{A-\

' uNOS W A1

SOFTWARE=PRACTICE AND EXPERIENCE. VOL. 9. 1-i5 (1979)

The UNIX™ Programming Environment

. BRIAN W. KERNIGHAN
Bell Laborarories. Murray Hill. New Jersev 07974, U, S. 4

JOHN R. MASHEY
Beil Laborarores, Whigpany, New Jersey 07981, U. S. A.

SUMMARY

The UNIX* operating system provides an especially congenial programming environment, in
which it is not only possible. but actually natural, to write programs quickly and welil.

Several characteristics of the UNIX system contribute to this desirable state of affairs. Files
have no type or internal structure, so data produced by one program can be used by another
without impediment. The basic system interface for input and output provides homogeneous
treatment of files. 1/0 devices and programs. so programs need not care where their data comes
from or goes to. The command interpreter makes it convenient to connect programs. by arrang-
ing for all data communication.

Complex procedures are created not by writing large programs from scratch. but by intercon-
necting relatively smail components. These programs are smail and concentrate oa single func-
tions, and therefore are easy to build, understand. describe. and maintain. They form a high
level toolkit whose existence causes programmers to view their work as the use and creation of
tools. 2 viewpoint that encourages growth in place of reinvention.

Tools interact in a limited number of ways. but can be used in many different combinations.
Thaus. an addition to the toolkit tends to improve the programming power of the user faster
than it increases the complexity of interconnection and maintenance. Finally, tools are con-
nected at a very high level by a powerful command language interpreter. The error-prone and
expensive process of program writing can often be avoided in favor of program-using.

[n this paper we wiil present a variety of examples to illustrate this methodology. focusing on
those aspects of the system and sugporting software which make it possibie.

KEY WORDS Ooeraung svsiems Peogrammer sroductuviy

INTRODUCTION

“Software stands berween the user and the mactune. "
(Harian D. Mills)

There is more than a grain of truth in this remark. aven though it probably wasn’t meant the way
it sounds. In particular. many operating systems do some things weil. but seem to spend a sub-
stantial fraction of their resources interfering with their users. They uare often clumsy. awkward.
and present major obstacies to simply getting a job done. :

Things needn’t be that way. For at least five vears, we have used the UNIX operating system!

® UNIX 18 a trademark of Beil Luboratories.

0038-0644/79/0109-0001501.00 ' Recerved 31 Juiy 1978

2 1979 by John Wiley & Sons, Lid.

P BRIAN W. KERNIGHAN AND JOHN R. MASHEY

witichh in many ways is just the opoosite — nelpful. productive. and a pleasure 10 use.

T»

We are not the only ones who faei this way. Although the basic UNIX system was literally ~

developed in an attic by two peopie in a year, and has been available only as an unsupported pack-
age, the benefits it provides are so compelling that currently there are nearly 1000 UNIX systems
scattered around the world. At Bell Laboratories, UNIX systems provide more time-sharing ports
than ail other systems combined: they are accessed by thousands of people. many on a daily basis.

This paper is not meant to be an extended UNIX advertisement. [t is our intent to describe what
appears to be a new way of computing, emphasizing those things that are unique, that are particu-
larly well done, or that are especiaily good for programmer productivity. We will also discuss
agpects that have changed our view of the actual programming proceass, and attempt to draw some
lessons that may be valuable to future implementors of operating systems.

A disclaimer — neither of us was invoived with the development of the UNIX system. although
we have contributed applications software. We thus describe the system from the user's
viewpoint. as derived from our own experiences and those of the large community of users with
whom we have been invoived.

FILE SYSTEM AND INPUT/OUTPUT

File System Structure

AS any operating system shouid. UNIX provides facilities for running programs and a fle system
for managing information. The basic structure of the file system is fairly conventional = there is
a rooted tree in which each interior node is a directory (that is. a list of files and directories). and
¢ach leaf is either a file or a directory. (See Figure 1.) Any file may be accessed by its name.
either relative to the current directory. or by a full “*path name'" that specifies its absolute position

in the hierarchty. Users can change their current directory to any position in the hierarchy. A pro-

tection mechanism prevents unauthorized accsss (o files.

root=—>
directory

€ file

Figure 1. File svstem herarchy

Several design choices increase the uniformity of the file system by minimizing irrelevant dis-
tinctions and arbitrary special cases. These choicas permit programs that access the file system to

~)

JPES

THE UNIX PROGRAMMING ENVIRONMENT 3

be substantially simpler and smailer than they would be if this regularity were absent.

First, directories are files. The only distinction between a directory and an ordinary file is that
the system reserves to itself the right to alter the contents of a directory. (This is necessary since
directories contain information about the physical structure of the file system.)

Since directories are files, they may be read (subject to the normai permission mechanism) just
as ordinary files can. This implies that programs such as the directory lister are in no sense special
= they read information that has a particular format, but they are not system programs.

In many systems, programs like directory listers are believed to be (and often are) part of the
operating system. In the UNIX system, they are not. One of the distinguishing characteristics of
UNIX is the degree to which this and similar “*system™ functions are implemented as ordinary user
programs. This approach has significant benefits — it reduces the number of programs that must
be maintained by system programmers: it makes modification easier and safer: and it increases the
probability that a dissatisfied user will rewrite (and gerhaps improve) the program.

The next aspect of the file system is critical: a file is just @ sequence of bytes. As far as the file
system is concerned. a file has no internal structure — it is 2 featureless. contiguous array of
bytes. In fact. a file is better described by attributes that it lacks:

® There are no tracks or cylinders — the system conceals the physical characteristics of dev-
ices instead of flaunting them.

® There are no physical or logical records nor associated counts — the only bytes in a file are
the ones put there by the user.

® Since there are no records. there is no fixed/variable length distinction and no blocking.

® There is no preallocation of file space — a file is as big as it is. If another byte is written at
the end of a file. the file is one byte bigger.

® There is no distinction between random and sequential access — the bvtes of a file are
accessibie in any order. .

® There are no file types for different kinds of data nor are there any access methods. All
files are identical in form.

® There is no user-controlled buifering; the system busfers ail 1/0 itself,

Although these may seem like grave deficiencies. in fact they are 1 major contribution o0 the
effectiveness of the system. The file system strives to hide the idiosyncrasies of particular devices
upon which files reside. so all files can look alike.

It shouid not be inferred from the foregoing that files do not have structure. Certain programs
do write data in particular forms for the benefit of people or other programs. For axampie. the
assembler creates object files in the form expected by the loadsr. The system itseif uses a well-
defined layout for the contents of a directory. Most programs that manipulate textual information
treat it as a stream of characters with 2ach line terminated by a newline character. But these struc-
tures are imposed by the programs, nor by the operating svstem.

Programming [nterface

Seven functions comprise the programmer’s primary interface to the file system: open. create.
read. write, seek. close, and unlink. These functions are direct sntries into the operating system.
To access a file. open or create must be used:

fd = open(filename. mode)
fd = create(filename. mode)

open opens flename for reading, writing or both. depending on mode. filename is simply the
name of the file in the file system ~ a string of characters. create aiso opens a iile, but truncates
it 10 zero length for rewriting in case it already exists. [t does nor complain if the fle aiready
exists.

Both open and create return a “‘file descriptor’” (a small positive intager) that serves thereafter

$ SRIAN W. KERNIGHAN AND [OHN 2. MASHEY

as the connection between the file and /O cails in the program. (A negative return indicates an
atror of some sort.) The file descriptor is the only connection: there are no data controi biocks in
the user's address space.

Actual input and output are done with read and write:

n.received = read(fd, buf. n)
nwritten = write(fd. buf. n)

Both cails request the transfer of n bytes to or from the buffer buf in the user’s program from or
to the file specified by fd: n may have any positive value.

Both read and write return the number of bytes actually transferred. This may be less than a.
for example when reading a file whose size is not a2 muitipie of n bytes. A return of zero on read-
ing marks the end of file.

As far as a user program is concerned. input and output are synchronous and take place in
chunks of whatever size is requested. The system handles buffering and blocking into proper sizes
for physical devices. Not only does this simplify user programs. but it converts the haphazard
suboptimizations of individual user programs into global optimization across the entire set of
active programs. Disk performance is especially improved by this approach.

{/0 is normaily sequential — each command continues where the preceding one laft off. This
default may be changed by the call seek: ’

seek(fd, position. relative_to)

This requests that the pointer for the next read or write be set to position. relative to the begin-
ning, current position or end. as specified by relative_to. Thus seek provides a convenient ran-
dom access capability.

Finally. the function close{fd) breaks the connection between a file descriptor and an open die:
uniink(name) removes the file from the file system. . .]

Given this interface. many programs become simpie indeed. For example. here is the axecut-
abie part of a program copy that copies one file to another. [t is written in the C programming
language.-3

fin = open(namel, READ):

fout = open(name2, WRITE):

while ((n = read(fin. buf. sizeof(buf))) > 0)
write(fout, buf, n):

The buffer buf may be of any convenient size. The file names namel ind namel are character
strings. typically set when the command is executed. Another haif-dozen lines of declarations
make this into a complete program that will copy any file to any other (ile.

Input/Qutput Devices

The interface described above applies to all files. This goes further than might be expected. for all
peripheral devices are aiso files in the file system. Disks. tapes. terminals. communications links.
the memory. the teiephone system ~ all have eatries in the file system. When a program tries to
open one. however, the system brings into 2xecution the proper driver for the device. and subse-
quent [/O goes through that driver. The [/O device files all reside in one directory for convenient
administration. and they can be distinguished from ordinary files by the rare programs that need o
do so. Considerations specific to particular devices are pushed out into the device drivers wnere
they belong, and user programs nesd know nothing about them. The file system conceals ihe phy-
sical peculiarities of devices, rather than making them visible.

From the programmer’s standpoint. the homogeneity of files and peripheral devices is a consid-
arable simplification. For example, the file copy program copy that we wrote in the previous

~

)

~

w

THE UNIX PROGRAMMING ENVIRONMENT

section could be invoked as
copy filel dle2

to copy the contents of filel to file2. But the files may be devices:
copy /device/tape l&evi&e/printer

copies the magnetic tape onto the printer, and
copy /device/telephone /device/terminal

reads data from the telephone onto a user's terminal. The program copy is in ail cases identical.
the four lines we wrote above. The copy program need not concern itseif with any special charac-
teristics of files, magnetic tape or paper tape. for these are ail concealed by the system. copy only
has 1o copy data, and accordingly is much simpier than it would be if it had to cope with 2 host of
different devices and file types. (It is also a lot simpler to have but one copy program tharr to have
a host of different “utility” programs corresponding to the host of different possible copying
operations.)

As another instance of the value of integrating 1/Q devices into the file system, inter-user com-
munication by the write command is trivial. Since a user’s terminal is a file. no special mechan-
ism is needed to write on it. Unwanted messages can be prevented merely by changing the per-
missions on the terminai to make it unwritable by others.

Simplicity is achieved by the elimination of special cases. such as discrimination between devices
and files.

THE USER INTERFACE

Running Programs

When a user logs into a UNIX system. a command interpreter called the “sheli’ accepts com-
mands {rom the terminal and interprets them as requests to run programs. The form is as sug-
gested above: a program name, perhaps followed by a list of biank-separated arguments that are
made available to the program. For exampie. the command

date
prints
Fri May § 22:31:30 EDT 1978

The “‘program name'" is in fac: simply the name of a file in the file system: if the file exists and
is executable. it is loaded as a program. There is no distinction betwesn a “*system'" program like
date and one written by an ordinary user for private use. except that "“system’ programs reside in
a known place for administrative convenience: commonly-used programs. such as date. are Xept in
one or two directories, ind the shell searches these directories if it fails to find the program in the
user’s own directory. (In fact. it is even possible to replace the shelil's default search path with
one's own.) [astalling a new program requires only copying it into this directory:

copy copy /command/copy

installs copy from the current directory s the new system version in /command.

Filename Shorthand

A typical UNIX system lives and breathes with file system activity. Most users tend to have a large
number of small files: the system used for computing research. for exampie. has about 25000 files

6 BRIAN W. KERNIGHAN AND JOHN R. MASHEY

for about 40 active usars: the average Jle size is about 10000 Syras. but :he median is vary much
smailer.

Most programs accspt a list of file names as parameters: lists are often quite long. For exampie.
here is a listing of a directory:

addset.c templ
common temp2
dodash.c temp3
esc.e temp4
fllset.c tempS
-getcode translit.c
makset.c xindex.c
temp xlate.a

The names that end in .¢c are C source programs (a convention, not a requirement of the operating
system). To print ail these files with the command pr, one could say

pr addset.c dodash.c esc.c fiset.c makset.c transiit.c xindex.c

but this is obviously .a nuisance, and probably impossibie for a longer list. The shell, however,
provides an 2quivalent shorthand. In the command

pr =.¢

the character « is interpreted by the shell as *“match anything™. the current directory is searched
for names that (in this case) end in .c. and the expanded list of names is handed o0 pr. pr is
unaware of the expansion.

The shell also recognizes other patiern-maiching characters. lass used than *. For axample,

rm temp{l =5}

removes templ through temps Hut does not touch temp.

Filename shorthand is invaluable. It greatly reduces the number of arrors in which a long list is
botched or a name omitted; ic encourages systematic naming of files: it makes it possibie to pro-
cess sets of files as easily as single ones. Incorporating the mechanism into the sheil is more
etficient than duplicating it averywhere, and ensures that it is available to ali programs in 2 uni-
form way.

[nput/Output Redirection

As we mentioned earfier. the user’s terminai is just another file in the file system. Terminal I/0 is
SO common. however, that by convention the command interpreter opens file descriptors 0 and |
for reading and writing the user’s terminai. before executing a program. [n this way, 1 program
that intends only to read and write the terminai need not use open or close.

The command interpreter can also be instructed to change the assignment of input or output to
a file before executing a program:

program <in >out

instructs the shell to arrange that pregram take its input from in and place its output on out: pro-
gram itseif is unaware of the change,
The program !s produces a listing of files in the current directory: redirecting the output with

Is >fRlelist
collects the list in a file. The program who prints a list of currently logged-on users. one per line.

THE UNIX PROGRAMMING ENVIRONMENT 7

who >useriist

produces the sams list in the file userlist. If the file named after > exists, it is overwritten. but it
is also possible 10 append instead of replacing:

who > Duserlist

appends the new information to the end of userlist.
The text editor is cailed ed:

ed <script
runs it from a script of praviously-prepared editing commands.

These examples have been chosen advisedly: on many systems, this set of operations is impossi-
ble, becauss in each case the corresponding program firmly believes that it should read or write
the terminal and there is no way t0 aiter that assumption. On other systems. it is possibie 10 per-
form the redirection. but difficult. But it is not enough that something be just barely possibie; it
must be easy. The < and > notation is easy and natural. .

Again. observe that the facility is provided by the command interpreter, not by individual pro-
grams. In this way, it is universally available without prearrangement.

Tooels

One of the most productive aspects of the UNiX environment is its provision of a rich set of smalil.
generally useful programs — toois — for heiping with day-to-day computing tasks. The programs
shown below are a representative sampie. among the more usetul. We will use them as illustra-
tions of other points in later sections of the paper.

diff oldfile newiile
print differences between two fies

we files...
count lines. words und characters in fles

pr fles...
print files with headings, multipie columns eatc.

lpr files...
spool files onto line printer

grep pattern files...
print all lines conuining pattern
Much of any programmer's work is merely running these and related programs. For axampie,
we =.¢

counts 2 set of C source files:

grep goto -.c
finds ail the goto's.

Program Connectjon

Suppose we want to count the number of file names produced by the Is command. Rather than
counting by hand or modifving Is to produce a count. we can use Iwo existing programs in combi-
nation:

8 BRIAN W. KERNIGHAN AND JOHN R. MASHEY

Is >flelist
we <flleiist

Is producss one line per file: we counts the lines.
As another exampie, consider preparing a multi-column list of the file names on the on-line
printer. We use the muiti-column capabilities of the pr command. and the spooling provided by

lpr

Is >Aflelist
pr =4 <fllelist >temp

lpr <temp

This is an example of separation of function. one of the most characteristic features of UNIX
usage. Rather than combining things into one big program that does everything (and probably not
too well). one uses separate programs. temporarily connected as needed.

Each of the programs invoived is specialized to one task. and accordingly is simpier than it
would be if it attempted more. [t is unlikely that a directory-listing program coulid print in muiti-
ple columns. and to ask it t0 also spooi for a line printer would be preposterous. Yet the combina-
tion of operations is obviously useful. and the naturai way o achieve it is by a series connection of
three programs.

Plpes

It seems siily to have to use temporary files to capture the outputs. when all that is being done is
to take the output of one program and direct it into the input of another. The UNIX pipe facility
performs axactly this series connection without any need for a temporary file. The "*pipeline"

Is|pr =4] lpr

is a command line that performs the same task as.the exampie above. The symbol | tells the shell
to create a pipe that connects the standard output of the program on the left o the standard input
of the program on the right. Programs connected by a pipe run concurrently. with the system tak-
ing care of buffering and synchronization. The programs themselves are oblivious to the /0
redirection.

The syntax is again concise and natural: pipes are readily taught to non-programming users.

Although in principle the pipe notation couid Se merely a shorthand tor the longer form with
temporaries. there are significant advantages in running the processes concurrently. with hidden
buffers instead of files serving as the data channels. A pipe is not limited 0 2 maximum fle size.
but can cope with an arbitrary amount of data. Also. output from the last command can reach the
terminal before the first command receives all of its input — a valuable property when the frst
command is an interactive program like a desk calculator or aditor.

As a rule, most programs neither know nor care that their input or output is associated with a
terminal or a file or a pipe. Commands can be written in the simplest possibie way. vet usad in a
variety of contexts without prearrangement. (Bear in mind that this would be much less possibie
if files did not share a common format.)

As an example of a production use of program connection. a major application on many UNIX
systems is document preparation. Three or four separate programs are normally used to prepare
typical documents: troff, the basic formatting program that drives a typesetter: eqn, 1 preprocessor
for troff that deais solely with describing mathematical axpressions: tbi, 2 table-formatting program
that acts as a preprocessor for both eqn and troff: refer. a program that converts brief citations to
complete ones by searching a data base of bibliographic references: and a number of postproces-
sors for troff that produce output on various media other than the typesetter. Placing all of these
facilities into one typesetting language and program wouid have created an absolutely unworkabie
monster. As it is. however. each piece is sufficiently independent that it can be documented and

~

~)

THE UNIX PROGRAMMING ENVIRONMENT 9

mainined 2ntirely separately. Each is independent of the internai characteristics of :he others.
Testing and debugging such a seguence of programs is immensely easier than it would be if they
were all one. merely because the intermediate states are clearly visibie and can be materialized in
files at any time. ' (As an aside, this paper has been printed directly from camera-ready copy pro-
duced by refer and troff.)

Since programs can interact. novel interactions spring up. As an instance. consider the three -
programs who, which lists the currently logged-on users, one per line: grep. which searches its
input for all occurrences of lines containing a particular pattern; and we. which counts the lines,
words and characters in its input. Taken individually, sach is a useful tool. But consider some
combinations:

who | grep joe

teills whether joe is presently logged in:
who | we

tells how many peopie are logged in; and
who | grep joe | we

tells how many times joe is logged in. None of these servicss requires any programming, just the
combination of existing spare parts.

The knowiedge that a program might be a component in a pipeline enforces a cartain discipline
on its properties. Most programs read and write the standard input and output if it is at all senasi-
ble to do so: accordingly it is easy to investigate their properties by typing at them and watching
their responses. Programs tend to have few encrustations and “‘features’ (who will 7or count its
users. nor tell you that joe is logged on). Instead they concentrate on doing one thing well: they
are designed to interact with other programs: and the system provides an sasy and elegant way to
do the connection. The interconnections are limited not by preconceptions built into the systam.
but by peopie’s imaginations.

[n this environment, people begin to search consciously for ways o use existing tools instead of
laboriously making new ones from scratch. As a trivial example. 2 colleague needed a *‘rhvming
dictionary,” sorted so that words ending in "a’ come before those ending in 'b". etc. Rather than
writing a special sort or modifying the existing one. he wrote the trivial program rev that reverses
each line of its input. Then

rev <dictionary | sort | rev >rhymingdict

does the job. (Notice that rev need only read and write the standard input and output.)

Placing a sorting program in a pipeline illustrates another element of design. The pipe notation
is 50 natural that it is wetl worthwhile to package programs as pipeline slements (“filtars™™) avan
when. like sort. they can't actuaily produce any output until ail their input is processed. Recall the
uses of grep in this paper: it has appeared as the sourcs for a pipeline, as the sink. and in the mid-
dle.

The existence of pipes encourages new designs as well as new connections. For 2xample. a
derivative of the editor called a "“stream editor’" is often usad in pipelines. and the shell may weil
read a stream of dynamically-generated commands irom a pipe.

Program Sizes

The fact that so many tasks can be performed by assemblages of 2xisting programs. perhaps iug-
mented by simpie new ones. has led to an interesting phenomenon — the average UNIX program
is rather smail. measured in lines of source code.

Figure 2 demonstrates this vividly. The number of lines of sourca in 225 programs — most of

10 BRIAN W. KERNIGHAN AND JOHN R. MASHEY

L ! { ! ! 1 H 1 !

Figure 2. Program Sizes on UNIX. x-axis (0. 5000)

the commoniy used commands. but exctuding compilers — was counted with we. The programs
have been sorted into increasing order of number of sourcs lines. The x axis is the number of
lines: the y axis is simply the ordinal number of the program.

The median program here is slightly over 240 lines long; the 90th percentile is at about 1200
lines. That is, 90 percent of these programs have less than 1200 lines of source code (about 20
pages). Clearly, it is much easier to deal with a 20 page program than with a hundred page pro-
gram. :

ot

~)

~

~

THE UNIX PROGRAMMING ENVIRONMENT 11

The programs are written in C. as are assentiaily ail UNIX grograms :hat yvield axecutable code.
including the operating system itself. We feel that C itseif is another source of high productivity
- it is an expressive and versatile language. yet at the same time efficient enough that there is no
compulsion to write assembly language for even the most critical applications.

C is availabie on a wide variety of machines, and with only modest effort it is possible to writse C
programs that are porrabfe, that is, that will compile and run without change on other machines. It
is now routine in our environment that programs developed for the UNIX system are exported to
other systems unchanged. There is obviously a considerable gain in productivity in not having to
rewrite the same program over again for each new machine.

Since the operating system itself and all of its software is written in C, this leads to the interest-
ing possibility of a portabie operating system. one that can be moved with little effort from one
piece of hardware to another. At the moment, the UNIX system itseif has been moved from the
POP-11 to the Interdata 8/32 and the VAX 11/780. From the user's standpoint, these systems are
indistinguishable, save that not all of the standard software is necessarily available on the newer
systems. More detwils may be found in the paper by Johnson and Ritchie.® An independent
experiment by MillerS describes transporting UNIX to the Interdata 7/32. :

AVOIDING PROGRAMMING

The Command Language

We have already mentioned the basic capabilities of the UNIX shell, which serves as the command
interpreter. The critical point is that it is an ordinary user program. not a part of the system.® This
has several implications. It can readily evolve to meet changing requirements. It can be replaced
by special versions for special purposes. on a per-user basis. Perhaps most important, it can be
made quite powerful without consuming vaiuabie system space.)

Much of the use of the shell is simply to avoid programming. The sheil is an ordinary program.
and 5o its input too may be redirected with <. Thus if a set of commands are placed in a fle.
they may be executed just as if they had been typed. by the command

sh <cmdfiie

(sh is the name of the sheil.) The file cmdfile has no special properties or format — it is merely
whatever would have been typed on the terminai. placed in a file instead. Thus a “catalogued pro-
cedure™ facility is a natural by-product of the standard [/O mechanism. not a special case.

This is such a useful capability that several steps have been taken to make it sven more valu-
able. The first is to add a limited macro capability: if there are arguments on the command line
that invokes the procsdure, they are available within the shell procedure:

sh cmdfile argl arg2 ...

It is manifestly a nuisance to have to type sh t0 run such a sequence of commands. and it
creates an artificial distinction between different kinds of programs. Thus. if a file is markad axe-
cutable but contains text, it is assumed 10 be a shell procedure, and can be run by

cmdfile argl arg2 ...

In this way. cmdfile becomes indistinguishabie from a program written in a conventional language.
Syntacticaily and semanticaily the user sees no difference whatsoever berwesn 2 program that
has been written in hard code and one that is a shell procedure. This is desirable not only for 2ase
of use. but because the impiementation of a given command can be changed without affecting
anyone.
As a tiny example. consider the sheil program tel. which uses grep (o search an ordinary text
file /usr/1ib/tet for telephone numbers or names or whatever. In its entirety, the procedure is

12 BRIAN W. KERNIGHAN AND JOHN R. MASHEY

grep Sl /usc/lib/tel

S1 stands for the first argument when the command is cailed: the command
tel bwi

produces
brian kernighan (bwi) 6021

Since tel uses the general purpose pattern finder grep. not a special program that knows oniy
about telephone directories. the commands tel 6021. tel brian, and tel kern all produce the same
entry.

The shell is actually substantially more powerful than might be inferred {rom simple exampies
like tel. [t is a programming language in its own right. with variables, controt flow, subroutines
(calling other programs) and even interrupt handling. [n fact. as the shell has become more
powerful and provided more facilities. thers has been a steady trend towards writing complicated
processes in the shell instead of in C. Throughout, however. it has remained true that the shell is
just an ordinary user program: its input is ordinary text. and a user can not, by running a program.
determine whether or not it is a sheil process.

Although the sheil resembies a typical procedural language. it has csrtain rather different quali-
ties. Most important. in certain ways it is a very high level language, and as such it is far aasier to
learn. use. and understand than lower level languages. Sheil programs are inherently easier to
understand and modify than conventional programs. because they are small (usuaily a handful of
lines) and use familiar high-level building blocks. The sheli language is rapidly extensibie — peo-
ple can create new commands on the spur of the moment. It can be adapted 10 mest performance
requirements without disturbing its user intarfacs. The alements of its language are generaily
quite independent — changes to most pieces can be made without affecting the others. The sheil
provides most ot the interconnection among programs - the complexity of interaction is linear {or
less) because components are so independent of one another. As a resuit. it is difficult for aven a
beginner to write unmodular sheii procedures — modularity is inherant in the tanguage. . without
affort or carefui preptanning.

Usage Scatistics

The ease with which command language programs can be written has led 0 a steady growth in
their use. This is illustrated by usage figures for a representative system. one of nine that make
up the original Programmer's Workbench (PWB/UNIX) installation.”-3 The svstem serves about
350 users. who own a totai of 39.000 files and 2850 directories. The mean file size is about 3700
bytes: the mean number of files per directory is 14. A majority of the people using this svstem are
working on programs to be run on [BM S/370 computers: some are waorking on software to run on
1 UNIX system: avervone usass the system for documentation and project management ictivities.
Project sizes range from | person to about 30,

We surveyed command language usage by running a program that searches for shell procedures.
records their size distribution. and prints them for visual inspection. We found 2200 shell pro-
cedures and only 500 compiled programs: the former is a conservative count. bSecause the saarch
program necessarily misses some files that actually are sheil procedurss. These shetl procedures
were lairly small. averaging 1 little over 700 bytes apiece. Examining the distribution of lines per
procedure. we found a mean of 29 lines. a median of 12, and a mode of 1. In fact. 11.7% of all
procedures consisted of but a single line. About 45-50% of the procedures contained some condi-
tional logic: of these. about half (or 20-25% of ihe total) included loops. primarily 0 perform the
same operation over each file in an argument list. Programming usage has increased. as can be
observed by comparison with a pravious survey.?

Several conclusions can be drawn. First. people make significant use of shell procedures to

4

™)

o IR

e

THE UNIX PROGRAMMING ENVIRONMENT 13

custornize the general environment to their particular nesds. sven i’ oniv 0 abbreviate straight-
line sequences of commands. For exampie. most one-line procedures consist of a single command
(like tel) or pipeline, and are often used to provide fixed argument vaiues 10 commands that can-
not reasonably know correct default vaiues. Thus, commands need not be complicated by special
default rules, but may still be quickly customized for local needs. Second. programming goals are
accomplished by writing sheil procedures rather than compiled programs. Exampies include small
dawabase management packages, procedures t0 generate compiex Job Control Language sequences.
and project management procedures for configuration control. system regeneration. project
scheduling, data dictionary management. and inter-user communication. Third. as people become
accustomed to this methodology. its use increases with time. Such heavy,use of shell program-
ming is not found on the original research-oriented UNIX machine, but is common practice at
many development-oriented installations. Shell programming has been used for years to support
programming projects. We are now starting to see development projects in which the delivered
code consists mainly of shell procedures.

Current Programming Methodology

An unusual programming methodoiogy grows from the combination of a good toolkit of reliabie
programs that work together, a command language with strong programming features. and the
need to manage constant change at reasonable cost. ,

First. it is often possible to avoid programming completely, because some combination of parts
from the tooikit can do the job. A spectrum of cooperating utilities like grep, sort. we. and so on
goes a long way toward handling many of the simple tasks that occur avery programming day. In
addition. we are seeing the development of generai-purpose data transformers that can convert
data from a file or program into some different form for another program: one notabie example is
sed, the stream-oriented version of the editor ed that we mentioned 2arlier.

Second, if a program is necessary. the initial version can often be writtan as a sheil procadure
instead of a C program. This approach permits a progotype to be buiit quickly. with minimal
investment of time and effort. If it is used a few times and thrown away. no great 2ffort has besn
expended. Even if 2 C program is nesded. it may well be tiny. performing some simple transtor-
matijon like the rev program mentioned before.

. Third, almost any program must be continually modified to meet changing requirements. and no
amount of initial design work is a complete substitute for actual use. (ln fact. too much design
without any experience may well lead to0 a first-class solution of the wrong probiem.) A program
may require a period of rapid and drastic evolution before it converges toward stability.
Modification of a sheil procedure is both cheap and reliabie. since it is a smail object built of gen-
erally reliabie parts, and exists only as a file of editabie text. No compilation is necessary. and
there are no object modules 0 maintain and update.

Fourth. a procedure may 2volve :0 a more-or-less stabie state. i.e.. it does what it ougnt 0. Al
this point. it can be left alone if it is fast enough for its intended uses. which are by now well
known. But if it is too slow. it can be entirely rewritten in C. or at least some small. crucial sec-
tion recoded. with the existing version providing a proven functional specification. Deterring
efficiency considerations until the design and the usage patterns have stabilized and until a need
has been shown usually avoids the all 100 common error of premature optimization.

Capabilities are improved in several ways. A task that recurs frequently may show the clear
need for a general-purpose tool. By the time it gets written. its requirements are fairly well
defined. Or an existing tool may be upgraded as it is recognized that some change would enhance
its usability or performance. Finaily. new ways of combining programs can be added to the shelil.

The effect of this methodology is to substitute reliabie. low-cost programming in place of unreli-
able or expensive programming. The effort required to produce both reliability and 2fficiency is
reserved for code that really requires these attributes. angd is applied afficiently. because accurate
requirements are known by the time the code is written.

14 BRIAN W. KERNIGHAN AND JOHN R. MASHEY
UNIX AND MODERN PROGRAMMING METHODOLOGIES

Even though at its birth. a system may be clean and 2agy to use. the natural process of antropy
may cause it to grow ugly and unpieasant. Like any other sysiem, UNIX is vuinerable to this pro-
cess, although so far it has escaped relatively unscathed. Fortunately, its creators have always
favored taste. restraint, and minimality of construct.6. 10 There is a steady pressure to reducs the
number of system cails, subroutines. and commands by judicious generalization or combination of
similar constructs.

In some environments. every new construct is hailed as an advance, following the philosophy
that more is always better. UNIX developers tend to view additionai constructs with suspicion,
while greeting with pleasure proof that several existing constructs can be combined and simplified.
presumably because some insight has been achieved. Anything new must prove that it truly
deserves a “‘niche™ in the scheme of things, and it must fight to keep its place against competition.
In the long run. any given niche ceally has but rcom for. one occupant. so peopie coatinuaily
attempt to identify distinct niches and fill them with the fittest competitors. The capacities of
human beings to comprehend. document. and maintain computer software have finite limits.
which must be respected by avoiding the creation of redundant and overiapping software. It is
especially important to maintain the simpicity of constructs that are truly central to everyone's
use. No “‘feature™ is truly free: sach has costs as weil as benefits. and they must be weighed care-
fully. especially when considered for inclusion in centrai programs like the UNIX karnel. the C
compiler, the shell. or the text aditor.

A similar point of view can be applied to the use of programming methodologies. No one can
afford to swallow the entire defuge of available methodologies, for each addition sesms to buy lass
results than its predecessor. Thus. one should pick and choose methodologies with care,
Although nothing is a panacea for all programming ills. UNIX usage sesms (0 soive many common
probiems without fuss and bother. and without requiring hercuiean afforts devoted to iearning and
applying sets of new methodologies. We have obsarved two distinct kinds of effects. First. the
UNIX system supports many approaches in such 1 natural and pervasive way that people apply
them without great effort. and often without becoming aware of the published literature. Second.
other approaches are simply made unnecsssary by using the UNIX system in the first place. Some
specific exampies follow.

Structured coding is taken for granted. sincs modern control-flow constructs are provided by C.
the sheil, and most other language processors used on UNIX systems. The code that peopie ses.
adapt, and imitate is usually well-structured. People leamn t0 code well in the same way that they
learn (0 speak their native language weil. i.e.. by imitation and immediate feedback.

Formal waik-tiroughs are used only occasionaily on UNIX svstems., because peopie oftan look at
other people’s code, comment on it in person and through inter-user communication faciiities. and
take pieces of it for their own use. The ideas of programming teams and egoless programmng fit
well into the UNIX environment. since they 2ncourage sharing racther than isolation. Although
some programs have aiways besn “‘owned’ by one or two peopie. many others have been passed
around so much that it is difficult to tell exactly who wrote them.

Design techniques such as damz flow diagrams. pseudocode, and smucrure charts are saidom
viewed as necsssary, especially when compared with the ease of writing a few short sheil pro-
cedures to provide the code and documentation for the highest lavels of control.

Cartain aspects of the Jackson Design Methodology!! such as program inversion and resolution of
structure clashes, seem unnecessary in a sysiem that provides pipes. allows the use of small pro-
grams. and eliminates logical and physical records. The idea of a development supporr librarv is
justifiably popular.!2 The UNIX system performs the services required of such a library. and per-
forms them sfficiently and conveniently, especiaily when compared to packages grafted onto exist-
ing batch systems. Since the latter were originaily built for diffarent purposes. they often lack
communication and file systems oriented to interactive work.

Bakeri2 has observed thar the exact role of the program librarian in an interactive development

L

THE UNIX PROGRAMMING ENVIRONMENT 15

environment “‘remained (0 de determined.” in the sresence of a LNIX sysiem. (he roie seems 0
be minimal. especially in the original sense of providing controi and eliminating drudgery. Pro-
grams, documents. lest data, and test output are stored in the UNIX file system and protected
either by the usual file access mechanism or by more elaborate software such as the Source Code
Control System.!3 Much of the drudgery found in other sysiems is simply bypassed by UNIX. [t
has always been fit for human beings to use: tcois have been buiit t0 automate many common
programming tasks: project control procedures are easily written as sheil procedures. Many of our
pregramming groups have experimented with the libracian concept, and concluded that. given a
decent environment. there i3 little need for a program librarian.

None of this should necessarily be taken as a criticism of these techniques, which can be useful
in some situations. We simply prefer 1o minimize the number of techniques that we must use to
get a job done, and we observe that UNIX service is the /asr one that we would give up.

CONCLUSIONS

We have found the UNIX environment to be an especially productive one. [n large part this is
because the system itseif presents a clean and systematic interface to programs that run on it:
there is a wealth of small, well-designed programs that may be used as building blocks in larger
processes: and the system provides mechanisms by which these programs may be quickly and
effectively combined. The programmabie command language itself is the single most important
such program. for it provides the means by which most other programs cooperate.

When such facilities axist, they are used: for a wide range of applications. Design. coding, and
debugging are all made 2asier by the use of combinations of existing, small and reliable com-
ponents. instead of the fresh construction of new, large and unreliabie ones. Finaily. the UNIX
system goes a long way towards solving peopie's programmting problems., without requiring 1 host
of additional tools and methodologies.

ACKNOWLEDGEMENTS

Ken Thompson and Dennis Ritchie are the creators of the UNIX system: without their insight and
gocd taste, none of this would be possible. We are also indebted to the many peopie who have
buiit on the UNIX base.

REFERENCES

1. D. M. Ritchie and K. Thompsoﬁ. "The Unix Time-Sharing System.” Comm. Adssoc. Comp. Maci.. 13, .
363-375 (1973).

L D. M. Ricchie, S. C. Johnson. M. E. Lesk. and B. W. Kemi%han. "Unix Time-Sharing System: The C Pro-
iramming Language.” Beil Sys. Tech. J., 57, 6. 1991.2019 11978).

3. 8. W. Kernighan and D. M. Ritchie, The C Programmng Language. Prentice-Hall, 1978.

4. 5. C. Johnsan and D. M. Ritchie. 'Unix Time-Sharing System: Portabriity of C Programs und the Uvix Svs-

_ tem.’ Bell Sys. Tecir. J.. 57, 6, 20212048 (1978).

5. Richard Miller, "UNIX - A Portable Operating System?.' Operanng Svsiems Review. 12. 3. 32-37 (1973).

6. K. Thompson, ‘The Umix Command Langua}e.' in Swucrured Programmung—{nroteci Swate of e Arr
Regorr,_Infotech International Lid.. 375.384 (1975).

7. T. A. Dolotta and J. R. Mashey. 'An Iatroduction (o the Programmer's Workbench.' Proc. 2nd /nt. Conr,
on Sofrware Engineerrng 164168 11976).

8. E. L. lvie, "The Programmer's Workbench—A Machine lor Software Development.’ Comm. 4ssoc. Comp.
Mach.. 20. 10, 746-733 (1977). -

9. J. R, Mashey. "Using 2 Command Language 1s a High-Level Programming Language.’ Proc, Jnd Inr. Cons:
on Software Engineering 169-176 11976).

10. D. M. Ritchie. “Unix Time-Sharing System: A Retrospective.’ Seff Svs. Tech. J.. 37. 6. 1947-1969 (1978).

11 M. A. Jackson. Principtes of Program Design. Academic Press, 1975. _

12. F. T. Baker. ‘Structured Programming in & Production Programming Environment.” Proc. /nr. Conr. on

13 Reliable Sotrware 21, 172-185 (1975).

. .\T.g 7J.S)Rcchkind. “The Source Code Control Sysiem.” /EEE Trans. on Sotiware Engneering, Se-1. 4. 364370
{ .

