a search command.

/abbbbbbbbbbe/
would accomplish our aims, but the command
/ab*c/

is far simpler. If the above search encountered a line containing
the string "ac" first, a match would have occurred; the string
contains an "a" followed by a "c¢",. separated by no "b’s"; no '"b’s"
is a legitimate match for the couplet "b*" in the regular
expression. Again, the special meaning of "¥%" may be "turned off"
by preceding it with a "backslash'.

BACKSLASH/BRACE Metacharacters (\{...\}) 4nv character in a
"regular expression" followed by "\{m\}", "\{m,\}", or "\{m,n\}",
where "m" and "n'" are non-negative integers less than 256, has
special meaning. The grouping "\{m\}" indicates a match of exactly
"m" occurrences of the character preceding this special sequence in
the regular expression; "\{m,\}" matches at least "m" occurrences
of that character; "\{m,n\}" matches any number of occurrences of
that character in the range '"m" through "n" inclusive.

Some examples are:

/aB\{2\}/ {Search for "a" followed by exactly two "B’s"]
J60\{3,\}/ [Search for "4" followed by three or more "0’s"!
/X\{5,9\}/ {Search for five to nine "X’s"]

These "metacharacters'" are cumbersome to type and use, and are
avoided by experienced users, except in special circumstances.
There is also another even more cumbersome RE enclosed, by the
character sequences "\(" and "\)", which has only highly
specialized uses; the reader should consult the "ed" manual page to
become aware of its properties.

. - 22 -

SQUARE BRACKETS Metacharacter ([...]) The last "metacharacter" of
interest is the "left square bracket"” or "{", which is always
coupled with a closing "right bracket". The construction

/012abi/

will cause a search for any ofthe single characters enclosed in the
"square brackets" ("1", "2", "a" or "b"). Similarly.

/ai01234567891%/
searches for a line containing a string, "a" followed by zerc or
more digits.

Matching Lexical Ranges The command
/al0-87%/

accomplishes the same thing; the "minus” may be used {2 indicate a
range of lexically consecutive ASCII characters, such as: [0-9] is
equivalent to -0123456789), a=f! is equivaient to [abecdef!. and
W=Z. is equivalent =to IWX¥Z!. Compound sequences are also
aliowed, i.e., an RE such as:

{A-Za~26-9;

represents a siagle character, i.e., an upper or lower case letter
or a digit in the range "6" to "9".

Exception Metacharacter If the "circumflex'" is used as the First
character of the string within '"square brackets,” then any single
character, except '"new line" ("carriage return") and the remalining
characters in the string, is matched; the """ at any position other
than the f£irst has no special meaning. The RE

(“ad-gl

presents any character except "new line", '"a', "d4", "e", "£" or

Square Brackets Anomalies Also, the characters "*", "[!", "\" and
"." have no special meaning when enclosed by "square brackets".
Cenfused ---~ consider the search:

/7Nl
which seeks a line which does not begin with a "\" or "°".

A final comment is that the "-" loses its special meaning if it is
first in a string {(after an initial """, if any) enclosed in
"square brackets,”" or Lf it is the last character in that string;
also, the I'right bracket " will not terminate a string if it is
the first character following the opening "'" (after an initial
"=, 1f any). Remember, after proper interpretation. the s-ring
within '"square brackets' represents a singie character; verify that

~)

- 23 -

/[1ld=-wl/

will matech "!"., "'", or any lower case letter in the range "d"
through "w': it matches only a single character, as there is only

one set of valid "square brackets".
2.7 Modifying Existing Test

Substitution Command (s) Probably one of the most important
commands is SUBSTITUTE. This command ("s") is used to change
strings of characters within a line or group of Lines. The basic
form is:

s/regular_expression/replacement_text/

which will replace the 'regular expression" denoted (possibly
containing "metacharacters," as previocusly described) by the
"replacement text" in the current "dot" line. I£ we have a current
line "I love telephones” and issue the command:

s/e t/e Bell t/p
the line is changed to "I love Bell telephones".
The optional appended "p" will cause the corrected line to be
printed for yvour inspection. Note that "p" (or "l" for "list," er
"a" for "number") may be appended to many commands to cause
printing of the current line after the command has been executed.

such as ".dp" will delete the current line and print the new '"dot"
Line.

Metacharacters in REs Revisited Using "regular expression
metacharacters”" in SUBSTITUTE commands is almost essential to good
editing style. Let’s consider various common examples using these
special characters. To simplify matters. in al/ the examples below,
assume we are a/ways making substitutions in the line:

I love telephones
unless clearly stated otherwise.
The command

s/~ /Boy, do /p
will print the corrected line "Boy, do I love telephones"; the
"eircumflex" alone indicated the replacement is to be placed at the
beginning of the line.
Similarly

s/S/t!!

will add "!!!" to the end of the line. due to the special meaning
of "S" in the regular expression.

-24 =

The command:
s/t.*/girls/p

will print "I love girls" which is due to the regular expression
"e % (character '"t" followed by zero or more of aay character --
the ".*" metacharacter couplet is very useful when replacing the
remainder of a line after a certain paint).

The command:
s/{oel/x/p

will print "I lxve telephones"; the regular expression "loe!"
seaprches the line for either an "o" or "e'". and the SUBSTITUTE
command will act oaly upon the first match found in the line.

Substituting Globally Across a Line We may also change all
occurrences of a regular expression in a line by appending the
SUBSTITUTE command with the letter '"g", (representing "globally,
across the line") for example:

s/[oce]/x/gp

will change "I love telephones" to "I lxvx txlxphxnxs". Remember.
without the "g" suffix, only the firsc match in the line will be
affected by the SUBSTITUTE command. Also note that the additional
appending "p" will cause printing ta occur, and only the order "gp"
is allowed ("pg" is illegal).

Asterisk Metacharacter Anomalies Using the "g" suffix may cause
problems when using the "asterisk' metacharacter in a regular
expression. Consider the line "I lov!! t!l!!!phon!!s", which would
require all single or consecytive occurrences of "!" to be replaced
by a single "e". The proper substitution is:

s/it*/e/g

which would cause a conversion to "I love telephones”. The regular
expression "!*" would yield quite different results, i.e.,
"ale eleoceve etelepenecenese", as UNIX nctes between every pair of
"non=!" characters, there are zero or more "!‘s" and, therefore, an
"a" is substituted. .

For the same line, "I lov!! t!l!!!phon!!s", the substituts command:
s/t*/e/

may also yield unexpected results. The line will be converted to
"el lov!! t!l!!!lphon!!s"; the editor determines that no "!“s" exist
between the beginning of the line (a "new line" character) and the
first character "I", and the substitution is made. The wording in
the UNIX User’s Manual is vague (at best): "If there is any choice,
the longest lefetmost string that permits a match is chosen”; this
should be interpreted as '"the lefzmosc match is chosen, regardless
of how long the cansecutive string is". An illustrative example is

~\

- 25 -

. that the lines:

h?1p?7?
h?71p???
n??71p?77
h??7771p?77?

would all be converted to "help??7 by the command:
s/7?%/e/

Only the firs: (or leftmost) occurrence of "?", followed by zero -or

more "77s" will be affected, not the longest consecutive grouping
of "?’s" in the line.

Breaking Up a Line There may be cases when you wish to ‘'break a
line in two". For the line "I love telepnhones”, the command:

s/e t/e\(CARRIAGE RETURN)
t/

will create two separate lines "I love" and 'telephones". The
"backslash” before the "CARRIAGE RETURN" will cause the "new line
character” to be transmitted to UNIX, as replacement text, although

vou are phvsically placed on a second line to complete the the
SUBSTITUTE command. :

For those who want to get £fancy, this process may be wused
repeatedly in the same substitution, such as:

s/e t/e\(CARRIAGE RETURN)
Bell\(CARRIAGE RETURN)
t/

will change the line "I love telephones" to three lines, i.e.,

I love
Bell ’
telephones

Multiline Substitutions A more general form is:
1,§s/regular_expression/replacement_text/p

which causes a possible substitution in al// lines in the buffer;
the substitution is made only if the ‘''regular expression” is
matched in any given line. Of course, the range ™1,S" is
illustrative and may be replaced by any valid range of line
numbers, including those containing "dot" and relative or text
addresses. You may alsc choose a single line number, or if none is
indicated, a default to "dot" is made. Note, the "p" suffix, in
this multiline case, will cause UNIX to print oaniy the last line in
which a substitution is made.

- 26 -

Removing Strings from a Line It is extremely useful to eliminate
certain characters within a line: the ccmmand

4,95/ *(/p

will ‘eliminate any number of "blanks" occurring at the beginning of
Lines #4 through #9; the "//" replacement (with no internal spaces)
means ''replace with nothing".

Removing Noaprintable Characters Another tricky point of interest
is the case when a line listed ("l" not "p" command) indicates an
erroneous non-printable character, such as:

I love tel\O7ephones

The "\O7" represents the "bell" character ---- the question is how
to remove it. The substitution

s/\\07//
will not work. However,

s/i.e/le/
will work. as the "." represents anv single character (even non-
printable ones) between the "l" and "e".

Metacharacters in Replacement Text Other than the characters "#"
and "@," which have special meaning anywhere in UNIX programming
(unless "escaped" by a preceding 'backslash"), characters within
the replacement text with special meaning are the "backslash (\),"
the "slash (/)," the "perceat sign (%)," and the "ampersand (&)".

BACKSLASH Metacharacter Revisited Consider our Line "I love
telephones”, and the command:

s/le/l/o/p

We wanted to change the line to "I L/ove telephones" (don’t ask me
why!), but instead the editor will priant "7?". This is due to the
fact that UNIX assumed the replacement striag ended with the third
"slash" =--- to place a "/" literally in the replacement text. it
must be "escaped,' such as:

s/lo/1\/o/p

The "backslash" itself may be entered into text by using the
couplet "\\".

AMPERSAND Metacharacter (&) The "ampersand” in a replacement text
(not in an RE) represents the entire "regular expression” just
matched, i.e.,

s/love/& \& &/p

- -y

will cause the line "I love & love telephones" to be printed. The

- 27 -

first and third "&" in the replacement text cause the RE "love" to
be substituted while the second "ampersand" is "escaped" (by "\&"
couplet) and is a literal replacement.

Repeated REs in Substitutioas Another time-saver is illustrated by
the following command,

/love/s//like/p

this command will search for a line containing the string "love",
set '"dot" to this line number, and obey the SUBSTITUTE command.
The "s" command will change "love' to "like" in that lLine, Dbecause
"two consecutive slashes (//)," or the "null regular expression.”
is shorthand for "the last regular expression used".

Repeated Searches The use of this shorthand notation may also be
used in repeated searches. Assume the search "/love/" is instituted
and the wrong line is found -- the text wanted is another line
containing the string "love". Simply type "//" for another forward
search or "?7" for a reverse search, as the editor remembers the
most recent pattern, or 'regular expression," searched for, (in
this case, "love"). This procedure may be repeated as many times as
necessary.

Repeated Replacemeant Text If "W" is the only character in the
replacement, the replacement text in the most recent substitute
command is used as the replacement text in the current substitute
command. The "%" loses its special meaning when the replacemeat
text is more than one character long, or when it is escaped by a
"backslash" (i.e., the couplet "\%").

Undoing Bad Substitutions (u) An extremely useful command is the
UNDO command, or simply:

u

which negates the effect of the last SUBSTITUTE command issued, if
vou really "botch" things up. You should use the UNDO command
Immediately after the "s-command"” has been executed, if you want it
to work (as some intervening commands may confuse UNIX and the last
substitution may not be reversible --- nobody is periect). In a
multiline substitution, al!/ affected lines will revert back to
their "original form".

2.8 Global Modifications
Basic Global Command (g) The GLOBAL command "g" is used to perform
one or more editing commands on lines containing a specified
pattern (regular expression). The command:

g/love/p

will print al// lines in the buffer containing the string "liove",
while

- 28 -

4,20g/love/p

will print only the matched lines in the indicated range (line ¢4
through #20, in this case). 1In either of the above commands, the
"o" suffix is optional, as matched lines will be automaticaily

< 700

printed by default. if no other command follows "g/RE/".
Let’s consider a more sophisticated global command, such as
6.11g/love/s//Like/gp

The first step is to mark every line, in the range line #6 to #11,
that contains the indicated pattern "love". Then for every such
line, the command following is executed, with "." imnitially set to
that Lline. In this case a// occurrences of "love" in that line are
replaced by "like", and the line is printed. The string "love" |is
the RE of the "s" command (represented by the "//"), since the last
regular expression used was "love” in the global search pattern;
all occurrences in a line are changed because of the "gp" suffix on
the "s" command, as explained previously.

Basic Exclusion Command (v) We have a diametrically opposec
command IXCLUDE *"v'" wnich acts upon all lines nof containing the
pattern indicated by the global RE. For example:

v/love/p

prints out all lines not containing the string "love”.

Multiline Global Commands What about multi-line or multiple
commands under control of a global command? Consider

g/love/s/love/like/\
s/telephones/radar/

This command will search the entire buffer for lines containing the

string "love'". For each such line found, the first occurrence of
. "love" is <changed to "like", and the <£first occurrence of
"telaephones" 1is changed to "radar". The "backslash" at the end of
the first line tells the editor that another command Lline will
follow; this may be repeated for as many lines as desired. but the
finai line in the global command must not contain the terminating
"\". The entire buffer is searched globally because, ia the absence
of any line number preceding "g," the range "1,S" is the default.
Note that "//" was not used instead of "/love/" in the first
substitute command, because, if more than one line contained
"love", the last "regular expression" remembered, after the first
line’s substitution is complete, is "telephones'" ---- be careful;
this is due to the fact that the "g/love/" portion of the command
is executed first to mark all lines containing the string "love'",
and then the SUBSTITUTE commands are sequentially executed for each
matched line, aever to return to the RE "love" associated with the
"g" command.

A (perhaps obvious) ncte here is that you caan aot "split” lines as
shown in Sse¢tion 2.7, as a line terminated with a "backsiash™ will

~

~

- 29 -

not be interpreted properly by the global command.
You may alsoc use multi-line commands such as "a," "i" and "c", as:

v/love/a\
I really hate telephones!\

This command seeks all lines in the buffer not containing the
string "love", and appends each one with the line "I really hate
telephones!". Remember the terminating "\" must appear on all
lines, except the last, in the global command.

As a final note, you may aot nest another "g'" or "v' command within
a current global command.

Locating Unwanted Control Characters One of the useful attributes
of global searching is the ability to locate all lines within a
file that contain unwanted "control" characters. 7Iry the following
command :

g/ i "SPACE~~TA5}/.=

When typing in this command, SPACZ should be replaced by a single
blank space, and T48 should be replaced by the tab characcer, i.e.,
depressing the "CONTROL" and "I" keys simultanecusly. Since the RE
starts with a """, it will match any line containing a character.
other than ASCII characters in the range SPACE to "~", or T48; this
represents all control characters, except 7A3. The ".=" command to
be executed every time a match is found will provide a list of
numbers of all lines containing (probably) undesirable control
characters. These lines can now be investigated using the Llist
command, as described in Section 2.3.

Undoing Global Mistakes (u) .

If the UNDO command is issued iImmediately after any '"global"
execution, your buffer will be restored to its "original form”
(prior to the issuance of the "global" or "exclude” command).

In fact, the UNDO command has been made so powerful in Version 4.0
of UNIX, that it reverses the affect of the most receat command
that modified the buffer. These include the SUBSTITUTE and GLOBAL
commands mentioned, as well as editor commands APPEND, CHANGE,
DELETE, INSERT, MOVE, READ or COPY.

Interactive Global Actions (G) An example of the INTERACTIVE
GLOBAL command is:

5,20G/love/

This command will search the indicated line range ("5,20" in our
example), and mark every line that contains a match to the "regular
expression” (ia this case, "/love/"); should the line range De
omitted, the entire editor buffer is searched for matches. Then,
sequentially, every matched line is printed, "." is changed to that
line, and a siagle command line may be entered and executed (note

- 130 -

that "a," "i," "c¢" or any global command will sot be accepted by
"G"). After the execution of that command, the process is repeated
for the next marked line. The "carriage return" ('new line") acts
as a '"null" command; an "&" alone will cause the re-execution of
the most recent command executed during the current invocaticn of
the "G" command. The "G" command can be terminated by issuing an
"interrupt" signal (DEL or BREAK key); also, any error ia an
interactive command vou issue will cause UNIX to print a "7" and
exit "G".

Interactive Exclusion Actions (V) This command is identical to the
INTERACTIVE GLOBAL command, exzept that all lines notf matching the
designated "regular expression" are marked.

2.9 Miscellaneous Editor Commands

There are other important editor commands which deserve brief
mention.

Temporarily Leaving the Editor (!) There are occasions when vyou
may wisi to issue a UNIX level command, but you want the 2ditor
buffer to remain intact for further work. IZ you type:

!any_UNIX_command

your current editing state will be suspended, and the UNIX command
indicated will be executed. When this UNIX command is completed,
the editor will prompt with another "!,"” at which time you may
continue editing (note: "dot" is unchanged by this process). An
example is

ed

{editing session}
tdate

{UNIX prints the date}
]

{editing continued}
Q

Using an Editor Prompt (P) If we issue the command:
P fthat’s capital "P"]

the editor will prompt with an "*" £or all subsequent commands.
This "P" command alternately turns this prompt mode, on and off; it
is initially off. This property is very useful when using the "a,”
" e

i" or "c¢" commands, as vou are sure the "terminating dot" has been
issued, when you receive the "*" editor prompt.

Obtaining Help (h, H) Occasionally, you will obtain "?" diagnestic
outputs, by making an error in a command issued, or attempting to
quit (or edit) the current editor buffer before writing its
contents unto a3 file. If you issue the command:

h

~)

~

-3 -

a short error message will be printed, explaining the most recent
"?" diagnostic. For more '"help." you may issue the following
command upon entry to the editor:

H

and all/ "?" diagnostics will be explained as they are issued.
Issuing the "H" command alternately turns this mode "on" and "off";
initially, it is "off".

Unconditional EDIT and QUIT Commands (E, Q) You may use the
commands:

E
and

Q

which are analogous to the EDIT ("e") and QUIT ("q") commands
previously described, except that the editcr does aot check to see
if any changes have been made in the editor buffer affer the last
"w" command.

Joining Lines (j) The JOIN command "joins" two contiguous lines by
removing the "new line” character between them, i.e.,

4,5j

will combine line #4 and #5 into a single line #4. If no line
numbers are indicated, then the range (.,.+1) is assumed.

Marking Lines (k) The MARK ("k") command is useful to label
special lines with a lower case letter address. A command

S5ka

will identify the letter "a" with curreat line #5; if no line
number is given, '"dot" s the default, and any other lower case
letter may be used in place of "a". The address form '"7a" is
thereaiter an alternate valid line number.

Delimiter Replacement in Substitutions One technique, which is
useful when the "replacement text"” includes many "slashes,” is to
use a command similar to:

s!lovel///!

which will replace "love" by "///". We have removed the special
meaning of the '"slash" by using "!" as a "delimiter” in the
SUBSTITUTE command. The "!" <could have been replaced by any
character (other than a '"space" or "new line") which does not
appear in the "regular expression" or "replacement text." and is
not a global metacharacter.

-32 -

Missing Delimiters If the closing delimiter (/) of a RE or
replacement text would normally be the last character before the
CARRIAGE RETURN, that delimiter may be omitted. In this case, the
closing delimiter is automatically supplied by UNIX, and the
affected lines are printed. Although it may be better editing
style to use complete expressions as previously described,
forgetting the trailing "/" is one of the most common errors in
editing, and UNIX saves you ia many cases; if UNIX makes a
substituticn vou really don‘t want, the UNDO command will save you.
In fact, as vou gain proficiency in editing, this concept can save
the time necessary to type one or two characters, repeatedly (if
you use one tfinger to type, like I do, the time savings could be
considerable).

To illustrate this point, the €£ollowing pairs of commands are
equivalent:

s/love/hate s/love/hate/p

s/love/ s/love//p (replace with nothing)

g/ love g/love/p

/love /love/ ("p" suffix implied)

/ // (repeated forward search)

?love ?love? ("p" suffix implied)

G/ love G/ love/ (matched lines printed via "G")

2.10 Visual Editors

High speed data communication and display (CRT type) terminals
leads to new concepts of text editing, the most common task of many
computer users. In contrast to the normal ‘'context' editor
previgusly described, an interactive visual editcr is presented
with a display of the contents of a portion (usually more than 16
lines) of the buifer being worked on. By moving the cursor to
appropriate points in the display page and utilizing one of a rich
set of commands, characters, words or lines may be added to or
deleted from the existing display; you benefit from instaat
feedback, as changes to the buffer appear on the screen
immediately. You may read from and write to any UNIX (£ile. You
may do searches and change the buffer area you are working on at
will. t’s a beautiful tool!!!

Now that I‘’ve got your mouth to water, I“ll try to explain why a
"visual' editor will not be discussed in detail in this document:

e There are many visual editors installed by local '"wizards."
Their names include '"ved," "hpved," '"dmved," 'vi," "ex,"
"emacs" and probably dozens of others that I am not aware of;
not all editors are available on all UNIX systems, and many
times they are available only from user’s private directories.
They are all unsupported tools.

e You must have a displav (a CRT type, such as an ADM3 or HP)
terminal; visual editors will not work on printing terminals.
This is a good reason to learn the "ordinary" editor, which is
effective on both printing and display type terminals (did vou
every trv to take a CRT terminal home?).

- 133 -

e You should have a high-speed modem. Although you c¢an use a
visual editor at a speed of 30 characters per second
generation (300 baud), it becomes quite tedious to wait long
periods of time for the screen to f£ill up every time you
change vour working buffer. I would suggest a 1200 baud modem
or high speed dedicated link to the UNIX system.

e There is a cost factor. Visual editors generally require from

. 3 te 20 times the computer resources than the "normal"” editor,
and this assumes you do not have a private copy of a
particular editor in your login (each editor is several
million characters of executable code in lLength).

Therefore, this author intends to include a description of the
"visual'" editor, once one type is fully supported as a standard
product (hopefully by Version 5.0 of UNIX). Until then, the best
bet is to ask users of these editors in your area for sources of
documentation. and, possibly, some "getting started" help
(documentation for some of these editors is sparse, and, in many
cases, cutdated or not in agreement with versions that have been
modified locally).

-3 -

3. BASIC UNIX COMMANDS
3.1 Listing Filenames and the File Structure

Simple List of Filenames (ls) Once you have created files, you may
wish to Llist their names (not contents) using the LIST ("ls")
command. Assume we have the files "junk," "number” and "stocks" in
our “login directory"; £for now. assume your "login directory” is
simply a collection of files vou’ve created via the "text editor”.
The command:

Sls {you type "ls" in response to "S$" prompt]
junk FUNIX

number lists

stocks filenames]

will cause filenames to be printed alphabetically (names beginning
with numerals or strange characters will be listed first). It
should be noted that al/ commands are issued in response to the "S"
prompt from UNIX, and this fact will be Jmplicit in mest future
examples.

Listing All Filenames (ls -a) If a filename begins with a "period"
(salled a "dot £ile"), the "ls" command, as shown above, will sot
priat it - to list ai/ filenames, an "ls =-a" command is
required. noting the space between "s" and "-" is necessary. The
list produced will be headed by "." and "..", which have special
meanings, as explained in Section 3.6.

Chronological Filename Listing (ls -t) With an optional argument
".t", a time-ordered sort is provided, i.e., files are listed in
the order in which they were last changed or created, most recent
Eirst.

Sls -t [space between '"s" and "-" necessary!

junk {assumes "junk' was worked on last]

stocks

aumber
Producing Long Listings (ls -1) Amother option "-L" {that’s lower
case "L," aot number "1") will give a long Iisting (a lot of useful
information), such as:

Sls -1 {again, "space" between "s" and "-"]

total 4

-CW=TW=CW— | owner group_owner 31 Sep22 12:56 junk

~ WX WX === | owner group_owner 28 Aug30 1:26 number

~C=XIWX=W= 2 owner group_owner 941 Janl 3:12 stocks

Of great interest is the first 10 characters taken as 3 group. The
first character printed is a "-" for.an ordinary file, or "d" for a
directory; other special files may also be designated, but they are
of little interest to the average user. The next three characters
indicates "what the osmer can do with the £file"; the owner may
“read” {r) the contents of the file., modify or "wrize" (w) onto it,
“axecuta” (x) it (if the £file is executable), or a "-" indicates

- 135 -

the corresponding permission is denied. The next three characters
refer to permissions of the owner’s ‘'group" (which may be
administratively formed). while the last three indicate permissions
of all "others". ©Note that the concepts of "directory,"”
“permissions" and "groups" will be discussed in detaii shortly.

The next number will be explained later (Section 3.5) and need not
concern you now. The entry "owner'" symbolically represents the
owner of the named file, while "group owner'" designates the group
that owns the £file (for the average user, the 'owner" and
"group_owner" entries will be identical). The number following
(i.e., 31, 28 and 941) indicates the number of characters in the
corresponding file. Next comes the .date and time of the last
‘change to the £ile (or directory), and £inally, the file (or
directory) name is listed.

The entry "total 4" line before the "long listing" indicates the
number of 512 character '"blocks" used to store the listed Zfiles.

" "

Producing Owner Listings (ls -o) Another useful option is "-o
(that’s lower case "O,"” roc the number "0"). It provides a "long
listing," as described. except that group infcrmation (which many
user’s don’t give a damn about anyway) is omitted.

Determining File Block Size (ls -s) As mentioned previously, a
"block" of 512 character is a unit of file size. To determine the
"block size" of files, use a "-s" option; the number of blocks will
be the first item printed, followed by all other file data.

Combined Filename List Options The options described may be
combined (in any order), such as:

ls -lta
will cause a Jong listing of all files via a time-ordered sort.

Terminating a Listing Finally, if you get <tired of a listing,
hitting the "DEL(ETE)" or "BREAK" key will cause printing to cease
and return you to the UNIX command level.

If you’re working on a CRT type terminal you may wish to stop a
listing temporarily, before it runs off the screen; the CONTROL-S
alternately stops and starts the printing of the list for you.

Directories and the File Tree Structure Each user has a '"home
directery," identified by his/her login name (user ID). When you
create a new file, unless you take special action, it resides in
vour ‘'"home (or login) directory," and is unrelated to any other
file of the same name that might exist in someone else’s directory.

A directory, in general, represents a collection of £files (and
possibly other subdirectories); explicitly, it contains the names
of the files/directories in it and control information necessary to
access those £files. An crdinary file is simply a collection of
data or characters stored on UNIX.

- 36 -

The set of all files UNIX knows about are organized inte a large
"tree" structure. A "master UNIX directory” is the "root" of this
"tree," and after several levels of "branches" (subdirectories). we
arrive at the "leaves of the tree" (the ordinary f£iles). The "root”
directory, using a UNIX coavention, is designated by '"/". The
following section will hopefully clarify the concept of the "tree
structure."”

Iry the =2ommand:
Is /

which will list various files/directories in the "root" directory,
including "bin" and "h1" (assuming vou are working on the UNIX-H
system). If the argument of an "ls" command is a "directory" name,
the names of all files/subdirectories within that designated
directory will be listed, according to the options "-1", "-t", "=
a", "-0" which may be invoked. We may look at a "crude"” diagram to
illustrate this portion of the "tree," i.e.,

/ ("root" of UNIX-H system)

)
1

i i ! ;
bin hi h2 other

(contains ("disk f£ile" directories first
many --- contains "login" " level
commands) directories of the directories

UNIX-H system)

Next try the command)
ls /bin

which will list the files and directories of a £first braach
directory "bin." You should recognize some of the filenames listed,
like "ed" and "ls," as this directory contains the mest commonly
used commands. Other commands are located in the directories
"/usrc/bin" and "/usr/lbin."

Next try listing the contents of "branch hi1" via the command:
Ls /hi

and among the dirsctories listed, you should note your own '"login
name." Directory "h!" is simply an illustrative '"pareant directory";
if your "login" is on a different file system., substitute its name
for "hi." It should be pointed out here that the "h" identifies the
physical computer (a PDP-11 or VAX system), while the digit "1"
identifies a particular disk f£ile on that system. Every directory
(except the "root") has a "parent." If "directory_2" is contained
within “directory_1," then ‘“directory_!" 1is referred %o as the
sarent of "directory_2."

- 137 -

Then proceed up the "tree" and try:
Ls /hl/your_login_name

which will list your personal £iles and subdirectories and is
entirely equivalent to the command:

ls

which lists the contents of vour "current" directory, as a default,
as no directory name argument is given. Your current working
directory is simply whichever directory you are currently working
in and issuing commands from (presumably, you are working in your
"login" directory, but this need not be the case, as will be shown
in Section 3.8).

Again, the above examples will work oaly if your login is on the
"hi" disk file system; otherwise, you must substitute the name of
vour disk file, if you want to try these commands. To f£ind out the
name of vour disk file (if you don’t know it), issue the following
sequence of commands while in your login directory:

cd ..
pwd
cd

and UNIX will print out vour disk file name (the "cd" and 'pwd"
command will be explained in detail in Section 3.8).

Pathnames It is a universal rule in UNIX that anywhere you can use
an ordinary filename, you can use a "full pathname.” A "full
pathname" obviously implies the ful! name of the path you have to
follow through the "tree of directories,” starting £rom the "root”
ending with the desired file or directory name. When using the full
pathname, separate each directory or £file with a "slash"; an
initial "/" is necessary to start the search in the 'root"
directory.

I1Z that leading "/" is missing, a ‘"branch" <from your ''curreat”
directory is implied, as will be 1illustrated in the following
examples (up te now, the "current" and "login" directories were
asgumed to be the same, but, as stated previcusly, they need not
be).

Comprehensive List Command Example For the purposes of
illustration, consider the following 'tree structure':

- 38 -

/ ("root" of UNIX-H system)

|
h1 (disk file in UNIX-H)
i

aaa (login directory) bbb (login directery)

1 : |

! | |
number stocks junk
(ordinary files in "/h1/aaa")

! i
i number stocks
% (ordinary £iles in "/h1/bbb")

aaa (subdi;ectory of "/h1/bbb")

]
junk trash
(ordinary files in '/h1/bbb/aaa")

Note that many names are repeated (on purpose), such as "aaa."
which may be a "login" directory in the "hi1" disk file system, or a
"subdirectorvy" under '"login" directory "bbb" these are
distinct directories that can be uwaiguely identified by their
pathnames. In the following examples, always assume our "eurreat"
(working) directory is login "bbb" (ful./ pathname "/h1/bbb").

Now that we are experts on the file structure, a general form of
the "ls" command may be defined:

ls options directory_name

The "options" are "-a", "-t", "-o", "-s" and "-l" previously
described or more to follow (including some combination of these).
The "directory name'" may be a full or partial pathname. I a

partial pathname (a pathname which does nct start at the "root,”
designated by the leading "/") is inrdicated, the search Sfor
"directory_name” will be a '"branch" £from the current working
directory; if "directory name" is omitted, the contents of the
"curreat" working directory will be listed, as previously shown.
In any case, the command will produce a list of £files and
directories contained within "directory_name." The command:

ls aaa

assumes a "branch" from our curreat directory "/hl/bbb," and is
entirely equivalent to:

is /h1/bbb/aaa

and will list the £filenames "junk" and 'trash.” Delonging t¢
!

subdirectory "aaa" in icgin directory "bbb." However, a Jull

pathname command:
ls /h1/aaa

will Llist "junk,” '"number" and "s;ocks." the ordinary £fiies
contained within login directory "aaa.

If vou are confused at this point, please reread this section, as
‘it is Imperative that you understand the concepts of "tree,"
“branch" and "pathname’ to properly execute commands.

Directory Status Listing (ls -d) If the command contains the "-d"
option as:

is =-ld aaa

which is equivalent to the full pathname command (in our
illustrative example):

ls -1d /ht/bbb/aaa

then the scarzus of directorv "/hl/bbb/aaa" risels will be given (in
this case, a "long listing"), and no informat&on about its contents
(ordinary files "junk" and "trash") will be printed.

Selective Listings We may also operate on selected ordinary Iiles
by listing their filenames at the end of the "ls" command (separate
filenames by "spaces"), as:

ls -1 stocks aaa/junk o
will give long listing information about the ordimary £files, with
full pathnames "/hi/bbb/stocks" and "/hi/bbo/aaa/Junk " as
"branching" from the current working directory is again implied.

If you request information about a non-existent file or directory,.
UVIX will ertzcallv notify vou that it does not exxst. £a

directory name is included in the list, the name will be "echoed"
by UNIX, and then its conteats will also be lListed. If the "-d"
cption is also used, it will have no effect wupon the Llisting of
ordinary files, but only directory status information will be
listed (rather than listing the directory’s contents)

As a final note here, it should be pointed out bhat many more LIST
options are available to the interested user; see the "ls" command
page in the UNIX User’s Manual.

3.2 File Protection

Changing File Protection (chmod) For f£iles you oswn, you mav wzsh
to aeny file "read" or "execute" access, or more probably "write"
permission, to other users. This can be accomplished by the CHANGEZ
MODE ("chmod") command, the general format of which, is:

chmod mode £ilel Zile2 Ziled

- 40 -

where files named have their mode changed (permissions to read,
write and execute) according to the "mode" argument which may be
"octal” or "symbolic" in nature. Note that filenames listed are
assumed to be branches from the "current" working directory, unless
vou use rfull pathnames.

Read, write and execute permissions are allocated to three classes
of users: "owner" of file, '"group members " (the formation of
groups is discussed in Section 3.3), and "others" (all other UNIX
users). The use of the "ls -l" command, described previously, will
indicate the current permissions associated with a file.

Octal Mode The "octal form" of mode designation is a string of
three octal digits (range 0 - 7). Each of the three digits assigns
permissions as follows:

can not read, write or execute
execute only

write only

execute and write only

read only

execute and read only

read and write only

read, write and execute

SOV WN~O
*e oo es 20 oo oo oo ee

Note that '"reading a file" means you can access the contents of the
file; to bring a €file into the editor, you need this "read"
capability. "Write" permission allows you to modify the contents
of a £file, which is required in an editor write, for example.
"Execute" permission refers to files containing executable code,
such as a compiled "C-program," or a "Shell Procedure" containing
executable UNIX commands.

In the three digit number, the first digit refers to ‘"owner" (so-
called, '"user") permissions, the second digit refers to "group"
permissions, and the third refers to the permissions of all
"others." Therefore

chmod 740 junk

indicates f£ile "junk" can be read, written onto and executed by the
"yser/owner," can be read by '"group" members, and can not be
accessed at all by "others." Note that a leadiag fourth digit may
be added to the "octal mode" -— again, it is of little interest to
the average user, but you may refer to the UNIX User’s Manual €£or
more information.

Symbolic Mode The "mode field'" may also be entered symbolically,
where the first character may be chosen from the list:

user/owner -

members of owner’s group
all others

everybody

»Ooow

The second character mayv anv of the following:

~

~)

- 4] -

= to list a new set of permissions
- to delete permissions
- to add to existing permissions

The remaining "mode svmbols' may be chosen from the list:

r read
w write
X execute

Examples are:
chmod a+w junk .

which adds the "write" permission to all users of f£ile '"junk" (in
addition to existing permissions), and:

chmod u=rw junk

will assign "write" and "read" permissions to the "user/owner" and
will leave permissions for "group” and "others" unaltered.

Permissions When a File is Created When a file is created using
the "ed" command, the '"owner" s assigned 'read"” and "write”
permission, while "group" and "other' users have "read" permission
only (usually the default --- see the "umask" command in Section
3.15 for more details), that is '"mode 644"; this is the wusual
protection you’ll want to guard against unauthorized editor
modifications. Any time thereafter, the "owner" of the £ile oaly
may use the "chmod" command to alter file permissions. It might be
pointed out that a large file could have '"write" permission denied
its owner -- a protection against careless overwriting or removal.

Directory Permissions and Changing Them A final comment is that
"chmod" may also be applied to directories in the form shown above,
except '"read," "write" and "execute" must be reinterpreted. '"Read"
permission implies that you have the right to list the names of
files contained in the directory. "Write" permission allows you to
create or destrov files within the directory. "Execute" permission
is equivalent to the right to '"search" the directory. i.e., being
able to enter it. Directory permissions are aot as straight-forward
as file permissions. If a directory has "write," but not '"execute"
(search), permission, you caanot remove a file because you can’t
gain access to the directory. If you wish to create/destroy £files
within a directory, make sure a "7" directory mode is assigned to
vou; if you wish to read/edit a £ile, a "3" directory mode is
required. The usual default given when vou create a directory is
octal mode "755," which is the permission status most users desire.

File/Directory Permission Anomolies As a £final example of
file/directory permissions, consider a typical "tree-structure':

- 42 -

/ (system "root" directory - "mode 5")
h2 ("disk file" ditectory - "mode 3")

|
kew ("login" directory - "mode 7")
' |
1 H
aaa bbb
(directory - "mode 0") (directory - "mode 5'")
| |
. cce ddd
(directory - "mode 7") (directory - "mode 7")
| ! i
— XXX yyv 222
(erdinary files) (ordinary files)

Now lets attempt to list the names of the ordinary f£iles shown. A
command: :

is /h2/kew/bbb/ddd

will cause the names of files "vvy" and "2zzz" to be listed, as all
directories in the "tree branch" have permission mode "5" or "7"
associated with them. Therefore, UNIX has the capability of
entering the '"root" directory, and reading the names of files and
directories contained within it, including disk £file directory
"h2."” XNow UNIX is allowed to enter directory "h2" and read the
names of "logins" contained withim it, including. directory "kew."
UNIX can always proceed to the next level of directories possessing
"x" permission (the right to 'enter" it), and then List the
contents of that directory, if it possesses '"r" permission (the
right to "read" those names). In our case, we ripple down the tree
until the last directory in the path (i.e., "ddd") is entered.

12, however, "entrance" to a directory is blocked ("x" permission
denied), and/or the contents of a directory cannot be "read" ("r"
permission denied). aaywhere in the path, a command using that
pathname will fail. For example:

ls /h2/kew/aaa/cce

will not succeed. Although the directory '"cce" has '"mode 7"
permission, certainly aliowing the names of files within it to be
"read," UNIX cannot penetrate directory '"aaa," which will not allow
"entry" nor allow its contents to be "read." Therefore, again let
me advise you to use directory mode "755," wunless you have a
specific need to do otherwise (such as special "group permissions"”
discussed in Section 3.3, or the '"rje" directory discussed in
Section 3.11)},

D

R

- 43 -

3.3 The Formation and Use of Groups

It is possible that some files or directories are of special
importance to a select group of users (probably people working on
the same project). For example, you may wish to assign 'write”
permission to & file being sdited by several members of a group.
but ensure that all other users can only ‘"read” the contents of
that file. In these cases. the owner of the file may assign
permissions=to "group" members different Zfrom those of ali "cther"
users (via the 'chmod" command). but the question to be resolved
is: "How are administrative groups formed?"”.

Every user is the owner of one group, associated with his/her losin
1D, and onlv the owner has the right to alter membership in that
group.

Adding Members to a Group (addgrp) To add members to your groﬁp.
issue the command:

addgrp group_name logini legin2

where ''group name” is the Jlogis name cof the group cowaer, and
“loginl." "login2." etc. are the names cf other users tc be added
tc the group. For example, if my login is "kew,” and I wish to add.
“"welk'" and '"aaa" (two logins on the same UNIX system) to my group.

the command
addgrp kew wek aaa
will accomplish the task.

-
Deleting Members from a Group (delgrp) To remove members from vour
group. use the command:

delgrp group_name login! login2

where, again, ''group name" is the logia name of the group owner.
The command:

delgrp kew aaa

"

would delete the member "aaa" from the group owned by "kew'.
Remember, only "kew'" can add or remove members of the group owned
by kew'. Every file has an owner and a group identification
associated with the Jogin of the creator, regardless of the
"current" working directory where <creation took place, or the
ultimate depository of that file. Only that owner may change
permissions associated with that file. or alter group membership
refarring to that file.

Utilizing Group Permissions To avail yourseli of special group
permissions associated with a file, you must first be included in
the owner’s grcup, and vou must make UNIX aware of the £act that
vou wish to work with a specific owner’s files and be subjec:t to
special group permissicns. By issuing tne command:

- bl -

newgrp group_name

vou have accomplished this feat. If you are aot a member of
"group name", UNIX will reply with "Sorry," and disallow vour use
of the special group permissions associated with 'group_name”.
This command issued without argument is equivalent to changing %o
that group associated with vour login (i.e.. the group that you
own).

Special groups (other than those just described above) may be
arranged by contacting your local UNIX administrator. Aalso, you
may wish to consider [iaking (which will be discussed in Section
3.5) as an alternative to "group permissicns."

3.4 Removing Files and Directories

Simple File Removal (rm) To REMOVE an existing file (or files). we
may use the "rm" command, such as:

-~

rm £ilenames

Leave a space between 'rm" and each filename. Be careful here. as
files listed are removed -- permanently!!! "Filenames' are assumed
to be "ordinary files" in vour current working directory. unless
full pathnames are indicated,

If you attempt to remove an "uawritable' file, UNIX will notify vou
by printing the 'permission mode" associated with that file, and
expects a response from you. Such a message will be printed only
if the £ile you’ve attempted o remove does not possess ""write"
permission. If you respond to UNIX with a line beginning with a
"y", the file »i// be deleted; for any other response (preferably
just a CR), the file remains intact.

Permissions to Remove a File This may seem strange, but only the
directory containing the £ile must have "write" permission, for
that file to be removed --- be careful. Just as strange is the
fact that if vou assign a "mode 5" directory permission (the right
to '"read" the contents of that directory and ‘"enter/search" it),
and a £ile within it has '"mode 6 or 7" (the right to '"read,”
"write" and, possibly, '"execute" it), you can edi: the £file and
effectively destroy it. Thus, to fully protect a file from
destruction or modification, the most J[2afear permission which
allows ‘'"reading” is to assign a "mode 4 or 5" permission to the
£ile, and a "mode 5" permission to the directory containing that
file.

Forced Removals (rm -f) An alternative is to use the command:
rm -f filenames
where the "-£" oﬁtion forczes the removal of a £ile (in a "writable

directory”). regardless of the permissions associated with that
fiie, and will iahibit the "mode warning."

~

- 45 -

[1]

Removals of Directory Contents (rm -r) The "rm" command with a "-
r" option, i.e.,

rm -r directory_name

will remove al/ files in the specified directory, including al!

subdirectories and their contents, reszursively. Finally,
"directory name'" Ifself will be removed, if it is not your
"current" working directory. It is important ¢to note that

"directory_name' itself and any subdirectory you wish to affect
must have a '"mode 7" permission associated with it. If any
ordinary file to be removed is "unwritable," you will receive a

"mode warning,” but it can still be removed as described above.

Fortunately, to remove a// files in your ‘current" directory. it
must be explicitliy named via a full pathname (or its abbreviation
".", explained in Section 3.6), and the command

m ~-r

without directory name argument, will do actiaiag. Probably, vou
would never want to issue this command oa purpcse aanvway.

Deleting Files Interactively (rm -ir) Another useful command is
DELETE INTERACTIVELY ("rm" command with a "-ir" option), of the
form:

rm -ir directory_name

In response, UNIX wiil sequentially Llist all files/subdirectory
names in "directory_name", expecting a response from you.

If the UNIX printout is prefixed by the word "directory," such as:
directory some_directory_name:

UNIX wishes to enter that (sub)dirsctory for the removal process.
A "y" response allows UNIX to eater, while a response beginning
;ith any character other than "v" (preferably a simple '"carriage
return”) will cause that directory to be skipped in the removal
process. If yvou attempt to enter a (sub)directory vithout
possessing a "mode 7" permission, you will not succeed in removing
any files and the '"interactive deletion” process will abort
prematurely.

A listed file (or £ile partial pathname), without a prefix,
indicates UNIX is awaiting your instructions concerning the resmoval
of the named file. Again, a "y" response will cause removal of the
named file, while a response beginning with any character other
than "y" will leave the file Iantact. 1If the file in question is
"non-writable,"” a "mode warning" will agof be issued.

A (sub)directory mav be subject to the same removal process, £ all
files/subdireczories within it have been removed previously. This
"interactive delertion"” process will sequentialliy penetrats gi!
ievels o subdirectories.

- 46 -

HEitting the "DEL(ETE)" or "BREAK" keys will cause you to exi:z the
REMOVE command.

If vou wish to "interactively delete” £iles in your '"current”
working directory, vou must explicitl/y indicate its full pathname
(or its aboreviation "."); this is a useful tool to periodically
"clean out’ your login directory of unwanted files. The command:

rm -ir
without directory name argument, will do aothlag.

Permission Modes Revisited It should be pointed cut one more time
that a file may naot be removed by any of the above techniques.
unless the parent directory has "mode 7" permission assigned to the
remover (whether he or she is the owner, group member or other user
of that directory). By denying "x" permission, you cannot enter
the directory for the removal process. and by denying “r”
permission, vou cannot read the names of files you are <trying To
remove. Also, oanlis the permission of the parent directory aifectis
the removal process, and the permission modes of all other
directories, rignt up to the "root.” need only be mode "5."

Careless File Removal Should you inadvertently destrov a
"valuable" £ile. vou still have a chance to retrieve an older
version, saved on a tape copy of the disk files made at the end of
each business day, by contacting the UNIX administrator of your
particular system.

3.5 Copying, Renaming and Linking Files

Copying a File (cp) The COPY ("cp") command makes a duplicate copy
of a file, leaving the original intact, i.e.,

cp filetl £ile2

will form a copy of "filel!" under filename "file2". Beware that L%
vou COPY a file to another one that already exists, the original
contents are overwritten, if the the "target” £ile (in our example,
"filed") is writable.

In the last example, we have copied ordinary files within the
"ecurrent" working directory. It is possible to enhance this
capability, by using full pathnames, such as:

¢p /h2/txx/one /hil/kew/first

In this case, file "one" in directory "/h2/txx" will be copied into
file "first" in directory "/hil/kew".

A restriction is that the files and directories involved must
possess the proper permissions. Specificaily, you must be able to
enter directory ''/h2/txx" and be able to read the names of £iles
contained within it (directory mode "5 or "7" required), while the
fiie "one" must be ~s2adsble (at least mode "4"). Similarly, you

s LI

must have mode 7" permission associated with directory "/h! kew”,

~

- 47 -

such that new copy "first" may be created: if "Iirst" already
exists, directory "/hl/kew" must possess mode "3" or "7" permission
0 allow entry, and file "£irst" must be writable. The discussion
¢¢ permission modes in the REMOVE command section was included to
provide a warning; points raised here and in the LIST command
section were included simply for vour information. 1If the "cp" or
"ls" commands fail due to improper permission modes., you will unoC-
be harmed. but vou can spend a lot of time "cursing at UNIX." iZ
vou are unaware of what the problem is. 4lso note that directories
involved in the “cp" command must reside in the same UNIX system
——- disk file systems "hi" and "h2" reside on the "UNIX-H system';
note that the "rm" and "mv" (to follow) are similarly restricted to
the UNIX svstem containing the "current' working directory.

Before we leave this example, there is one more interesting point
to note. When a COPY command is issued, whoever issues the command
is the owner of the duplicated file. In our example. if login
"exx'" issues the command. the £file "/hl/kew/first" is owned by
":xx". The duplicate file "first" (if it didn’t previously exist)
will be created with the same permissions as the original f£ile
“cne", probably "mode 644." This means that login "kew", in whose
directory file "first" resides, can only read its contents tas
"txx" is still the owner of that £ile), and "kew" cannot even
change its permission mode. Therefore. if "kew" wishes to edit the
contents of file "first”. a personal copy (say "kew_first”) must be
created; luckily, "first" may be removed by "kew"., as he/she is the
owner of the parent directory (the login directory "kew" itself).

To avoid any of these strange permission or ownership problems, it
is best to create (see Section 3.8 and the "mkdir" command) a
remote job entry subdirectory for your login, called '"rje". Your
login directory should possess permission mode "753" and the "rje"
directory should be mode "777." Now anyone can send you copies, as
long as they are directed to your 'rje" subdirectory; vou, in turn.
can make a second copy in any of your other (sub)directories and be
the owner of this new duplicate. This '"rje" subdirectory will also
be used when sending £files to another UNIX system (see the
"usend/nusend' command in Section 3.12).

Copying Many Files (cp) another variation can be demoastrated by
the commandg:

cp file_name directory_name

which copies "file_name" in the "current" working directory to a
target file with pathname "directory_name/file_name". The argument
"file_name" may be replaced by a sequence of names separated D5V
"spaces."

You may aot copy "directories' using the "cp" command. See the
"cpio" «command in Section 3.13, if vou are interested in doing
this.

Renaming Files (mv) The MOVE ("mv") zommand should perhaps be
zalled "RENAME THE FILE." The command:

- 48 -

mv £ilel filel

changes the name of f£ile "filel" to "£ilel2". As usual, unless vou
specify full pathnames, the files listed are assumed to be
"branches" cf the "current" working directory.

t shouid be noted here that if vou attempt to 'move to" a Eiie
that aiready exists, the original contents of that £ile will be
overwrittan (lost forever!!), provided the Iile is "writable”; in
our sample command, "file2"” is in danrger. If that f£file is
"unwritable,”" UNIX will print its "permission mode"” (similar to the
REMOVE command) and await a response from you; if the £irst
character you type is "y", the "move" wil/! be executed, while any
other response will neglect the MOVE command.

Moving Many Files to a New Directory (mv) A command such as:
mv £ilel £ile2 filed target_directory

will also work, moving the named files to a new "target_directory”
(which must be on the same UNIX system).

Changing Directory Names (mv) A command:
mv subdirectory_! subdirectory_2

will change the name of "subdirectory_I1" to "subdirectory_2".
noting both subdirectories must appear in the same 'parent"”
directory.

Linking Files (ln) The same ordinary file may appear in several
directories under possibly different names. This feature is called
"linking." If changes are made to the file, all/ wusers linked to
that file see the same modifications: it is, in fact., the same
£ile. To creat2 a "link" to an existing file, invoke the command:

ln existing_file target

where "existing file" (an ordinary file) may be a simple £ilename,
if it is located in vour current working directory, or a full path
name, if net. The "existing file"” will now appear in the "target"
irectory with name ‘'"existing file" (or the last componeat of
"existing file"). £ vou wish to repame the file in the 'target”
directory, then '"target" should be a ful!/ pathname down to the
"filename level." The commands:

In /hi/kew/junk /hi/kan
1n /h1/kew/junk /ht/too/garbage

will produce a £file with three "links"; "/hl/kew/junk”,
"/hi/knn/junk", and "/h1/too/garbage" are the same file with access
from three directories.

Note that vou may no¢ link f£iles in different disk £ile systems,
such as: .

~

- 49 -

!n /hi/kew/junik /h2/bbb

is an fllegal command: "h1" and "h2" are diirferenr disk £files on
the same UNIX-H system.

You may not link directories. Also. if one user linked to a ({ile
invokes the "rm" command, oa{yv that user’s link to the file is
removed (the file is destroved if it has onlv cne link associated
with it). The number of “links" associated with a file is
indicated by the number before the file owner’s name listed via the
"ls -1" command. Finally, note that you may link to another user’s
file without nhis or her consent., provided the directory containing
that f£ile has "mode 7" permission for you.

You may alse link many files at once to a "target_directory”, via a
command of the form:

In £ilel file2 £iled target_directory

Ownership/Permission Anomalies The problems associated with
ownership of a '"copied ¢file" have already been discussed. 7o
recap. the "owner” of a £file copv s the Jssuer of the COPY
command. If a new file is created for the copy, the permissions
will be the same as the original £ile; 1f one copies onte an
existing file (with "write" permission), only the c¢oateats, but nce
the permissions, of that overwritten f£ile change.

As links to a file are formed, the owner of al// linked copies is
the same as the owner of the origipmal file. If the linked file has
standard permission mode "644" associated with it, <then only the
owner may modify the £file contents, which is reflected in all
linked copies. In many cases, however, the link was formed such
that al/ linked users could make file modifications; if this is the
case, the owner must elevate the permission assigned to ‘'others"
(or possibiy '"group members') to mode "6." Obviously, if protection
of the file is important, it must be protected at the parent
directory level, by assigning a mode "0" directory permission %0
"others" (and possibly "group members').

It should be obvious by now that the whole business of security and
file/directery permissions is a giant "pain in the ___." If you set
modes up '"logically," probably you won’t get the protection you
want, or you’ll fail when you try to execute certain commands.
Documentation on these points is very poor, and most of the
comments pointed out in this memo were due to thorough
investigations of why certain commands failed. You may run into
these problems one at a time, and, possibly, with the warnings
presented here, you may have a "glimmer of hope" in determining
what went wrong (or you c¢an just '"throw up your hands" in
exasperation, assign "o", "w'", and "x" permissions to all vou
files/directories, and pray that all your files survive the "abuses
of the outside world").
Getting a :iittle more serious, we
ownersinip af ‘moved" files. If &
"disk file swvstem." ownership is ne

still must determine <he
iles are "moved" within the same
r ged {aithougn the Issuer

- 50 -

of the MOVE command may not be the owner of the file moved) and all
links to that file are retained. However, if you move a £file to
anocher "disk £ile" (on the same UNIX system, of course), ownership
belongs to whoever issued the MOVE command. In the latter case, a
"eopy"” is actually made and the original file is "destroyed" (or
has its link removed).

Changing the Owner of a File (chown) To solve some of these
problems, you, as the owner of a "copied/linked/moved” £ile may
desire to change ownership of that file, if it makes sense to do
sQ. Probably, if you copy or move a file to someone else’s
directory, it would be "nice" to have the file, and directory it
resides in, have the same owner. The owner of that file may do
this by issuing the CHANGE OWNER command ("thown"), as follows:

chown new_owner filenames

where obviously the current owner of "filenames" relinquishes
ownership to a new login ("new_owner”). Be carefui. as ance
ownership has 'changed hands,” oaly "new_owner" may issue a "chown"
or '"chmod" command for that file: you have given up your ownership
permangntiy and frrevocabiy (UNIX is not seatimental about ‘'past"
owners).

As a final note here, a change of ownership of a "linked” £ile,
changes the owner ¢f al/ linked copies, regardless of the
directories they reside in.

Copy and Convert Command (dd) Most user probably don‘t require any
alternatives to the COPY command, but the "convert and copy”
command, cleverly named "dd," may be useful when transferring files
to tapes or other raw physical I/0 devices. The basic format is:

dd if=input_file of=output_file options

Without options, "dd" will create/overwrite '"output_file" with a
copy of "input_file"; designate either full or partial pathnames.

The interested reader should look at the "dd" manual page Sor
specialized cptions available. Examples include:

conv=licase Converts all alphabetics to lower case
conv=ycase Converts all alphabetics to upper case
conv=swab Swap every pair of bytes.

3.6 Printing File Contents

Concatenating Files (cat) We can print the contents of files via a
direct UNIX command without entering the editor. The CONCATENATE
("cat") command will print the contents of one or more files onto
the terminal. Consider the command:

cat £ilel f£ilel

which will concatenate (join together) the files "filei"” and
"£iie2", in the order listed {(there may be more than <wo ZIiles

.

- 51 -

listed). and print them on the terminal. Remember to leave a "blank
space" between "cat" and each file name. As always, files not
listed with full pathnames are assumed to be '"branches"” of the
"eurrent" working directory. Also, do not "cat" directories, as
garbage will be printed.

Paginated Printing (pr) The PRINT ("pr") command has the following
general form:

pr options file_names
and acts as the "cat" command except it prints the contents of each
of the named files in a formatted manner. It provides a heading on
each page (including date, time, page number and filename),
followed by 56 lines of text, when no "options" are present.

"Options" is a '"space-separated" list, including those listed
below, and many more to be found in the UNIX User’s Manual.

«k Begin printing with page "k" (default is page 1)

-k Produce "k-column" output (default is single column,
i.e., normal text printing)

-wit Set width of the page to "#" characters, rather than the
default 72

~-1# ISet the length of the page to "#" lines, rather than the
default 66 (i.e., 56 lines of text, plus a header and
trailer) .

-h xxXx Use "xxx" as the header to be printed on each page,
instead of the filename (noting you must enclose the
header in "quotes," if it contains more than one word)

-p Output will pause before beginning eacsr output page, 2
bell will sound at the terminal, and a CARRIAGE RETURN
will begin printing again (this is very useful for
printouts on the CRT, if the page length is adjusted

properly)

-t Print neither the five-line header or trailer normally
supplied

-n# Provides line numbering. Numbers start at "1" £or each

named file; line numbers are "#" digits long, with
default value "5".

Stopping the Printing Process It should also be nocted that
printing due to an issued "cat" or "pr'" command may be terminated
by hitting the "DEL(ETE)" or "BREAK" key. Also. as described
previously, "CONTROL-S" will alternately stop and scar! the
printing process, which may be a lifesaver as text is scrolling off
a CRT screen.

- 52 -

Offline Printing (opr) There is alsec an OFFLINE PRINT ("opr")
command which produces a output on a lineprinter or Xerox laser
printer in the computer center. The general format of this command
is:

opr options filenames

where "Zilenames" is the list of files (separated by "spaces”) you
wish to print. Useful "options'" (again separated by "spaces™) are:

-b # This option will direct output to &ia number "#,"
rather than the default "bin" read from your password
file (see Section 3.15, if you don‘t know what your
default "bin" is).

-d dest This option directs output to a remote station 'dest"':
the default is the local computer center.

-t type This option will direct output to a particular "type"
of printer. Valid entries for tvpe are "xr" fcr the
9700 Xerox printer, or "pr" (default) for standard Line
printers.

-f£ form For Xerox 9700 printers, you may specify whether vou
want copies produced without or with holes. The
argument form may be designated "nchole" or "hole" (the
latter is the default).

-p mode For Xerox 9700 printers, you may specify the "mode" of
sutput. Possible values for the argument mode are
"land" (for computer output or landscape 11x8.5
orientation, which 1is the default), "por" (for letter
or 8.5x11 portrait orientation), or "2oni1" (for two
landscape pages on one side).

-u name Places "name" (1 to 8 characters), instead of your
login name (default), on the banner page of the
printout.

-j job Places "job" (1 to 8 characters), instead of the
default jobname internally generated by UNIX, or the
banner page of the printout.

-n This option will cause I[ine aumbers to be printed.
These numbers begin at "1" for each file argument.

-cit Causes "#" copies of the output to be produced.
Default is "1" and maximum is "99."

For more options, see the manual page for the "opr" command. Alsa
it should be noted that the "form," "dest,” "type" and "bian" may be
preselected when you log in; see the "user’s profile" description
in Section 3.15,

Once an "opr" job is queued, UNIX will respend with an OPR JOB
NUMBER: at this poiat, the named files may be medified without

/
—

- 53 -

affecting the priating.

Offline Printer Status The OPR command utilizes RJE ('"remote job
entry") hardware to connect your UNIX system to IBM hardware. which
actually orchestrates the printing. If this is not operational,
your print jobs may be lost, or at least delayed for some time. To
obtain the current status of the RJE hardware, simply issue the
commang:

rjestat
3.7 Special Characters Associated with Filenames
When specifying filenames as command arguments. such as "ed", "ls".

"ecat", ‘pr", "opr", "la", "mv", "cp”, "rm" and more to come, there
is a new group of "metacharacters" to help (and maybe confuse) you.

They are the "asterisk (*)," "question mark (?)." 'square brackets
({1)" and "exclamation point (!)" ===- and of course the "#"
(erase) and "@" (kill line) characters still work. Their

characteristics are somewhat or drastically different than their
"editor'" counterparts --- be wary.

For illustrative purposes, assume our
contains the following files:

working directory

.profile
junk
junky
bad_junk
jinx

QUESTION MARK Metacharacter (?) The "?" may be used to match any
singie character (except the ".", if it is the first character of a
filename). The command

rm ?profile

will not match file ".profile” or any other file in our directory,
and UNIX will so indicate. However

rm jin?
would successfully REMOVE files "jinx" and "junk".

SQUARE BRACKETS Metacharacter - ([...]) A string of characters
enclosed in '"square brackets” will match any siangle character in
the string. You may indicate a lexical range with a "minus sign,”
such as "4=9", which is expanded to "456789". For example, the
command

cat jla-zlni{kx]
would concatenate and print files "jinx" and "junk". Note that
this metacharacter grouping will again sot match a ".", if it is
the Firsc character in a f£ilename.

- 54 -

EXCLAMATION POINT Metacharacter (!) The "square brackets" has an
negation character, similar to the "leading “" in the analogous RE;
in this case, it is the "exclamation point" (!). For example, the
sequence

{thom:

matches any single character except "h". "n" or "m". Similarly,
the command:

cat jilk-zinixk]

would print the contents of file "jinx" only; {!k-z] represents any
single character not in the lexically contiguous range "k" through
"2" inclusive.

ASTERISK Metacharacter (*) The last metacharacter is the
"asterisk,"” which may be transiated to mean "anything at all."” A

1" "

leading "*" will match any or no prefix {(except the ".", if it |is
the First character in a filename). Thus

pr *junk
would cause a formatted printing of <£iles "bad_junk” and "junk".
A trailing "*" will match any or no suffix, i.e.,

pr junk*®
would print "junk" and "junky". Note that

pr junk??¥
matches a filemame of six or more characters, starting with the
string "junk", and this matches so files in ocur directory. The
important point to note here is that "?" matches a single

character, while "¥" matches zero or more characters.

A string enclosed by two "*’s" will act upon all £iles containing
the string, i.e.,

pr *junk®
would print "junk", "junky", and "bad_junk". Again

pr *ro¥

would not vield a match with file ".profile”, as the first "*" dces
not match the "." in a filename, when it is the first character.

Finally, "*" alone matches any file, except those beginning with a
te 1,

: hence, a very dangerous command in UNIX is
rm s

whizh =suld wipe out all Ziies except ".preiile”, ia our

~

[

- 55 -

illustrative directery.

Note that "metacharacters' can be used in the last directory or

£ile in a pachname; all the <Zcllowing pathnames would match
“/h2/abe/help" (and possibly other files in directory /h2/abec):

/h2/abe/h*
/h2/abc/Thoi?lp
/h2/abe/*e¥

A pathname such as "/h*/a??/help", while not illegal, is confusing;
it is best to use "metacharacters" oaly in the last file or
directory in the path.

3.8 Other Directory Manipulations

Changing Directories (cd) If you want to work on someone else’s
files rather than your own, vou can change directories using the
CHANGE DIRECTORY command "cd", for example

ed /h2/knn

will change the directory you are currently in to login name 'kna"
in disk file "h2". Hence, your "current” (or "working') directory
need 20f be vour "login" directory. Once you have changed to a
foreign directory, you can only manipulate files to the extent the
owner of that directory allows permissions; obviously, you must
have "x" permission assigned to you, or you will be unable to enter
the new directory in the first place. Also, you may only change
directories within the same machine; for example, if your "login"
is on UNIX-H, you have "cd" access to file systems "h!" and "h2"
only. As usual, if you do not specify a ful!l pathname, the "cd"
command will seek a "branch'" from the "current" working directory.

Also note that the command "cd" with no argument will automatically
return you to your "home" or "login" directory.

Current and Parent Directory Abbreviation You may go up one lLevel
in the tree structure by typing

cd ..

where ".." is shorthand for "parent of whatever directory you are
currently in." If you are in your subdirectory "nose", i.e.,
"/h1/your_login_name/nose", the above command will leave you in the
"parent of nose," i.e., "/hl/your_login_name". For completeness,
"." i{s a shorthand name for the directory you are in (your curreant
working directory), as mentioned previcusly. In fact, the command
"Is =-a" (which prints the names of all files/subdirectcries
contained within your working directory, including those beginning
with ".") will alwavs list as its first two names, your current
working directory "." and your parent directory "..".

Determining Your Working Directory (pwd) B8y this time. yocu’re
probably so damn confused, that you don’t know what directory
vou’'re ia. UNIX saves vou with the PRINT WORKING DIRECTORY ccmmand,

- 56 -

i.e.,
pwd

will print the full pathname of whatever directory you’re currently
working in.

Creating New Directories (mkdir) It is often convenient to arrange
one’s files, so that all files related to one special area of work
are grouped together. We can accomplish this with the MAKE
DIRECTORY command "mkdir".

Assume we wish to write a "book of two chapters,” we could make a
new directory:

mkdir book

which forms a directory of pathname "/h!/your_login_name/book"
(again, I am assuming throughout that vou are working in your
"login" directory, which is located on the "hi" file system). Now
vou can get into this directory by the command:

c¢d boock

Note that a "full pathname" is not necessary here, as a '"braach”
starting from your '"current directory” is implied. XNow you can
form £iles "chap_!" and "chap_2" via the editor, and you can locate
any chapter, say "2," by using the £full pathname
"/h1/your_login_name/book/chap_2" . You may extend this directory
creation procedure to any level desired (within reason).

Removing Empty Directories (rmdir) You may remove an empty
directory using the REMOVE DIRECTORY command "rmdir" (possibly by
referring to the directory by a "full pathname"); if it is aot
empty, you must delete all files in the directory first. For the
"book" directory above, the following sequence will eliminate the
directory:

cd book ([changes from "login" te '"book" directory]
rm chap_! chap_2 [removes all chapters from "book" directoryl
cd {return to "login" directory!

rmdir book {removes empty directory "book"]

Obviously, the "rm -r book" command, as previously described, can
be used to accomplish the same feat (and more easily).

Locating Specific Files/Directories (find) FIND will recursively
descend a named directory structure, and for each file/directory
encountered, it will evaluate one or more expressions. With
several more pages of descriptions and examples, we will hopefully
find out what the hell the above statement means. First, consider
the general format of the FIND command:

find directory_list expression_list

The argument "directory_list" specified is a space-separated Llist

of full or partial pathnames of directories to be investigatec. As
vou will generally be interested in only one directory, the
discussions to follow will assume this fact; once you have mastered
single directory searches, extrapolation to the multiple case is
really intuitively obvious. The directory specified is just a
starting point, as the FIND command will recursively penetrate ail
levels of subdirectories. For each file/directory encountered in
this search. the "expression_lList" will be executed.

The argument "expression_list" is composed of a series of
primaries, separated by spaces. A primarv is a boolean expression.
which may be evaluated to a "true" or "false" condition. and, in
some cases, performs an action. For each file/directory found in
this recursive search, the first primary is evaluated; if the
evaluation indicates a 'true" condition, the second primary is
evaluated. This process is repeated until all primaries have been
evaluated. or until a "false" condition is encountered. In either
case. the entire sequence of events is repeated for the next
file/directory found in our search.

ALl that remains is a list of commonly used pgrimaries and then
we’ll be ready for some iliustrative examples. or the list
delineated below, two abbreviations are used: .

.
-
iy

-

1! The string LC will be used to represent the lasf component in
a pathname, regardless of whether it is a file or directory,

-
N
—

The argument "#" can be a positive decimal integer "N," or
"+N" (which means more than "N"). or "-N" (which means less
than "N").

Those common primaries are:

-name N4ME . Primary is "true,'" if NAME matches the current LC.

Normal £ilename metacharacters ("[", "?", "*" and
"1") will work, if NAME is enclosed in siagle
quotes.

-perm OCT Primary is "true.," if OCT matches the permissions

associated with the LC exactly. OCT is a2 three or
four digit, octal number, in the styie of the
"chmod" command (see Section 3.2).

-type d Primary is "true," if LC is a directory.

-type £ Primary is "true," if LC is an ordinary file.

~links # Primary is "true," if LC has "#" links associated
with it.

-user NAME Primary is "true.,”" if NVAME is the owner of the IC.

-atime # Primary is "true," if the LC has been last accessed
A" days ago.

- 58 -

-mtime # Primary is "true,”" if the LC has been last modified
"#" days ago.

-newer FILZ Primary is "true." if the LC has been modified wmore
recently than the argument FILE, which should be a
designated with a full pathname.

-print This primary is alwavs "true." It cause the full
pathname of the current LC to be priaced.

-axec C\WD This primary executes the designated command CMD,
and is "true," if that command is successfully
executed. Any UNIX command is permissible, with the
following restrictions:

e The command must be terminated by an escaped
semi-colon, i.e., the couplet "\;"

e A command argument "{}" is replaced by the
curreat pathname.

e Be wary of using characters which may have
special meaning to UNIX: their effect can cften
be negated by preceding them with a "backslash”
or enclosing groups of characters with "single
quotes."

-0k CMD Primary is similar to '"-exec,” except that the
generated command line is £irst printed out,
followed by a '"question mark." This command is
executed only if the user responds by typing a "y"
followed by a "carriage return"; a "carriage return”
alone will cause the command to be skipped.

! The "!" primary is used to negate the meaning of
whatever primary follows it.

-0 The "-o" operator provides logical woriag of
primaries. Any grouping of "ored" primaries should
be enclosed by "\(" and "\)" to be interpreted
properly.

As our first example, assume we wish to determine %the £full path
name of all ordinary files within the directory "/al/junk" (or its
subdirectories) that have names '"trash" or ''garbage"; try the
following FIND Command:

find /al/junk - type £ \(-name trash -o -name garbage \) -print

Note that the use of "\(" and "\)" causes the oring of names
"trash" and "garbage" to be treated as a single Boolean expression.

Next assume you wish to remove all files in the current directory
(and all of its subdirectoriss) that ead in ".0"; try the command:

find . -name ‘¥.0’ -exec rm {} \;

Xote that the "{}" argument zauses any files matching the "-name"

~

™D

- 50 -

primary to be removed: the names we are trying to match make use of
metacharacters, and should be enclosed in "single quotes.”

Our next example allows us to print the full path name of all files
in the current directory (and all of its subdirectories) that are
nor owned by login "smart" and have aot been accessed in the last
week, i.e.,

find . ! -user smart -atime -7 -print

Note that the "! -user'" group is true if the owner of the LC is not
"smart" via the megation primary; the argument "-atime -7" is frue
iZ the LC has been accessed last more. than seven days ago.

Our last example attempts to produce an "owner Llisting"” of the
files in some directories in our UNIX system, whose names begin
with "x" and end in "y'":

find / -type & -name ‘x*y’ -ok ls -0 {} \;

Note the "-ok" primary is used rather than "-exec." as only some
“long Llistings" are desired. If a match is found to the desired
directory name. you may interactively cause the LIST to Dbe
produced, as FIND will print out the "list" command generated, and
wait for a response from vou; a '"y' response will cause the listing
to be produced, while a 'carriage return” will disallow the
Listing, -but will allow the search for more directories to
continue.

Although the FIND command may look a bit ominous at first, it
should not be passed up to quickly, as it is a very powerful and
useful tool. Set up a practice directory structure., load it with
some files, make up FIND commands using many different primitives,
view the results, and soon you’ll be an expert.

Free Disk Space (df) On congested UNIX systems (especially those
dedicated to specific projects), it may be impossible to do any
work because there is no free space on disk £ile systems. The
following command will list the number of "free blocks" (a block is
512 characters) available in the named disk file svstems {(such as
"/al," "/a2," "/usr," "tmp," etc.):

df -f disk_file_list
If the "disk_file list" argument is omitted, information for all
disk file systems will be produced by default. £ you also wish to
know the total number of allocated blocks for a particular disk
file system, add a "-t" option to the above command.

Disk Usage (du) To summarize disk usage within particular
directories, the following command can be used:

du -options directeory_names

o

ument ‘“directory-names' is a space separated list
ies vou wish to be investigated for disk usage; Li£

- 60 -

argument is omitted, the curreat directory is assumed by default.
This command gives a count of used blocks in the named directory,
and recursively gives identical data for all subdirectories
contained therein. The possible options are single letters (which
may be concatenated), i.e., .

s Causes only the grand total €for each of the specified
directory names to be outputted; this includes disk usage
found within subdirectories.

a Causes an eatry to be produced for each file encountered in
the recursive directory scan.

3.9 Redirection of Inputs and Outputs

Most of the commands we have seen so far produce output on the
terminal. Some commands., Llike the editor, also take their input
from the terminal. In UNIX, it is possible to replace the terminal
with a file, for either (or both) input and output.

Output Redirection (>) 1If we issue the command:

ls

a list of filenames is printed on the "standard output” (the .
terminal) by default. This output may be redirected to a file, say .

"names' in this example, with the following command:

ls >names

This command creates file "names" if it does not already exist, or
will overwrite it, if it does; the output of the "ls" command is :
no output is printed on the .

delivered to file "names" oaly
terminal. The symbol ">" is used throughout UNIX to mean "put the
output on the following file, rather than on the terminal.”

Combining Files Another example is to combine several £iles into
cne file, i.e., :

cat file! f£ile2 filel >single
will concatenate files "file!"”, "£ile2" and "filel", and, instead
of printing them on the terminal, will write them onto the file
"single".
Creating Empty Files Note that a command of the form:

>junk ‘
will create an empty file named "junk" in the current directory.
Append Redirection (>>) There is an associated symbol ">>" which

means "appeand the output to the ead of the foliowing file, rather
than print on the terminal." The command:

L]

~)

~

- 61 =

cat filel >>file2

will add the contents of "filel™ to the end of "f£ile2". Note that
if "file2" does not exist. UNIX will create it.

Input Redirection (<) Another universal symbol "<" wnich means
"take the input from the indicated file, rather than the terminal."”
Assume we have a file "do_it" with the following contents:

Sd
imS
$-9,5w

Q
Now, we initiate the commang:
ed - filel <do_it

which brings "file!" into the editor for a working session and
accepts editor commands from file "do_it" (i.e.. deletes last line
of "filel", moves the first line to the end of the editor buifer,
wrice onto 'filel!" the last 10 lines of the editer buffer., and
quits the editor) rather than from the terminal. It is possible ¢to
combine input and output cedirection in a single command.

Shell Description Before continuing, the term "shell” will appear
from time to time, but will not be explained in detail in these
notes. The mysterious "shell" is simply a program which interprets
what vou type as commands and arguments; it acts as the interface
(a transparent interface) between the user and the raw computing
power of the machine. In fact, all redirections discussed here are
"shell properties."

General "shell procedures" would require another large tutorial
memorandum as an independent topic. A brief description of
elementary "shell scripts," useful to a newer UNIX user is provided
in Section 3.16. If vou want more information, ycu should start by
taking an offered course on "shell programming” to obtain up-to-
date list of documents; there are many ocutdated "shell” documents.
which can easily lead you astray, so be careful.

Pipelines (|) To understand the concept of a '"shell pipeline.”
represented by the "|" (vertical bar) svmbol, consider the
following problem: we have three files "a", "b" and "c", which we
would Llike to. combine and print in a paginated format using the
"pr" command. - We could accomplish this with the <following
commands :

cat a b ¢ >tempfile {combines files]
pr tempfile . iprints combined file in paginated formi}
rm tempiile {remove temporary file!

but a single command line containing a "pipe" would suiffice, ie,

cat a b ¢ | pr ["space" is mot necessary before and after "|"!

The "pipe" takes the output from the first command (in this case,
"eat a b c¢") and, instead of outputting it on the terminal (the
"standard output"), forces it to be the "standard input" to the
second command (in this case, "pr"). Any command, which would
normally write onto the terminal, can drive a "pipe": any command,
which reads from the terminal, can read f£rom a "pipe" instead.

New Inputs for Printing Commands Note that the '"pr" command
without any "filename'" argument accepts input from the "standard
input.” or in this case, a redirection from the "pipe output': the
"standard input" means a series of text lines from the terminal,
terminated by a line containing only CONTROL-D (the ‘"end-of-file"”
character). The same hclds true for the OFFLINE PRINT command
"opr" and the CONCATENATE command "cat". Consider the command:

cat one two | pr | opr

First the files "one" and '"two" are combined. Next the combined
£ile is passed through the "pr" command for pagination. Finally.
the "opr" command produces the offline print of the combined file
in paginated format.

Another example of interest is:
date | cat - a b >¢

The ‘new "twist" here is the "-" argument in the '"cat" command; this
designation represents "standard input" from the termisnal. In this
case, "cat" accepts a redirection from the '"pipe output.” The
above command will concatenate the '"date/time" Lline (from the
"date" command) with files "a" and "b", and write the entire text
inte the redirected cutput file "e¢".

There may be more than one "pipe" in a command Lline. Also, it
should be noted that the "circumflex" (°) is the olc "pipe'" symbol,
and it fs still supported by UNIX.

Multiple Commands on One Line (;) Another command symoal is the
“semi-colon"(;), which allows multiple commands to be executed (in
the order listed) before control is returned tc the terminal. The
multiple-command:

cat a b ; date
causes combined files "a" and "b" to be printed on the terminal,
followed by a printout of the "date/time," and then control is
returned to you. '
Automatic Hang-Up A useful multiple command line is:
a_long_running_command ; stty O
Assume you have a time-consuming command tc rua, but you want to go
home; simply add the command "stty 0" (which logically disconnects

vour terminal from UNIX, or produces an eguivalent "hang-up”) to
the end of a multiple command line.

N

Grouping Commands Commands enclosed by "parentheses" and separated
bv "semi-colons" are are treated as a single command. such as:

(cat a b ; date) | pr

will combine files "a'" and "b" (and does not print them on the
terminal because of the "pipe" designation). executes the "date”
command {and again does not print it), passes combined files "a"
and "b" followed by the "date/time" line through the "pipe" to the
"pr" command, which treats them as one large file and prints them
in a paginated format.

3.10 Background Processes

This section will cover the techniques necessary to execute
commands in the background, while the terminal becomes immediately
available for other uses. This is most useful 1in compiling or
executing large "C" or text-formatting programs as a backgrouad
process (which couid take a reasonable amount of real time), while
continuing to do cther work.

Commands Processed in Background (&) To rua a process (or .execute
a command) ia "background," simply place an "ampersand" (&) at the
end of the command line. UNIX will respond with a 'process
identification number," followed immediateiy by a "S" prompt.
indicating you may continue with other work. This '"process ID"
uniquely identifies the process generated by the command line
terminated by "&'"; an exception is thal many processes may be
spawned by multiple commands in a "pipeline,” in which case, the
number of the last process in the "pipeline" is reported.

As a note, you may nof "hang-up" on UNIX while background processes
are still active, or these processes will terminate prematurely.
It should be noted that background processes are assigned a
slightly lower priority (i.e., they’re slower) than those run
interactively, and that the number of simultaneous background jobs
is limited to 25 per user.

with another use for the "&" character just defined. it should be
clear at this point that "metacharacters" and other special symbols
will have different meanings when used in the "editor,"” or at the
UNIX command level in file/directory manipulations. This causes a
great deal of confusion to the casual user or beginner.

Process Status (ps) By issuing the command:

s

vou may obtain information about all active processes, including
those operating in '"background.”" UNIX will provide a list of
"process ID’s,” the terminal controlling the process, the
cumuiative execution &time for the process (actual amount of
computer usage. not the passage of real time). and the command that
is being executed: these items are titled PID, TTY, TIME and
COMMAND, respectively.

- 64 -

With the full listing option, i.e.,
ps -f

the above items are augmented by the UID (user ID of the process
owner), PPID (the ID of the "parent'" of the named process), STIME
{the time the process was initiated), and full command names are
produced (with all arguments Listed).

Other options exist, i.e., "-e" will produce a Llisting of all
active procasses on your entire UVIX svstem, and "-a" will again
investigate all UNIX processes, but only those that are associated
with a zarminal (ITY) port. You may also concatenate cptioas, such
as:

ps -af

wiil produce a full listing of all UNIX processes associated with a
terminal in use. See the UNIX User’s Manuai for more PS options.

Killing a Command (kill) A%t some point, you may wish to terminate
specific processes (without '"hanging-ug” and terminating all
sackground work). The command:

kill -9 process_IDs

will "kill" or terminate the processes identified by a list of 1ID
numbers separated by '"spaces" (the argument "process_IDs"). The
"-9" argument /s optionmal, but, if included, guarantees a 'sure
kill." If the process you‘re killing is sensitive to am abrupt
termination, vou may substitute a "-2" optieon for the "-9"; this is
equivalent to hitting the "BREAK" or "DEL(ETE)" key on a foreground
process, and allows the process time to "clean up."”

Imounity to Hang-Ups To make any command, normal or in the
tackground, immune to "hang-ups" (including any disruption between
vour terminal and the UNIX machine), simply use the form:

nohup command

For '"pipeline” or multiple commands, the '"nohup” prefix must De
inserted before each command in the line.

I£ the output of the command is not redirected to a file or sent to
an offline printer, it will be sent to a file "nchup.out”, which
will be created by UNIX in your current directory, if it does not
already exist; if 'nohup.out" exists, output destined for the

terminal will be appended to the end cf this file.

Time-Delayed Commands (at) Another way to run background jobs is
via the "at" command. You may specify:

at time date
command list
(Control-=D)

- 65 -

The job list following the "at" command is terminated by a line
containing only "Controi-D" (simultaneously depressing the CONTROL
and D keys). These jobs will be executed at the "time" and '"date"
indicated. The "time" may be specified by one/two digits, which is
interpreted as Aours, or by three/four digits, which is interpreted
as hAours and minutes; both designations assume a 24 hour clock,
unless the suffix "am" or "pm' is used. The “date" may be the
month followed by the dav aumber, or a dayv of the week ("at"
recognizes the month/day of week spelled out completely or
abbreviated to three characters); also, two special days "today"
and "tomorrow" are recognized. If the '"date" is absent, today is
assumed, if the hour specified is greater than the current hour; if
it is less, tomorrow is assumed. Other variants for "time/date”
exist; see the "at" page in the UNIX User’s Manual for details.

You may also specify times incrementally via the form:
at now + increment

where the "increment" is a number suffixed by ‘'minutes,” "hours.”
"davs," ‘'weeks," "months" or "years" (the singular forms are also
accepted).

Batch Processing (batch) You may also issue a command of similar
format, i.e.,

_batch
command list
(Control-Da

which submits a "batch job.'" Such jobs are run whenever the load on
the system falls to an acceptable level.

One Important note is that any "at" or 'batch" job cannot send
output to your terminal; all commands issued in this mode must have
cutputs redirected to a file (or an offline printer).

Listing and Monitoring At/Batch Jobs In response to either an "at”
or "batch" command, UNIX will respond with a "job number.” You can
get a list of "job numbers" of all jobs not yet executed, by
typing:

at
without any arguments. The list will include your login name, the
"job number," an identifier a for "at" jobs or 5 for "batch" jobs,
and the time when each "at" job is scheduled for execution (or when
a "batch" job entered the UNIX system).

If you wish to see if vour "at/batch" job is <currently running,
issue the command:

ps -f -u login_name

The jobs you are looking for will have a "?" process ID.

- 66 =

Terminating At/Batch Jobs (atz) If vou wish to terminate one or
more of your jobs before execution, use the command:

atz job_numbers
wnere "job_numbers" is a series of numbers separated by '"spaces."”
3.11 Communications with Other Users
Inter-User Mail (mail) Within UNIX, there exists the capability of
sending and receiving "mail."” To sead mail to ancther user on the

same UNIX system (for example, disk f£iles "hi" and "h2" belong to
svstem "UNIX-H"), simply type the series of commands:

mail login_name findicates person to receive mail]
{text of message}
. {line with "." only terminates message.

You may alternatively terminate the message with a "CONTROL-D"
line, if vou wish.

Note that a (file’s contents may also be mailed. via input
redirection, i.e.,

mail login_name <file_name

“will "mail" the contents of the named file to person identified by

:"login_name".

-If you attempt to send a letter to a non-existent login, UNIX will
reply with

mail: can’t send to "invalid_login"
Mail saved in dead.letter

where "dead.letter" is a file created in your "current" directorv.

IZ you have mail warting, UNIX will notify you upon login with the
line:

vou have mail

The mail is stored in a special £ile '"/usr/mail/login_name", and
you can retrieve it by typing:

mail

without any argument. Your mail is printed in reverse chronological
order of receipt and is "postmarked" (the name of sender and the
time of dispatch). After each message, UNIX issues a "?" query. A
response of "d" will delete the current message and go on to the
next; a response "p" will cause the message to be printed agaia; an
"s £ilename" will cause the current message to be appended to
"filename" in your current directory (if "filename" is omitted.
"mbox" in vour Jogin directory is the default, and UNIX will create
it . if it doesn’t already exist); a "w filename” will append the

- 67 -

message, without a '"postmark," to the named file (file '"mbox" is
the default): a "q" will leave unread messages intact in the £ile
"/usr/mail/login_name" and exit the "mail" command.

Mail to Another UNIX System If vou wish to send "mail" to another
UNIX svstem. you wili have tc modify the command format, as
follows:

mail system_name!login_name
{text of message}

.

where a complete list of the destination system names
("system_name") can be found on the 'usend’ page of the UNIX User’s
Manual, and the "!" between the system and login names is
mandatory. .

Who is Logged on the. System (who) If you wish tc determine the
users that are currently logged into the system, simply type the
command:

who
4 list of login names. *their corresponding terminal identifications

(TTY naumber), and the time that user entered the system, will be
produced. A slight variatiom, i.e.,

who am- I

tells you who vou are logged in as. -

Interactive Communications (write) The WRITE command copies lines
from vour terminal to that of another user on the same UNIX system;
the destination user must be logged on, which may be determined by
issuing the WHO command. When the command

write user

is first invoked. the foliowing line is produced on the receiver’s
terminal:

Message from senders_logname senders_tty
Lines of input will then be sent £rom your terminal to the
destination user, until a "CONTROL-D" line is typed: at this point,
WRITE produces an "EOF" character string on the receiver’s terminal
and terminates.

You can also transmit the output of a UNIX command by beginning a
line with the "exclamation point" (!) character. An example is

tcat letter

which will ship over the contents of £f£ile "letter."

~)

- 68 -

When using WRITE, the receiver should immediatel: institute another
"write" command to establish a two-way conversation. A
communication protocol is also beneficial: it is suggested that
individual! messages snould be terminated by a line with a lone "o
(for "over"), and that "oo" (for "over and out") should be sent
when the conversation is to end.

4s an alternative, vou can pass the contents of a file by oprinting
it on the terminal (TTY) of another user. Simply issue the WiO
command to determine the "ttv#" of the user you wish to surprise
with the contents of vour file. Then issue the following command:

cat filename >/dev/tty#

When you £irst log on, receiving messages from WRITE or
redirections through '/dev/tty#" is allowed by defauit.

Stopping Interactive Communications (mesg) If people become pests
and messages are arriving in the middie of more important work. you
can inhibit vour terminal £rom being a recipient by typing the
command:

mesg n
You can allow allow messages at any time by issuing a counter-
comnmand, i.e.,

mesg ¥
3.12 Sending Files to Another UNIX System

Sending Files Via USEND A vehicle exists to send ordinary files to
a user on another UNIX system. The command '"usend" has the
following general form:

usend -m =d desi ~u user filenames

With the above command vou will send the £iles (represented by the
last argument "filenames', which is a list of files separated by
"spaces'" --- note that filename "metacharacters" wiJ/ work in this
listing) in your current working directory to a destination svstem
(argument "dest") and a destination user (argument 'user").

For a complete list of destination systems available, consult the
"usend" page in the UNIX User‘s Manual or issue the commang:

cat /usr/asp/udest

for an up-to-date table. To find out the official "code name” of
vour system, issue the command:

uname

The argument "user" is simply an appropriate ''login" name on the
destination system.

The "-m" argument is optional, but, if present, will report to the
sender via '"mail" when the £ile transfer is completed: the
"destination login" aiwavs receives mail. when files are received
from ‘"usend". Also. the "sender'" will aiways receive a "USEND JOB
NUMBER," when the file has entered the "intersystem pipeline."

Creating an RJE Directory By default, the transferred <Ziles are
delivered to a subdirectory "rje'" {stands for '‘remote job entry")
under the destination user’s -login directory. Subdirectory "rje"
must have been previously created in "mode 777" for evervthing tc
work, and the "login" directory must be mode "755" (or "777"); the
following commands (issued in the destination user’s directory)
will accomplish this:

mkdir rje
chmod 777 rje

The names of the destination files are the same as those sent, and
will reside in the "rje" subdirectory upon completion of the
transfer. Finally, the owner of the £iles transferred is the
destination lcgin. and the permission modes are those of standard
file creation (usually "mode 644" —~—- see the "umask" command
later in this section). Note, if an "rje" subdirectory has not
been created in advance, try mailins the files in question. The
owner of the files transferred is the destiamation login, and the
permissions associated with these files is that of the standard
file creation process (usually mode "644" <=~ see the "umask"
command later in this section).

As an example assume I am in working directory "/hi/kew", and issue
a command: :

usend -d ihuxa -u eps £ilei file2

which will send files "/hl/kew/file!™ and '"/hi/kew/file2" to the
user '"eps" on general purpose UNIX system & (via the destination
code "ihuxa"). You will receive a response from UNIX, a USEND JOB
NUMBER, indicating the file transfer will take 'place. Upon
completion, the transferred files will appear as
"/a2/eps/rje/filel" and "/a2/eps/rje/file2" (assuming login "eps"
is on the "a2" disk file system).

There are other options/variations available; see the '"usend"
command page in the UNIX User’s Manual.

An Alternative Via NUSEND An alternative to USEND is the "nusend"
command. All arguments indicated above for ‘"usend" are also
applicable to this alternative command. In fact, £from a users
point of view, both commands provided the same service, with one
exception: "usend" makes a copy of the files to be sent, while
"nusend" uses pointers to the files to be transferred. Therefore,
files sent via "usend" can be modified as soon as the USEND JOB
NUMBER is received. and those changes will not be transferred to
the receiving system; "nusend” copies £files on a character per
character basis, and any file modifications made while the transier
is in progress may ve relaid to the receiving system.

~

N’

- 70 -

Since USEND and NUSEND use different hardware, if you have ©Dboth
available between the sending and receiving UNIX system, You have
an alternative to shipping files, if one transmitting facility is
inoperative.

USEND/NUSEND Status You may determine the status of the USZND
facility by issuing the command:

rjestat
Similarly, status of the NUSEND facility may be ascertained by:
nscstat

Sending Special Archives Via CPIO An archive is simply a group of
files combined intoc a single £file; it is not a simple
concatenation, as the archive also contains an "index" of all files
contained within iZf.

Although all the uses of archives are beyond the scope of this
introductory document, I believe the average user can make use of
some cf its properties. Assume vou wish to send all files within a
given directory structure to another UNIX system; to date, the only
resource is to issue NUSEND or USEND commands for each of the
individual €£files. with archiving, the entire directory structure
can be combined into a single file, with an associated "map"
indicating how the files are organized within the archive. Now,
this single file can be sent to another system via USEND (NUSEND),
and at the receiving end, it can be "dearchived" into a duplicate
of the original directory structure.

Creating a CPIO Archive The command "cpio" (copy in and out) will
allow you to create a special type of archive, and then to
dismember these archives into their original file/directory
structure. To create a CPIO archive, use the command:

cpio -0

This command reads the 'standard input" to obtain a Jist of
pathaames, and copies these designated files, along with archive
information, onto the "standard output.' This cbviously is not the
most thrilling action available, but it has possibilities when you
replace the "standard input" by a pipe outpu:, and replace the
"standard output" with a file redirection. Consider this
alternative, i.e.,
ls -a | cpio ~o >temp

Now, all filenames within the current directory ("ls" command) are
piped to "cpio," and the archive of those files is redirected to 2
"temp" file. -

£ vou intend to send this archive to a UNIX system running on
different hardware (UNIX is an operating system which can be used
on PDP-11, VAX, IBM, 35-20, etc. computers), use a "-oc¢" rather
than a "-0'" option. This will produce archive header information

- 71 -

in a universal ASCII format, which is portable between different
processors.

Dearchiving CPIO Files The next step is to take an archive,
- g . . 3
previously created by a "cpio -0" command, and separate them into 2
group of files and directories. The reguired command is:

cpio -i_plus_options <temp

where "temp" is illustrative of the file contaxnxng the archive.
The argument "i_plus_options" means the letter "i" (indicating this
is a cpio input process) concatenated with anv of the option
letters listed below:

d Directories will be created as needed in the dearchiving
process

¢ Assumes the archive header is written in portable ASCII
format

L]

Interactively rename files (CPIO will printout original name,
while user supplies new name -- if a null line is typed, the
file is skipped)

t Print '"table of contents”" of the archive (no
files/directories are created)

u Produces files unconditionally (normally, an older file will
not replace a newer file of the same name)

s Swap bytes.

Other options exist; the interested reader should refer to the CPI0
manual page in the UNIX User’s Manual.

Let’s consider several examples. Assume we were asked to duplicate
all files in the directory "/c2/kew/ponv" on another UNIX system as
directory "/bl/wek/horse.” First, we must form an archive file,
l eo,

ls | cpio -oc >animal

This command must be issued on the IHUX-C system, in directory
"/c2/kew/pony"; it is assumed here that this directory contains
only ordinary £iles. Note that the archive header is produced in
portable ASCII format. Now, file "animal" must be sent to the "rje
directory" of login "wek" on the UNIX-B system, via the USEND (or
NUSEND) command, i.e.,

usend -d ihuxb -u wek animal
Once transmission is complete, we enter the UNIX-B login and change

directories to "/bl/wek/horse." Now "dearchiving" is accomplished
via the command:

—~

cpio -ic </bi/wek/rje/animal

For our second example, assume we wish to copy the entire directory
sctructure under '/c2/kew/pony"; in this case, it is assumed that
"/e2/kew/pony” could contain various levels of subdirectories, in
addition to ordinary files. files. The procedure is as described
above except the archive must be produced differently, i.e.,

!

find . -print | cpio -oc >animal

Recall that "find . -print" will produce 2 list of all files and
subdirectories in "/c2/kew/pony,"assuming the command was issued in
that directory. The only other change would be to add the "d"
option to the '"dearchive" command (cpio -icd) to ensure that new
subdirectories will be created as needed under "/bl/wek/horse."

Selective Dearchiving Another interesting property of the
dearchiving process is to selectively create only a portion of the
files contained within the archive. Consider the modified command:

cpio ~i_plus_options patterns

In this case. only files specified in the argument "patterns" will
be used in the £file creation process. '"Patterns" is a space-
separate list of filenames. To be effective, filename
metacharacters ("7, "iv, wEn vt 3", described in Section 3.7)
should be used; they do match the "slash" character in pathnames.
If ‘"patterns" is missing, the default is "*" (i.e., select all
files in the archive header). For example: :

cpio -id *black *white <archive_£ile

will create directories as needed in the dearchiving process, but
will only create files "black" and "white" found in aay directory
in the header of "archive_file." ;

3.13 Miscellaneous File Manipulations

Duplicating Directories with CPIO There is also a pass option for
CPIO, which archives and dearchives in a single operation. It is
extremely useful for duplicating entire directory structures withirn
the same UNIX system. The general form is:

cpio -p_plus_options directory

where "p-plus-options" is the letter "p" (designating '"pass files")
concatenated with options "d," "r" and "u" previously described,
and one more:

1 Whenever possible, J/inks will be used, rather than copving
files; this option is lower case "L," not the number "1."

All files produced will assume destination pathnames relative <to
the argument ‘"directory.” For example, assume directory
"/ci/kew/pony" contains three files "black," "white" and '"brown."
Then the command issued in that directory:

TRIRE

ls ! cpio -pu /cl/kew/cows

will produce copies of original files "black," "brown”" and '"white"
in the directorv "/ci/kew/cows; the "u" option indicates the files
will be copied uacoaditionally, even if those files already existed
in the destination directory. This simple exampie made a copy cf
all files in a given directory, but the concept could easily be
extended to an entire dJdirectorvy struciure, wnich could not be
accomplished with a single COPY command.

Searching for Strings (grep) If you’re interested in locating
specific character strings in a group of files without using the
editor, vou may wish to use the 'grep" command. The name ‘'grep"
means GLOBALLY search a file for matches to a REGULAR EXPRESSION
and PRINT the corresponding lines; the equivalent editor command
would be "g/RE/p". This command searches a file for a particular
character string. and has the general form:

grep -n ‘regular_expression’ filenames

where any "regular_expression” to be located is specified (the
special meaning cf "metacharacters" are valid). If the RE contains
any characters with special meaning to the UNIX command processcor,
it should be enclosed by "single quotes.'" The "blank,” "()", "[!".
H{}", ""'l’ e 'l' ll:’f"' Hs"' "&"' "?", Etc- 3.1.1 have SpeCial meaning
to the "shell." To "play it safe." it is wise to use the "single
quote enclosure,” unless the RE is a single., alphanumeric string.
Also, if you wish to search for character strings containing either

. "single" or "double quotes,” replace these symbols with the "."

metacharacter. Remember that any RE "metacharacter”" will have its
special meaning "turned off," if preceded by a '"backslash." The
argument "filenames" obviously represents any files you wish to
search (separated by "spaces,”" with £filename metacharacters
completely valid). The response from UNIX will be the filename and
the line number (if the "-n" option is included), followed by the
printing of the line containing the character string matched.

The "grep" command can also accept "pipe-inputs," such as:
ls /usr/news ; grep mail

The "ls" command passes the names of all '"news articles" in
directory "/usr/news/" inte the "pipe." The "grep" command accepts
the "pipe output” and selects only articles containing the string
"mail," printing their names on the terminal.

Searching for Fixed Strings (fgrep) Another related command is
FIXZD GREP "fgrep,'" which has the following form:

fgrep -n -x ‘string” filenames

It will only £ind lines containing exact pattern matches to the
"string" noted, with no metacharacter expansion permitted. It is
faster than "grep," if vou don’t need the metacharacter properties.
The "-n" and "-x" are optional; "-n" acts as previously descriped.
and if the "-x" is present, only iines that match "string" in their

entirety are printed.

Searching with Enhanced REs (egrep) Another interesting command is
ENHANCED GRE? "egrep." which acts like the ordinary "grep" command,
except that it has a "richer" set of RE expansions. It accepls any
RE described for ED (except ranges within "{..]" won’t work), but
allows the following enhancements:
e A regular expression followed by a "+" matches ose or more of
that RE.
e 4 regular expression followed by a "?" matches 0 or 1
occurrences of that RE.
e Two regular expressions separated by "|" matches strings that
are matched by either.
e A regular expression may be enclased by "(...)" for grouping.

For example, the following command will locate any lines of text
beginning with Y "." or ending with one or more 'right
parentheses," in any file in the current directory:

egrep “("\.){(\)+8)” *

Note that the couplets "\." and "\)" seek literal matches for these
characters, by escaping their "metacharacter magic."”

Searching for Control Characters As described previously in
Sections 2.7 and 2.8, the appearance of unwanted control characters
can be quite annoying. The GREP command can be wused to search
several files, and locate all lines containing those unwanted
characters, i.e.,

grep -n "[“SPACE-~TAB!" filenames

Note..when typing in this command, SPACE should be replaced by a
single blank space, and TAB should be replaced by the fad character
(simultaneously depressing the "CONTROL" and "I" keys). The output
produced will include the filename and line number of each line
containing & control character, other than TAB.

If vou only desire the mames of files containing these controi
characters, change the "-n" option to "-1" (lower case "L") on the
GREP command line.

Counting Words in a File (we) Another useful command is WORD COUNT
("we"). In general

we filel file2 filed -=—-

will count the number of Iines, words (a word is a maximal string
of printing characters delimited by "spaces," "tabs" or "new line")
and characters in each file listed, and print the tabulations on
the terminal, unless redirected. The name of the file "counted” is
also printed, and if you count more than one file, a "grand total"
will also be given.

- 75 -

Options "-1", "-w" and "-c¢" also exist, and then onls the number of
lines, words or characters are listed. respectively. These options
may be combined, such as:

cat junk trash ! wec -lc >number

will place the number of I:imes and characters in a combined Zile.
composed of "junk™ and "trash", into file "number”. Note that the
"we" command, without fi/ename arguments. reads from the '"standard
input” (the terminal), or 2 "pipe redirection." Also, since the
input is from a "pipeline," the WORD COUNT output will sof include
a f£ilename designation.

Determining Differences between Files (diff) The DIFFERENCE
("diff") command:

diff filel file2 ' .

compares the twe f£iles listed and indicates the lines that must be
changed to bring them into agreement. This can be a useful check
of modifications made during a long editor session.

Tvpical output lines are headed by a printout containing line
numbers and one of the following letters:

1] "d", if lines must be deleted from "£ile2" to bring it into
agreement with "filel"

{21 "a", if lines must be appended to "file2" to bring it iato
agreement with "filel™

{37 "e", if lines must be changed to bring the two files inte
agreement .

Following each "header'" are the differing lines of text. £fected
lines in “"filel" (the first file argument) are flagged by an "<" at
the beginning of the output line, while Llines in "file2" (the
second file argument) are flagged by ">".

For a more complete description and details of available options,
see the "diff" manual page.

Splitting Files (split) There are occasions when a file becomes
tooc large, and must be "split" into smaller manageable units. For
example, this document was created by concatenating independently
created segments. Now, if a typographical error has to be
corrected, the entire document file is too large to be brought into
the editor, and must be separated into smaller segments £irst. The
command

split -n file_name prefix

will split the named file into segments n [ines long (if the "-n"
option is missing, 1000 line files are produced by default), but
will leave the original "file_name" intact. The new smaller Ziles
formed are named ‘"prefixaa," "prefixab," "prefixac," "prefixad,"”
and lexically sc forth. Obviocusly, "prefix" is an option. and the

"

user is free to choose any appropriate character string: "x" is the

- 76 -

default, if this argument is missing.

Splitting Files by Context (csplit) Another command exists that
allows you tc dissect a given file into several smaller sections:
it is called "esplit" or context split. It allows more flexibility
than the ordinary ‘“split"” command in that the points where
separation occurs are much more closely controlled by the user.

Consider a tvpical command line:
¢split filename argl arg2 ... arghN

This command will cause '"filename" to be separated into N-!
sections; by default, the sections are placed in files
"xx00,"."xx01,"..., "xxN," where "N" must be Jess than 99. The
contents of these new files is based on "argl," "arg2,"
"argN," as follows:

xx00: Contents from the beginning of "filename" up to (but not
including) the line referenced by "arg!"”

xx01: Contents from the line referenced by "arg!"” up to (but
not including) the line referenced by "argl"

v e s e v e

XxN: Contents from the line referenced by "argN" to the end of
"filename"

The three most commonly used "args" (other arguments exist --- see
the UNIX User’s Manual page for "csplit") are:

/RE/ An argument to locate the £first line containing the
regular expression "RE." You must enclose all regular
expression arguments in double guotes, if they contain
“"blanks" c¢r other characters with special meaning to the
"snell." These arguments may be suffixed with an
increment or decrement of some number of lines. such as
H/REI.'-7I‘ or IQ/REII-3I! .

linef# A line number.

{num} If this argument follows a ‘'"regular expression” type,
that argument will be applied "num" more times. If it
follows a "lineff" type argument, the file will be split
into "num" segments, each of length "line#," from the
point when the "line#" argument becomes effective.

Several options also exist (for complete details, again see the
UNIX User’s Manual), the most useful of which is:

-f prefix

This will cause split files to be named "prefix00," prefix0!.” ...,
"prefixN," instead of the default "xx00," "xx01." etc.: the

.

argument "prefix" is illustrative of any character string.
Finally, it should be noted that the original file "filename" will
be untouched by the splitting process.

Consider the following file:

one
two
three
four
five
six
seven
eight

and the following command:
esplit =% num /£/-1 4 2 {2}

The resultant split files are:
aumd0 numQ! naumdl puml3 aumfs

cne three four six eight
Two five seven

Stream Editing (sed) The stream ed:itor ("sed") copies the named
"file" (the default is the "standard input,” if no (£file is
designated on the command line) to the "standard output” (unless
redirected), edited according to specified scripts. The SED
command has the following general form:

sed scripts file

The scripts consist of editing commands, which will be described
below; they may be entered onto the command line as one of two
option forms, i.e.,

-e script In this case, the script is embedded in the command
line. The editing command should be enclosed in
"single quotes" to avoid any mnmisinterpretation of
blank spaces or metacharacters.

-f sfile With this option, single line editing commands are
extracted from a file "sfile'" prepared in advance.

The types of script options may be intermixed, but they will be
executed in the order encountered on the command line.

The normal operation of SED will cyclically copy a single line of
input into a working buffer, called the partern space. Then it
executes all editing commands, whose addresses select the 'pattern
space"” (either by line number or context match): editing commands
are investigated in the order presented on the SED command line.
After all editing commands have been investigated, the '"pattern
space" (possibly modified) will be written intoc the '"standard

- 78 -

output" (or & file will be overwritten via redirection). This
concept of working with a "pattern space" allows SEZD to handle.
files of unlimited size, whereas the normal editor buifer is
limited.

Next. a aesc-xnt;cn of typical scripts must be investigated. In
the description below, "#" indicates a line number thhxn a file:
the eaztxne command that follows will be executed on every "pattern
space” that matches this address. The number may be decimal, "S"
for the last line in the file., or a context address of the form
"/regular expression/"; these are analogous to the style of the
ordxnarv editor previously described, noting "." (representing the
"current line") can not be used. The deslgnatxon "#,#" indicates a
raange of lxnes, the editing command that follows will be executed
for every pattern space" that matches the inclusive address range
indicated. Again, in the style of the ordinary editor, the second
number in a line range must be greater than the f£irst, and a
“range" can azlways be replaced by a sxngle line number, if desired;
abbreviations for line ranges ", " and ";" can not be used. If line
numbers or ranges are omitted from an editing command line. then
every '"pattern space' is selected by default.

Typical SED editing commands include:

fia This is the append command; it is assumed that one or
more lines of text will follow. The command line and
all lines of text. except the last one must be
terminated by a "\" <character. SED will write the
designated text lines on the "standard output"” befare
bringing in the nmext line into the "pattern space."

#1i This is the Insert command. Action 1is similar to.
"append" except the text lines are written onto the
"standard output" immediately.

#.#c This is the change command. This will delete the
“"pattern space" of any lines designated by the command
range. Then, after the "pattern space" corresponcing
to the Jast line in the range. the '"text" lines
associated with the '"change"” command will be written
onto the "standard output' before the next line is
accessed by SED. Like "a" and "i," the command line
and all lines of text, except the last, must be
terminated by a "\" character.

#,##S/RE/replacement/flag

This is identical to the normal editor substiiute
command. Feel free to use regular expression and
replacement text metacharacters, and the "g" flag for
substitutions globally across the line.

#r riiie Analogous to the editor read command. Writes the
contents of <£ile "rfile" onto the "standard output”
before SED reads in the next input line.

- 79 =

#.5d This command will dJdelerte the 'pattern spaces” that
correspond to the line range indicated.

#.ev/stringi/string2/

The traasforzz command replaces all occurrences of
characters in "string!™ with "strinz2." The lengths of
"stringl"” and "string2" must be identical.

Zt should be noted that many more editing commands are available;
the interested reader should interrogate the manual page for the
SED command and a document "SED - A Non-interactive Text Editor" by
McMahon.

To complete this section, let’s consider a few examples, such as
the SED command:

sed - ‘s/**/-/g’ -e ‘4d” -e “3.5s/Jim/John/’ junk
and file "juak" contains:

seee :‘:N‘ ME 57': ot
Jercy

Jim

Jim

Jake

SREND et

The printout produced by SED is:

~NAMES~

Jerry

John

Jake

-END=-
Note that the RE "**" represents one or consecutive "*"
characters. and that the '"pattern space" <for line #4 would be
removed before the substitution from "Jim" to '"John" could be
attempted.

For our second example, consider the command:
sed -f script_file greeting >good

where the "script_file" contains:
s/Happy/Merry/
3a\
Happy
/Dumpy/d

and file "greeting" contains:

- 80 -

Happy
Christmzs
and
Dumpy
New Year

The results of the SED command, redirected to the Zile "good", is:
Merry ivia substitute script!
Christmas
and
Happy ivia delete and append scripts]

New Year

Printing the End of a File (tail) The command TAIL will copy the
last part of a file to the "standard output" (the terminal); this
is useful in checking where vou ended the last editing session or
for spiitting files. An example is:

tail =6 junk

which will print the las¢ six lines in the £ile "junk." The "-6"
option mayv be replaced by "-#" in general: "#" may be as large as
the total number of lines in the £file., or the !imit of the
temporary buifer utilized by the '"tail" command. If no option is
specified, the default is "10 lines.”

Trving a slightly different format, i.e.,
tail -8 junk >>garbage

Note the "-#" option will cause copying to begin "#" lines from the
beginning of the £file, rather than the end. Also illustrated is
redirection; in this example, lines #8 to the end of the f£file
"junk" will be appended to the end of file "garbage."

Continuous Tailing (tail -£) One f£inal example to consider has a
"to follow" option, i.e.,

tail -£f junk

In this case, the last ten lines of the file "junk" will be
printed, followed by any lines appended to "junk" between the time
TAIL is initiated and killed. An "endless loop" is entered,
wherein TAIL sleeps for a second and then attempts to read and copy
further additions to the input £ile "junk"; the process may be
terminated by hitting the "DEL (ETE)" or "BREAK" key. This process
is very useful for monitoring the creation of a file via a
background command.

Updating File Timestamps (touch) The TOUCK command causes the
access and modification of named files to be updated The command:

“ouch mmddhhmmyy files

will "time stamp" the named "files" with mmddhhmmyy (i.e., ‘“month-

- 81 -

dav-nour-minute-vear"): note that the "yy" field is optional., and.
if the entire "time stamp” is missing, the default is the current
time. The use of touch is very useful. if vou are involved with
project software management systems that treat £iles diflerently,
dependent upon their "time stamp."”

3.14 Other Useful Commands

Printing the Date and Time (date) The DATE command. discussed
previousiy. is quite simple, as typing
date

in response to a command prompt "S", will cause UNIX to print the
current date and time on the "standard output" (the terminal),
unless redirected. .

Options exist --—— see the UNIX User’s Manual for complete "details,
but note that

date -WD

produces a "date" printout of the form "month/day/yea?". ang
date -DATZ:WDLaTIME:%r

will produce an output

DATE:month/day/vear
TIME:hour/minute/second AM/PM

UNIX News reports You might want to consult "current news reports”
concerning UNIX by typing the command:

ls /usr/news

whickh will print a list of "news articles,” some of which, may be
of interest to you.

Many svstems have the article "phcnes," which may be of particular
interest o you, as it contains a listing of all the telepnone
access codes for general purpose UNIX machines at IH. (If this
news - item does not exist on your system, interrogate files in the
directory "/usr/adm/info".) :

To view a particular article, simply type:
cat /usr/news/name_of_article

Filename metacharacters may be used £freely in the '"name-of-
article",

An abbreviated command (the "article_names" must be '"space-
separated” and spelled out completely, without metacharacters) is:

f'i)

N

- 82 -

news article_names

If vou decide you’re really not interested in the article after
ail, hitting the "DEL" or "BREAK" key will cause printing to cease
and return you to the command mode, if vou use the "eat" wversion
first described above. If vou use the abbreviated feorm. a
YDEL/BREAK" will only cause the printing of the current acticle to
cease, and then another article is started (if pessible): another
"DEL/BREAK," within a second of the £irst, causes exit from the
"news' command.

Note, when you first login, UNIX will notify vou as to all current
Ynews ceports" that you have aot yet seen; to view these current
items, simply type:

news

in response to a "S" command prompt. A marker ".news_time" Kkeeps
track of ~ those articles not vet seen by you; do ao: destroy this
file or UNIX will request that you read ail news articles asain.
In this case, you may issue a command:

news >temp_zIile

which will deload the "news" gqueue and store these articles in a
fiie for later inspection, or

news >/dev/null

if you want the news articles destroyed, as "/dev/null" is a
write-only file (or a "bottomless pit").

Online Manual Pages (man) The MANUAL ("man") command will print
the latest copy of the page(s) in the "UNIX User’s Manual" of any
command of interest, such as:

man | at

would give full instructions of how the "at" command is utilized.
The "1" option indicates a search of only "Section 1" of the manual
will be made (where all commands discussed in this c¢ourse are
located). An obvious drawback, is that you must know the exact
abbreviation for the command argument for "man" to work:
situations, such as the "ln" and "mv" commands being located on the
“ep" manual page, add to the confusion. The command is extremely
useful in obtaining "current updates” of command capabilities (or a
description of new commands), before they are formally published.

For a nice "hard copy" (an 8 by 11 Xerox print with four holes
punched) of a manual page, try the command:

man 1 at | opr -txr -p port

or

- 83 -

man | -T9700 at

Changing Your Password (passwd) The PASSWORD ('"passwd") command
aliows you te change the ‘"password" associated with your
"login name,” via

passwd

for which UNIX will request wvour old and new password. and a
confirmation of that new password (since "echoing" or printing is
turned off during the change process). UNIX also requestis the
number of months you wish the new "password" to be valid., and at
the end of that interval, the system will automatically invoke the

"nasswd" command. UNIX will not allow you to_ change your
"password," if it has been changed recently. Also, it will not
accept "extremely simple passwords" (usually, at least six

characters are required, unless you use a '"rich" mixture of
letters. numbers and other symbols);: it is anticipated that even
more stringent requirements will be instituted shortly.

Finding Spelling Errors (spell) A very useful comﬁand is SPELL,
which will trv to find typographical/spelling errors in text files.
The command:

spell Zile_name

will produce a list of likely spelling errors in "fxle name.”" It
should be noted that SPELL is not perfect, and will usually err via
omissions. Also if the f£ile to be interrogated is long, you can
take a nap before results are printed; an alternative is to
redirect the output to a f£ile, and make the execution.a background
process. such as:

spell file_name >spell_filed

3.15 User Profile and Options
User Information A special administrative file you may find uselul
is "/etc/passwd", which contains a multitude of information about
all logins on your UNIX system. To determine information
associated with a specific login. simply issue a command:
fgrep login_name /etc/passwd

which will cause a line of the following form to be printed ocut:
login_name:passwd:UID:GID:dept-name(acct)bin:pathnéme

noting,
f1. "login_name" is the login you’ve requested information about

,

127 "passwd" is that login‘’s password, encrypted into an
unintelligible code

~

- 84 -

©37 "UID" is that login‘s equivalent 'user’s identification
number"”

14, "GID" is that login‘s equivalent '"group identification
number"

'5° "“dept-name" is the login’s "department number.” <followed bY
his or her real ''name”

167 "(acect)" is an administrative indication o¢f the login’s
account, which appears on all Computer Services Request forms
and UNIX usage billing

"73 "pin" is the "bin number" associated with the login. to which
all offline printing will be sent, unless redirected by the
"-b" option associated with the "opr" command

:8: ‘"pathname" is the "full pathname" of the corresponding login

directory, indicating his/her "disk £ile system.”

Group lnformation The file "/etc/group" contains all pertinent
"croup informatiorn." The command:

fgres login_name /etc/group

will provide pertinent "group" information, associated with eal!
groups in which "login_name" is a member. A typical printout is of
the following form:

group_name: :GID:group_members

where "group name" represents the owner of the group, "GID" is the
numerical equivalent of that owner, and '"group_members" is a
comma-separated list of the members of that group (the first entry
is always the group owner).

If vou wish to determine information only about.the group you own,
issue either the command

grep ‘“vour_legin’ /etc/group
or

fgrep GID /etc/group

noting the leading "~", in a ‘'regular expression,” indicates a
match to a line containing the string "your_login" will only be
made if it appears at the beginning of a line (note that the
"single quotes" are necessary, as UNIX recognizes the "“" character
as an alternative to the "pipe" svmbol). Alternatively, the second
form wuses the argument "GID," which may be determined after the
contents of "/etc/passwd" or "/etc/group" have been examined once.

Who is Doing What. If vou’re really nosey, and vou want to know
what each logged in user is doing, issue the commanc:

- 85 -

/ete/whodo
which will produce a merged and reformatted output from <the "who"
and "ps" commands. If you want to know who is logged in, but not
doing any work, type in:

whoo

Information produced is similar to the WHO command., except the next
to the last column indicates the number of minutes that a
particular user has done mo work.

Customizing Terminal Options (stty) An important command SET
TERMINAL OPTIONS ("stty'") invokes certain input/output options,
some of which are very important to the "C-language programming' or
"text Sormatting.”" The general form of the command is:

stty option! option2 optiond
where possibie options are:

1t} The option "-tabs" will replace the '"tab charactes" by an
appropriate number of spaces when printing on the terminal.
On terminals available, tabs are set across the page at an
"8 space" interval. If this option is set, every time a "tab
character” is encountered in printing, the carriage will move
t0 the naext "tab stop”; "tabs" are introduced into text via
the "CONTROL-I" key (simultanecusly hitting the "CONTROL" and

"1" keys). Without this option, when reading a file
containing "tab" characters, they will be Jgmored by the
terminal. : :

ey
(8]
[

The option "erase Z" will cause "Z" ("2" is illustrative of
any single character, such as "“h"
"CONTROL-H" or the "backspace" character) to be the 'erase
character," rather than the default "#" symbol. Note the "="
can be used to represent the CONTROL key only in the '"stiy"
command.

i3; The option "echoe" will replace the erase character, whatever
Cit is defined as, with the sequence '"backspace-space-
backspace.”" This has the effect of typing the erased
character anew on a CRT type terminal; the option should no?

be used on a '"printing terminal."

‘4! The option "kill Z" similarly makes "Z" the "kill character"
rather than "@" (many people prefer "“x").

{51 The option "ek" resets the "erase" and "kill" characters back
to the default "#" and "@", respectively.

i6] The cption "-echok" will inhibit the '"new line" produced (as
a default) after the "kill" character has been invoked; the
option "echok" will return the default mode.

which represents .

- 86 -

It shouid be noted that vou may use the "stty" command as many
times as you desire during a UNIX session, but when you log in
anew, vou will return tc the usual "default options” {(unless you
take special action --- see the "user profile” topic, which will be

discussed nex-). Also, see the UNIX User’s Manual for other less
used "stty" options.

User profile There is a special file of interest: ".profile”.
after logging in, UNIX (the "shell" in particular) searches your
"login directory.” 1f it finds a file called ".profile", the
commands therein are executed first, before reading commands from
the terminal. You were assigned a standard '".profile" when vou
applied for your "user ID." Open ("cat") it to view its contents;
there may be many commands within it that you are wunfamiliar with
-—- these incorporate 'shell procedures,” most of which need not
concern vou at this introductory level. What is important is that
vou can edit this £ile to add "personal" commands that are executed
before vou receive your first "S$" prompt. I find the command "stty
-tabs" a useful addition, especially when woriking on '"C programs':
some people like the date/time printed, via the "date" command; I
also modify my "erase" and "kill" characters via a "stty" command
{note that the modified "erase'" and "kill" characters will only
take effect afrer you receive vour first command prompl --- during
the "login sequence," you must use the defazlt "#" and "ev
characters).

File/Directory Creation Mask (umask) You should have a line
umask 022

in your ".profile". This indicates the permission modes associated
with files (or directories). as they are created by the "editor"”
command or redirections (or by "mkdir").

You may determime your current 'creation mask" by issuing the
command:

umask

without any arguments. Similarly, you may change the "mask" via

umask ABC _

where "A", "B" and "C" can be integers in the range "O0" to "6".
The ‘permission mode' during creation will be equal to "666 - ABC"
for ordinarv files and "777 - ABC" for directories. Thus, if "ABC
= 022," files are created in "mode 644," and directories in 'mode
755," which has been implied throughout this document.

‘Where You Find Commands When you issue a command, UNIX (actually,
the "shell") must locate the directory in which the command is
found. The standard is to search your ‘'current" directory first,
then "/bin", then "/usr/bin", then "/usr/lbin", and, finally, the
subdirectoryv-"bin" in your login directory (used to store custom
commands --- see Section 3.16 for more details): once the command
is found, it is executed and the search ceases. This default

- 87 -

search scenario is dictated by the line in ".profile":
PATH=SPATH:SHOME/bin

You may alter the directory search by changing the "PATH=" \line,
which has the following general format:

PATH=pathl:path2:path3:pathé:.........
i.e.. a8 sequence of full directory pathnames separated bv "colens";
vour ‘"current" directory is indicated by the "null string" or a
single "." abbreviation. For example

PATH=:/bin:/usr/bin:/usr/lbin:/h1/kew/bin
is equivalent to the default search for @y login directory, since
the first pathname is the "null string," representing the "eurreat"
directory. Another example is:

PATH=/btin::/usr/bin:/usr/games
which searches for commands in directory "/bin" £fiprst, then in the
“current" directory (again represented by a "null string”), then in
"/usr/bin", and finally in the "/usr/games" directory (no games now
--- vou’re supposed to be working).

Defining Other Profile Variables There are other variables of
interest. You may note a ".profile" line of the form:

MAIL=/usr/mail/login

which tells the MAIL command where to look for your inter-user
ietters. .

You may change your command prompt from the default "S" by defining
a new variable, such as:

PS1="YES MASTER"

to humble the "damn computer" (YES MASTER is only illustrative of a
new command prompt --- use your imagination).

You can predefine variables to control the default "bin," "type"-

and "forms" used by the OFFLINE PRINT command. For example, adding
the following lines to your "profile":

BIN=49
DEST=IH6G4
TYPE=xr
FORM=nohole

will cause all "opr" output to be directed to "bin" number 49
(rather than the default in the "password"” file) in the remote
center located at IE, "aisle 6G4" (rather than the default local
computation center), and output will be nohole, landscape Xercx
fiormat (rather the default line printer format).

D

k/‘)

- 88 -

Whiie many variables are "set" at login time automaticaily v
including them ir vour ".profile"”. you may reassign the value cf
any variable (or define new ones) any time alter you are logged in.
The definitions will only be in effect for tha: working session or
untii redefined again; the benefit of utiiizing ".profile”. is that
snese parameters will be defined every time you log in.

Exporting Variables (export) You will also see a line in
".proZile" headed by the word ‘'export."” following b¥ several
variable names. When vou log in, you are assigned a 'working
shell” and the commands in ".profile" are executed in that
environment. Unless you "export" variables of interest that you’ve
defined, whenever a new process is "spawned," it will not know
about any nondefault variables; especially noticeable will be a
reversion to the default-"PS1" and "PATH" variables.

User Environment (env) To recap your ‘'working environment,” you
may issue the command:

env

The printout UNIX provides will include PSi and PATE (as described
above), LOGDIR (the full pathname of your "iogin directory"”),
LOGNAME (your "login name”), LOGTTY (the full pathname indicating
the "terminal! port" you are connected to), and other less useful
environmental parameters.

Printing Arguments and Parameters (echo) The ECHO command has a
simplie form, i.e.,

echo argument_list .

and provides the simple function of writing its arguments on the
"standard output,'" separated by blanks, such as:

echo dog cat pony
will vield a printout:
dog cat pony

At first glance. you would think such a command is not only simple,
but aiso useless; it does, however, have some redeeming qualities.

Consider the command:

echo *

As noted previously, the filename metacharacter "*" represents all
files in the current directory (except those beginning with a ".").
Therefore, those filenames will be listed with as many names as
possible packed into each line. The information outputted is
identical to the "ls" command, except it is more compact.

Another use for the ECHO command is to evaluate environmental
variables; if vou want tc know your current palsi, issue the

command:
echo SPATH

It works equally well with any previously defined parameter. buzt
remember <To precede the parameter name by a "S" or you will not
witness the desired expansion.

3.16 Rudimentary Shell Programming

Simple Shell Scripts Although 'shell programming” could be the
basis of another long memo, there are certain features that even a
beginner would find useful. At a rudimentary level, a 'shell
script” is simply an executable file containing a series of UNIX
commands .

For example, eater the editor and create a file "junk" with the
following lines:

echo "SHELL SCRIPT"
echo *
ls -ld garbage

If vou typed in each of these lines sequeatially, you would expect
an output stream of the character string "SHELL SCRIPT," followed
by a compact listing of all file and subdirectory names contained
within the current directory, followed by long listing status
information for subdirectory "garbage" (if it exists). Executing
the "shell script" (which is equivalent to executing the file
"junk") would produce identical results. To accomplish this,
simply change the mode of file "junk" (via the "chmod" command) so
that it is executable by the owner (and/or group, other users).
Then, by issuing the command:

junk [full pathname, if you‘re in a different directory]
vou will cause the contained commands to execute.

Positicnal Parameters This still doesn’t really allow you the
flexibility generally desired, as the "shell script" is fixed; it
would be nice to be able to write simple scripts, with variabdles
embedded that can be set when the "shell script” is executed.
Consider a single line command:

pr $1 | opr -¢$2 -txr

which would paginate a file named "S$1" and produce "S$2" printouts
in default form (via the "pr" to "opr" pipe). Items "S1" and "S$2"
are shell variables; it should be noted that naming files with a
leading "S$" is bad practice in general, as will be seen in the
following development. Now, create a file named "junk," containing
the above line and make it executable. If the following command is
then issued:

junk garbage 14

- 90 -

the following shell execution will take place:

"w

r garbage | cpr -clé4 =-Txr

Therefore., the first argument on the "junk" command line (i.e.,
“garbage") will be substituted for "S$1" in the shell script lines.
and the second argument "14" will be substituted for the variable
"g2": in general, the argument "n" will replace a variable labeled
"Sn" in the corresponding shell script, contained. where "n" is the
integer positiosn of the argument on the command line.

We can improve this command slightly by forming a two line '"shell
script.” i.e.,
echo "pr $1 | opr -cS2 -txr"
pr $1 | opr -cS2 -txr&

This script is identical to the previous one, except the command
which will be executed is "echoed" first, anc the actual "pr/opr"
command will be executed in background. Note that the use of the
ECHO command in the form:

echo "comment"

has interesting properties. By enclosing the "comment” .string in
"double quotes," all characters (including filename metacharacters)
will be echoed exactly, but "Sparameters” will be expanded in the
printed output.

Positional Parameters Using Metacharacters Assume that we have
three files ‘"cow," "dog" and '"horse" in cur current directory
(those are the only files in that directory), and that we would
like to produce two paginated printout of each. We could issue the
following series of commands, using our "junk" executable file:

junk cow 2
junk dog 2
junk horse 2

or you may get clever and try to use metacharacters to save time.
The command:

junk * 2

will not work, as metacharacter "*" is expanded into three
arguments "cow," 'dog" and "horse" on the command line, and,
therefore, the following (nonsensical) equivalent command is
actually executed:

junk cow dog horse 2

Now "cow" would be passed as parameter "S1" and 'dog" as "S2,"
while the other arguments "horse" and "2" would not even be used in
the script; this is obviously not what is desired. What you want
to do is to pass the argument "*" as the single parameter "S1" in
the shell script. To stop the expansion of characters which have

-91 -

special meaning to the "shell” on the command line, simply enclose
them in "single quotes,” and they will be passed to the script as
a single variable. Therefore, either

junk ‘%7 2
er

junk ‘cow dog horse’ 2
are equivalent.

This ends our mini-discourse on "shell scripts”; once you become an
experienced UNIX user, vou may wish to pursue shell programming in
greater depth.

Your Private Bin Once vou have a group of these '"shell scripts"”
for vour own use, create a directory called bis under your login,
and modify vour PATH ia ".profile" (as shown in Secticn 3.13) to
look in this new directory for your private commands.

3.i7 Where To Go From Bere

in addition to ‘'"shell programming.” there are numerous other
commands which may be of interest to the individual user, such as:

e An emulated desk calculator (see "dc")

[

e An Assembler, or Fortran or Basic compiler (see "as,”" '"fc,"

and "bs")

s Fancy text formatters (see "mm," ‘'nroff,"” "tbl," and also
various papers in "Documents for PWB/UNIX Time-Sharing
System," or my great memo "Preparing Documents On UNIX
(Version 4.0)"

o Games (see Section VI of the UNIX User’s Manual -—-
“/usr/games/startrek!" isn‘t listed, but it’s on the computer
for your enjoyment, after 4:45, of course)

e The "C" programming language and compiler, and an input/output
package for UNIX (see the "cc" command page in the UNIX User’s
Manual, and the book "The C Programming Language" by Kernighan
and Ritchie, published by Prentice-Hall)

‘em—eee ENJOY YOURSELF —==w—-

- 92 -

4. HOMEWORK
4.1 LEARN Program

The LZARN program is a good primary source of practice problems to
gain familiarity with the editor and the UNIX file structure.

To enter the LZARN program, simply type '"learn" in response to a
"S" command prompt. You will be given explicit instructions on how
to proceed, including a list of offered topics. You will be
interested in the topics: '"files," "editor" and "morefiles” (in
that order). Each "course" (or topic) will be presented in a
"tutorial manner," i.e., each lesson is prefaced with the
background principles necessary to answer a specific question (this
ideal is usually realized). The "teaching script” can follow three
paths: a "fast" track for those who make 20 mistakes, and two
levels of "slow" tracks (i.e., extra lessons) for those who are aol
perfect. If vou‘re stuck on a question for a long time, you have
the option (by refusing to try the problem again) of passing it up
and going on. probably down a ."lower track."

Tc exi: the LEARN program, simply type "bye" in response to a "S"
command prompt. You may reenter a subject at the point where you
left off, by remembering the subject name and the numder of the
last lesson vou’'ve successfully completed. Note that it is wise to
use a hard-copy terminal while executing the '"learn" program, so
important information will not roll off the screen.

4,2 Final Exam

After completing those sections of the LEARN program noted above,
vou might try this FINAL EXAMINATION (solutions are given in the
next section). Do all the "examination" problems in a subdirectory
"EXAM", which may be created via a command issued in your "login
directory":

mkdir EXAM
and can be entered viz the command:
cd EXAM

You can return to your '"login" directory at any time by issuing the
command:

cd

It should be noted that the Zfollowing problems are Quite
"artificial," in that you may be forced to execute commands in a
strange or impractical way, or analyze commands with little or no
practical use. The intent of the problems is to make you aware of
all of the commands at vour disposal, and then you may choose a
subset, and develop a style, suited to your needs.

- 93 -

Problem 1
Form a £ile named "begin" (in subdirectory "EXaAM"), with contents:

one
two
three

Problem 2

Enter the editor anew (type the "ed" command with no (filename
associated with it). Load the following lines into the editor
buffer:

four
five
six y
seven

Use the "f'" command tec associate the filename ''number" with the
buffer. Next. "read" the contents of file "begin™ at the beginning
cf the buffer. Check to see what filename is now associated with
the buffer. and "write" the seven line contents of the buffer onto
£ile "number", and quit the editor.

Problem 3

Bring the file "number" inte the editor buffer, print its contents,
and try the following commands, in the order shown. Try to figure
out the editor responses or actions attributable to each command
before actually working with the terminal.

.= (Command #1]
8p (#2]
.= {#3]
4,5p {#6]
-1,8p [#5]
> {#6]
— L#7]
.2n [#8]
(carriage return) (#9]
s-1,3p {#10]
.= (#11]
sl (#12]
1,5-2w [#13]
Q (#14]
Problem 4

Bring file "number" back into the editor buffer and perform the
following actions:

W,

- 94 -

(1) Copv line #! at the end of the buffer

(2) Delete lines #) and #2 of the buifer

(3) Move lines #! and #2 of the current bufier after line #3
in the current buffer

(4) Copv lines #1 to #4 of the current buffer after line #3
in the current buffer ’

(5) Change line #4 in the current buffer to two lines:

eight
nine
(6) Insert. at the beginning of the buffer, the line:
six
(7) aAppend the end of the buffer with line:
seven :
(8) Write lines #1 to #9 only onto file "number”
(9) Quit the editor

Now try to figure out the current contents of the buffer, and
print it out for verification.

Problem 5
Create a file "welcome' containing the following lines:

Hello!

I am UNIX.

This is to
inform you

that I am

your

powerful master
and

that this
terminal

will electrocute
vou, should you
make an

error

- - - 1 demand
perfection!!!

- = = 1 demand
respect!!!!

then

Now bring "welcome" back into the editor buffer and perform the

following actions:

(i) Change the word "UNIX" in line #2 to lower case letters
(this humbles the damn computer)
(2) Change the word "electrocute" to "notify" (use a global

command to make the substitution, noting that "electrocute"

is the only word of text, not at the beginning of a line,

that begins with the letter "e")

(3) Change the "powerful master" line to two lines "humble"
and "servant" (note, the line you seek is the only line
ending in "er" ~-- use a "context address" to locate it)

(4) Change all appearances of '"demand" to "would like"

- 95 -

5) Remove anv number of "!" at the end of any line

6) To make UNIX friendlier. change the first lipe to read
"Hello Heilo Hello Hello Hello Hello" using a single
substitute command

(
(

{7) Print the contents of the modified buffer (see how humble
UNIX has become), and destroy the buffer. i.e.. leave the
editor without writing the buffer contents onto file
"welcome"

Problem 6

Create a file "wisdom'" containing:

If nodeders
nodet

nodedings the
way summers
wrote sums,

then the first
woodpecker that
came along wauld
write.

Now bring the file into the editor bgffer.' and investigate the
actions of the following commands (determine the action of each
command before using the terminal):

(1) 1s/node/buil/

(2) +,8s//%/

(3) g/wla~drlic=-jl../s//destroy civilization/
(4) g/sum/s//program/ .

Print the entire buffer and overwrite the file "wisdom".
Problem 7 ’

This problem is a ."eal (expletive deleted)."” Form a file "weird”
containing the following text (BE CAREFUL and ENTER TEXT EXACTLY AS
SHOWN) :

To tire bhd nurd

it takes to 4 a task: tile

hb nord you bhink * should xxxake,
multiply by 4, and f£ind the hair
change the tibble of measure

to the next & tibble. Thus we

locate 4 days for a hour

tark.

Now, for each command listed (in the order shown), determine the
substitutions that will be made (without using UNIX), and then use
the computer to physically execute the commands; after each command
is completed, print out the entire buffer and compare the results
with vour 'prophecies.”" The commands are:

(1) 1,=5g/d/s//e/\
s/o/c/

(2) 3s/x*/t/

(3) 1,.2s/n.rd/time/

(&) 3s/*%/

(v/eS/s/4/2/

g/til“mie/s//estimate/

g/"{"ii/s/4/highest/

v/*t/s/..in..the.*//

g/i:,1/s/4/do/\

s/*/it/\

s/xx*/t/

(10) g/2/s/ho/one=&/\
s/"{“monkey}/al&/

(11) g/bb/s/..bb../unit/\
+2s/zk/sk/

(12) w .
q

I~ AN -~
D00 -~ in
e ' et Nt

I1f vou analvzed eack command correctly, vou are an EDITOR EZXPERT.
Problem 8

Create the following files in the directory
"/your_system/vour_login/EXaM/":

(1) Create the file ".when", containing three lines:

one
Lewss0
»>thr>ee

where "»" represents the "tab" character, entered into
text via (CONTROL-I)

{2) Create the file "was/where" (this is file "where" in an
"EXAM" subdirectory called "was"), containing one line:

two

(3) Create the file "why" (enter exactly as shown with all
spelling errors), containing:

1f one advarces confidtly

in the directious of his dreams
and edevors to live a

1ife which he has imagined,

he will meet with sucess
unexeced in cummun huors.

(&)

Recall
"wisdo
proble

Create the file "was/words"

cane
cone
lane
lone
nine
none

that £files '"begin", 'number”, 'weird”, '"welcome"

and

m" in directory "EXAM" have been created previously in other

ms'

Problem 9

Determine the effects of the £ollowing LIST commands issued

subdir

ectory "EXAM":

(1) ls
(2) 1is was
(3) 1ls -a
(4) ls =t
(3 1s -1
(6) ls why where when
(7) ls -d was why
(8) Lls -dl EXAM was
(9) ls w*
(10) ls *n*
Problem 10

Again

(1)
(2)
(3)

(4)

@)

(8)

(¢)

in

assuming you are in subdirectory "EXAM" under your login
directory. perform the following actions:

Print your working directory

Change to the "was'" subdirectory

Create a copy of "welcome" in directory "EXAM" and place
it in the current directory with name "hello"

Append files '"where" and "helle" in the current directory
to the end of file "begin" in directory "EXAM"

(your current working directory is still "was")

Return to the parent of your current working directory
Produce a paginated output on the terminal of all ordimary
"non-dot" files in directory "EXAM" and all of its
subdirectories --— as an aid, printout all the names

of £iles in "EXAM" and its subdirectories first

Print out all lines containing the string "one" (including
the filename and line number) in all files in directory
"EXAM" (including subdirectories), whose f£ilename
contains a "w"

Form a f£ile "count" which contains the number of

lines, words and characters (and the filename) contained
in file "weird"

Use the SPELL command to determine the spelling errors

in file "why"

)

Problem 11
Try the following probiems using the OFFLINE PRINTER:

(1) Produce an 8x1! Xerox print cf the manual pages for the
commands "banner”. "at". "usend" and "slieep”

Produce @ landscape Xerox print of the file "weird"
Produce a default computer printout of combined files
"weird"” and "welcome"

W
et M

o~~~

(&) Produce & nohole, landscape Xerox print of the file "words”
(5) Produce a paginated Xerox print (two input pages per one
output page) of any file in directory "EXaM", whose
name contains an "h" or "1" (no subdirectories)
Problem 12

A few more problems for vour enjovment:

(1) Combine the words "HI THERE" with file "welcome" and print it
in a paginated format (do not create any temporary files
and dc not modify "welcome')
Form a file "WwW", which contains a list of alli files and
subdirectories in "EXAM" beginning with the letter "w"
"Cat" the fiie "welcome", using a "nohup" prefix
--—- explain what actions UNIX will take
(4) Print a list of filenames in subdirectory "was",
followed by the DATE/TIME, followed by the contents
of file "welcome" on the terminal, using a single
command line
(5) Deposit all spelling errors of files beginning with the
letter "w" in directory "EXAM" (not subdirectories)
into the file "tmp" —--- create a background process

—~~
o
~——

—
(V8)
e

(6) Have the output of the "date" command sent to file "777"
in 10 minutes and the contents of file "welcome" printed
offline in 2 hours

(7) Kill the job to be run 2 hours from now

(8) Mail vourself a letter "I love myself" and the

file "was/words"
(9) Read your mzil --- destroy the "I love myself"
message and save the file sent (with the postmark)
in £ile "junk"
(i0) Create a file "NEWS" containing the names of all news
articles containing the character "2"

Problem 13
Try a few more, i.e.,

(1) Print out file ".when" on the terminal

(2) Return to vour "login" directory

(3) Modify ".profile", such that the "tab" character is
recognized by the terminal

- 99 -

"Logof£f" and "login" again
Issue the command:

NN
W &
N’ N

PS1="READY "

---~ what does this command accomplish?
(6) Return to subdirectory "EXaM"

Problem 14

Answer the following questions, but do nof issue the commands
phvsically to UNIX.

(1) You wish to send some files to login "abe" on disk file
system "b2" --- what preparations must login "abc" have
completed before the files can be transferred

(2) Write the command necessary to send copies of files
" .when" and "was/words" (both in directory "EXAM")
to login "abe"

(3) Under what complete pathnames will the copies of the
files appear in login "abe”

Problem 15

Now its time to clean up the files you’ve created in directory
" 1"
EXaM":

(1) Change the mode of subdirectory "was" to allow only write
permission to vourself --- all other permissions denied

(2) Deny all permissions to everybody for the files "welcome"
and "why"

(3) Remove all "dot" files

(4) Change the name of file "hello" to "welcome"

(5) Delete as many files in directory "EXAM" and all of its
subdirectories as you can, without changing "modes"
--- remove interactively

(6) If vou have any files left, change modes as needed, and
remove "EXAM" and its contents

Problem 16
Consider the following hypothetical situation:

e You are in an unknown directory on the UNIX-A system,
containing £files one, two and trthree and subdirectory
directory!; "directoryl" contains 62 ordinary files.

e You issue an "rjestat" command on the UNIX-A system, and you
are notified that the RJE hardware 1is down; the computer
center states the problem will not be corrected for two days.

e You need a Xerox printout of file "one" by tomorrow morning.
e You want copies of files "two" and "three" (but not file

"one") to reside in login directory "/bl/xxx," which has "700"
permission on it, but fortunately you know the passworé cf

- 100 -

"

login "xxx" on the UNIX-B system. Note that the UNIX-B and

UNIX-4 systems are using a VAX and IBM computer. respectively.

o There exists a directory "/pl/xxx/rje" with "777" permission.
but vou iost vour UNIX manual and vour knowledge of USEND and
NUSEND only allows vou to transfer one file at a time. This
"sje" directory is empty now, and should be empty when you are
done.

Your task is to accomplish the above actions (with constraints
indicated) wusing JZSive commands. You must use USEND cr NUSEND,
CPIO0, ECHO and FIND in this exercise.

4.3 Examination Solutions
Below are my solutions for the preceding "exam" problems.
Problem 1

The solution is:
Sed *"8" is the UNIX command prompti
a
one
twe
three

w begin
14 {character count]
q

Problem 2
The solution is:

Sed rrg" is the UNIX command prompt)
a

four

five

six

seven

£ number

number {UNIX response]

Or begin

14 [character count]

£

number ["r" does not change buffer filename]
w

34 {character count]

q

Problem 3

The results of the commands are summarized by the following

session:

Se number
34
»

6

Sl
seven
1,8=-2w
24

Q

The file "number" now contains
whizh were written:

one
two
three
four
five

Problem 4

- 101 -

{"$" is the UNIX command prompt!
icharacter count] o
f"dot'" is set to the last line read in:

iresponse #1]

fv8" is non-existent line:

{response #2]

[response #3, "dot" unchanged]

[response
[equivalent to
(response

#51
{equivalent to
{response #6!
{equivalent to
{response #7:
{equivalent to
(response 8]
{equivalent to
{response #9!
{[equivalent to
[response #10]

[response #11,
[equivalent to
[response #12]
fequivalent to

(¥}

"g) 79"}

" "

.p"]

".=4p"]

".+2n"f

".=1p"]

"6,3p, invalid coﬁmand}
"dot" unchanged] -
"7L1"]

l!1 . Sw"]

(character count, response #13] ;
{command #14, unconditional quit]

the first five lines of the

editor

buffer,

The editor session necessary to accomplish the stated tasks is:

Se number
24
1tS

{"S" is the UNIX command prompt}
i{character count])
[command #1]

)

- 102 -

1,24 "command #2
1.2m3 Tcommand #3)]
1,423 Tcommand #é&1]
4¢ {commang #5:
eight

nine

11 _command #6:
six

Sa ! command #7]
seven

1,9 {command #8]
Q funconditional quiti

The buffer. upon quitting the editor, contained:

six
five
three
four
eight
nine
three
four
one
one
seven

and the file "number'" now contains the £first nine lines of the
£inal buffer contents.

Problem 5

These are the commands that I would use (not necessarily the only
way to do the problem) are:

“17 2s/UNIX/unix/
/ e.*/s//notify/
/erS/c
humble
servant

L

WKy —

(WY Sy g}

é/demand/s//would like/g
g/t1%s/s///
1s/.%/& & & & & &/

—ememtr ey
~J O\ Ln o
b b

»P

Hello Hello Hello Hello Hello Hello
I am unix.

This is to

inform you

that I am

- 103 -

vour
humble

servant

and

that this

terminal

will notify

vou. should you
make an

errcr

- « = I would like
perfection

- = = 1 would like
respect

Q

Problem 6

The commands will accomplish the following:

'1:

.

721

3]

Line #1 will be converted to:
1f builders

The command is equivalent to "2,9s/node/buil/" and will
affect lines #2 and #3 as follows:

built
buildings the

The only match to the global regular expression
"w{a-drl{c-j].." is the string "write" in line #9 —==w=- the
command is equivalent to "9s/write/destroy civilization/" and
line 9 becomes: .

destroy civilization.
The global regular expression "sum” is matched in lines #4
and #5, and the command is equivalent to "4,5s/sum/program/",
producing modified lines:

way programmers
wrote programs,

The modified file "wisdom" now contains:

If builders

built

buildings the

way programmers
wrote programs,

then the first
woodpecker that

came along would
destrov civilization.

~)

- 104 -

Problem 7

Here are the answers tc the "world’s most difficult problem" (in
great detail):

11

-

(2

-
4

“

The global prefix "1.-5g/d/" is equivalent to "1.3g/d/".

since the relative address "-3" is equivalent to ".-5" and

"dot" is "7" (thHe last line read into the buifer); lines #1
and #3 contain the string "d". and are subject tc the
substitutions that follow.
For line ##1, the two substitute commands are equivalent to
"s/d/e/" and "s/b/t/", recalling that the "null" regular
expression associated with the first substitute is equivalent
to "d", the last regular expression used by UNIX. Therefore:

To tire bhd nurd {original line #1]
is changed to

To tire the nurd inew line f#1:
For line #3, the two substitute commands are equivalent te
"s/b/e/" and "s/b/t/"., noting’ that the '"null" regular
expression in the first substitute command is aow equivalent
to "b", the Jast regular expression used by UNIX (during line
#1 substitutions). Thus:

hb nord you bhink * should xxxake [original line #3]
becomes

he nord vou bhink * shouid xxxake
after the first substitution and

he nord you think * should xxxake [new line #3]
after the second substitution.
Wasn’t that fun!!!i!l!!}
The command "3s/x%*/t/" changes the leftmost occurrence of
zero or more consecutive "x“s" to a "t", in current line #3.
Thus:

he nord you think * should xxxake [current line #3]
is changed to

the nord you think * should xxxake [new line #31]
as UNIX found zero "x’s'" between the "beginning" of the line

(a "new line" character) and the first letter "h'", and placed
a "t" there. Were you fooied (again)???

- 105 -

The command "1..2s/n.rd/time/" is equivalent to
"1.5s/n.rd/time", since the vrelativa address ".2" is
equivalent to ".+2" and "dot" was set to line #3 after thne
last substitution. Matches to the strings "nurd"” in line #1
and '"nord" in line #3 are the onlv ones found in the

"

designated range; the . in the regular expression
represents any single character. Thus:

To tire the nurd {current line #1]
is changed to

To tire the time (new line #1]
and

the nord vou thfnk * should xxxake [current line #3!
is changed to

the time you think * shouild xxxake ‘new line #3:
That was an easy onel!l!!

The command "3s/*/" is equivalent to "3s/*//p" (due
to the missing final delimiter), which changes

the time you think * should xxxake [current line #3]
teo
the time vou think * should xxxake {new line #3]
Again, I‘ve tried to trick you. The regular expression
"*#¥" represents one or more consecutive "\" characters;
remember that "\\" is a JlJtera! "backslash" and "*" is a
metacharacter.,
The command "v/eS/s/4/2/" is straight-forward. The entire
bulfer is searched for lines not ending in the letter "e",
i.e., lines #3. {4, #6 and #7; in these matched lines, the
ieftmost "4" (if one exists) is changed to a "2". Thus:
multiply by 4, and f£find the hair {original line #4]
is changed to
multiply by 2, and find the hair {[new line #4]
and

locate &4 days for a hour {original line #7]

is changed to

~3

—

(8:

-

(9:

- 106 -

locate 2 days for a hour {new line #7]

Lines #3 and #6 do not contain the string "4", and. hence,
were anct affected by the substitutions.

The command “g/ti{"mje/s//estimate/" is also quite straight-
forward. The buiffer is searched for lines containing the
string "ti", followed by any character except 'm". £followed
by "e': lines #! and #2 provide matches. In these lines. the
first occurrence of the matched strings are vreplaced by
"estimate". Thus:

To tire the time {current line #1]
is changed to

To estimate the time [new line #1]
and

it takes to 4 a task: tile ioriginal line #2]
is changed to

it takes to 4 a task: estimate foriginal line #2:

The command "g/~{"il/s/4/highest/" will affect any lines
beginning with any character except "i". All lines except #2
qualify, but the replacement of "4" with the string "highest"

can only be accomplished in line #6, i.e.,

to the next & tibble. Thus we [original line #6)
is changed to

to the next highest tibble. Thus we [new line #6]

The command "v/~t/s/..in..the.*//" can affect any line not
beginning with- the letter "t"; this includes lines #1, {2,

#4, #5 and #7. The only match to the string "..in..the.*"
occurs in line #4, i.e., " find the hair", and

multiply by 2, and find the hair [current line #4]
is changed to
multipiy by 2, and fnew line #4]

This global command seeks lines containing the character ":"
or ","; matches are found on lines #2, #3 and #4. On each of
those lines, any or all of the substitutions "s/4/do/",
"s/*/it/" and "s/xx*/t/" may be made, in that order. Note
that the regular expression "*" represents the character "*"
literally, and "xx*" matches one or more "x“s" literally.
Therefore:

- 107 -

%
[

it takes to 4 a task: estimate [current line
is changed to
it takes to do a task: estimate [new line #2}

bv the first substitute command. and

oo
”

the time you think * should xxxake [current line #3]

is changed to
the time you think it should take {new line #3]

via the second and third substitute command. No
substitutions are possible in line #4.

“10. This global command seeks lines containing the character "1";
lines in the current buffer that match are #4 and #7. 1In
each of those lines. the commands '"s/ho/one-&/" and
"s/~"monkev]/ala/" 'will be attempted: the <£first command
replaces the string "ho" with "one-ho", due to the
replacement text metacharacter "&", and the second command
will place the string "al" at the beginning of a line a0t
beginning with an nmn, "0", "ﬂ". "k", nen or n}."’ due to the
"=" and "&" metacharacters. Therefore:

locate 2 days for a hour {current line #7]
is changed to
allocate 2 days for a one-hour (new line #7]
via both substitute command, and line #4 is unaffected.

11! The last global command seeks Llines containing' the string
"bg", and lines #5 and #6 qualify. In those lines, a six
character string with the two center letters being "b’s" - (if
one exists) is converted to "unit" via the command
"s/..bb../unit/". Iwo lines after each matched line are also
(possibly) affected by the command "s/rk/sk/". For line #5,
the first substitution is effective, i.e.,

change the tibble of measure (original line #3531
is changed to

change the unit of measure [new line #5]
and, in this case, the second substitution has no effect on
line #7 (i.e.,"”.+#2"). The £irst substitution also has an
effect on line #6, i.e.,

to the next highest tibble. Thus we [current line #6]

becomes

- 108 -

tc the nex:t highest unit. Thus we inew line #6.

and line #8 (i.e., ".=2") is efiected by the
substitution, i.e.,

tark. foriginal line #8!

is changed to
task. {new line #8]
I knew vou’d make it!!!!!

{12 The "w" command is obvious, and a recap of all the
vields a new file "weird" containing:

To estimate the ‘time

it takes to do a task: estimate
the time vou think it should take,
multiple by 2, and

change the unit of measure

to the next highest unit. Thus we
allocate 2 days for a one-hour
task.

Problem 8

Assuming you are in vour subdirectory "EXAM", the following
sessions will create the files requested:

Sed ["S" is the UNIX command prompt]
a

one
t(CTRL-I)w(CTRL-I)(CTRL-I)o
(CTRL-I)thr(CTRL-I)ee

w .when

4 {character count]
,d iempties buffer]

a

“we

w was/where [partial pathname]
4 { character count]
.d {empties buffer]

a

1f one advarces confidtly

in the directious of his dreams

and edevers to live a

life which he has imagined,

he will meet with sucess

unexeced in cummun huors.

w why

158 character count!

second

changes

editor

- 109 -

.d iempties buffer:
a

cane

cone

lane

lone

nine

none

v was/words
30 {character count]

q

This editor session will only work properly, if the subdirectory
"was" is created beferehand, via the command:

mkdir was
issued in directory "EXAM".
Problem 9

The list commands will yield the following responses, if issued 1in
subdirectory "EXAM":

1} The command "ls" produces an alphabetized listing of all
"non-dot" files/subdirectcries in "EXAM", i.e.,

begin, number, was, weird, welcome, why, wisdom

{21 The command "ls was" produces an alphabetized listing of all
"non-dot" files in subdirectory "was", i.e.,

where words .

‘3] The command "ls -a" will yield the same response as "ls",
except the list headed by the "dot" files:

. .abbreviation for your current directory "EXAM"]
.. {abbreviation for the parent of "EXaM"!
.when

;4. The command "ls -t" will yield the same response as '"ls",
except the files are put in the order in which they were
created or modified, most recent first, i.e.,

was, why, weird, wisdom, welcome, number, begin
The command "ls -1" will list the same files as "ls", except

that "long listing" information (which varies from user to
user) is provided

-
w
[y

{61 The command "ls why where when", noting file 'where" is a
file in directory "EXAM/was" not "EXAM", and "when" does not
exist, produces a printout:

- 110 -

where not found
when not found
why

p.
~1
L }

The command "ls -d was why" produces a list:

was
why

noting the "-d" option tells you of the existence of
subdirectory "was" (not the list of f£iles contained in it),
and has no effect on "why", which is not a directory.

{8: The command "ls -dl EXAM was" will indicate that "EXAM not
found”, as "EXAM" is nor a file/subdirectory within itself,
and "long listing" information about the subdirectory '"was"
is produced (due to the "-dl" option).

:9] The command "ls w*" is equivalent to "ls was weird welcome
why wisdom", due to the expansion of the "*" metacharacter.
The listing produced is:

welird
welcome
why
wisdom

was:
where
words

noting the contents of subdirectory "was"” is displayed (in
the absence of the "-d" option).

f10) The command "ls *h*" expands to "ls why", as "why" is the
only '"non-dot" file or subdirectory in "EXAM" that contains
an "h", and UNIX verifies that the file exists by printing’
its name.

Problem 10

My solutions to the problem are listed below, but other answers may
exist:

{11 To print your working directory, issue the command '"pwd",
which will yield a response "/your_system/your_login/EXAM".

—
[)
[

To change to the '"was" subdirectory, issue the command
" "
cd was".

-~
w
——

You are in directory "was", whose parent is "EXAM", and the
proper command is '"cp ../welcome hello" (noting ".." is an
abbreviation for the parent of whatever directory you are

currently working in).

(]
£
“a

) '
e)} w
o [

~!

LR
[}

- 111 =

The proper command is
cat where hello >>../begin

noting the "cat where hello" portion combines files "where”
and "helle". and, instead of printing them cn the terminal.
thev are appended to file "EXAM/begin” (again, ".." is an
abbreviation for the parernt of "was") via the redirection
">>,./begin”.

e

To returr to the parent of "was", issue the command "cd ..".
A possible command is
pr b¥ n¥* wie-il* was/*

noting the metacharacter expansions are equivalent to the
files in "EXAM" beginning with "b", "n" or "w", and all files
in subdirectory "was". If "*" was wused rather tharn the

tring "b¥ n* wie-il¥", we would have attempted to print the
conzro! information contained in "was", as "was" would have
been one component of the metacharacter expansion.

A possible solution is
grep -n one .w*¥ wie-il¥* was/*w¥

(again, trying to avoid "grepping" the directory 'was"
itself) and the resultant response from UNIX is:

.when:1:one

weird:7:allocate 2 days for a one-hour
why:1:1f one advarces confidtly
was/words:2:cone

was/words:4:lone

was/words:6:none

This task is easily accomplished by redirecting the output of
the "word count" command, i.e.,

we weird >count
The output of the command "spell why" produces the list:

advarces
confidtly
cummun
directious
edevors
huors
sucess

missing the spelling error "unexeced”. I spelling errors in
"why" were corrected, the quotation would read:

- 112 -

if one advances confidently

in the direction of his dreams
and endeavors to live a

iife which he has imagined.

ne will meet with success
unexceeded in common hours.

Problem 11

My solutions (assuming all commands are issued withir directory
"EXAM") are: :

T

S

man -T9700 banner at usend sleep

127 opr -t xr weird
'3: cat weird welcome | opr)
{4 opr -t xr -f nohole was/words
75 pr *nh* *1* | opr -p 2onl -t Xr
Problem 12
My solutions (again assuming all commands are issued within

directory "EXAM") are:

1

S -

3]

My way of handling this problem is the-sequence:
cat - welcome | pr
HI THERE
(CONTROL-D)

recalling that the "-" argument expects input £rom the
terminal, and the (CONTROL-D) terminates that input.

The solution is:
1s =d w* >WWW

noting the "-d" option is necessary to force the directory
name '‘was" Itself to be listed. rather than its contents.

The command "nohup cat welcome" will cause a copy of the file
"welcome" to be placed in a file "nohup.out", which UNIX
created in directory "EXAM" (any output destined for the
terminal will be redirected to £file '"nohup.out"”, if the
"nohup" prefix is used).
The multi-command line:

ls was; date;Acat welcome

will provide the desired response

~4
[y

]

()

- 113 -

The required command is:
spell wie-il™ >tmp

where the subdirectory "was" is avoided by judicious use cof
metacharacters in the filename list "wie-i:¥".

The solution to this problem requires the "at" command. as
follows:

at now + 10minutes

date >777

(CONTROL-D)

at job number {provided by UNIX]

at now - 2hours

opr welcome

(CONTROL-D) A

at job number .provided by UNIX]

recalling (CONTROL-D) terminates a particular "at job list”,

and UNIX provides a unique job number for each "at" command
invoked. .

To "kill" a pending "at" job, use the following command:
atz number_of_job_to_be_run_in_2_hours

To mail yourself the required message or £ile, try the
following:

mail your_login_name
I love myself

mail your_login_name <was/words

To read your mail, simply type "mail" with no arguments and
respond to the queries by UNIX properly, i.e.,

From your_login_name date
{contents of file "was/words"}

? s junk
noting your response "s junk" will cause the mailed file
headed by a postmark to be stored in file "junk". Then
another message is then printed:

rom your_login_name date
I love myself

7 d

noting the "d" response destroys the message.

s

- 114 -

10 The proper command is:

ls /usr/news | grep 2 >NEWS

noting "ls /usr/news" produces a list of ail/ "news articles"
available. '"grep 2" accepts that list Irom the "pipe"” and
isolates those names containing the character "2". and those

names are placed into file "NEWS" via redirection
Probiem 13
My solutions are:

{17 You are in directory "EXAM", and the command:

cat .when
will vield a printout:
one
two
three

assuming vour terminal does not rcespond tc the
character.

(%]
—a

The proper command is:

)

cd [without a directory argument:
[3] The following sequence will accomplish the task:

e .profile

(character count of file read)
a

stty -tabs

W
(character count of buffer written)
qQ

{4 Hitting (CONTROL-D) wiil log you off and provide an
"login sequence”. This action allows ".profile" to be
and instruct the terminal to react to 'tab" characters.

Now the command:

e
wn
[

cat EXAM/.when

will result in a printout, in which 'tab" characters
activated, i.e.,

one

"tab"

other
read,

are

- 115 -

{6 This command force§ the UNIX command prompt to be "READY ™.
©7. The proper command is
cd ZXAM
Problem 14

My sglutions are:

h

Login:"abc" must have a subdirectory "rje" in "mode 777"
created before the file transfer takes place. The required
commands issued in directory "/b2/abe" are:

mkdir rje
chmod 777 rje

:2; The required "usend” command is:
usend -d ihuxb -u ab¢ .when was/words

where "ihuxb" is the ‘"destination code"” <£or the UNIX-B
svstem, and the ‘"usend" command was issued in your "EXaAM"
directory.

'3 The received files are "/b2/abe/rje/.when" and
“/b2/abc/rje/words', respectively.

Problem 15

The following scenario (all commands issued in directory "EXAM") is

valid,

if you‘ve completed the previous questions exactly as

instructed:

.'1:

-
[]
s

The command:
Mchmod'ZOQ was

will deny all permissions for subdirectory 'was", except
"write" permissicn to the owner of the directory.

The command:

chmod 000 weicome why
will deny al/ permissions for the files "welcome" and "why'.
The command:

. rm ¥ o ST

..will remove all "dot" files in "EXAM", noting you will be

advised by UNIX that "." (the current directory "EXAM") is a
directory and cannot be removed by "rm" without the "-r"
option. and that ".." (the parent of "EXAM") cannot be
removed from within the "child".

>
[)

The following command will change the name of "junk" ©o
“welcome": '

mv junk welcome

noting vou will receive a "mode warning” <£from UNIX of the
form '"mv:welcome:0 mode", to which a "y" response will force
the move. The new file "welcome" will possess the
permissions of the old file "juak". .
[5! 1In "EXAM". the following command will set up the "interactive
deletion'" process: ' T SRR

rm -ir .

noting "." {an abbreviation for the current directory "EXAM")
must be explicitly designated. The interactive dialogue with
UNIX is as follows: o

./begin: ¥

./number: ¥

./welcome: ¥

.Jwisdom: ¥ .

./weird: ¥

J777: y

directory ./was: (CR)

/why: ¥

./eount: ¥

SWWNG Y

./nohup.out: y

JJwmp: ¥

./NEWS: y

noting a "y" response removes the named file. The (CR)
response to the entry request for directory "was'" causes that
directory to be skipped in the deletion process; had we typed
a "y", entry to the directory would have been denied, due to
its 200 mode, and the "rm'" command would be exited.

{67 The final step -is to change the mode of ' subdirectory = "was".
return to your ‘"login" directory, and call for the
elimination of "EXAM" and its contents, i.e.,

chmod 700 was
cd
rm -r EXAM

Probiem 16
Noting that the RJE system on UNIX-A will be down for two days, we
cannot utilize USEND or OPR on that machine. Therefore, my
solution to the problems is to ship a CPIO archive of the three
files to the UNIX-B system via the command issued in the unknown
starting directory on the UNIX-A system:. =~ '' - - "~

S s
-~ L

iy

- 117 -

echo one two three | cpio -oc >temp
nusend -d ihuxb -u xxx temp

The ECHO command pipes the names of the desired files to CPIO,
which forms an archive with a portable ASCII header (as UNIX-A and
UNIX-B are not running on the same computer equipment).

Now, ;e can enter the login "xxx" on the UNIX-B system, and issue
the following commands

mv /bl/xxx/rje/temp .

which moves our archive file to the login directory "/b1/xxx" and
leaves "rje" empty, as we found it.

Now, we can dearchive the file “temp," send file "one" to OPR and
simultaneously remove it (via FIND primaries), and log off. The
following commands- should do the job:

cpic -ic <temp
find . -name one -exec opr -t xr {}\; -exec rm {}\;

This may not be a unique solution, but it was fun anyway.
CONGRATULATIONS TO ALL THE MASOCHISTS WHO COMPLETED THIS EXAM!!

~ v -)
&y xS .22 T)

IH-55625-KEW=-et j " K. E. Weildland

/"’_\ _

-
o~

