Iﬁ

UNPL /498

Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell
Laboratories and is not for  publication (see GEI 13.9-3)

Title: Recent Changes to C Date: October 2, 1979
Other Keywords: programming languages T™: 79-3621-2
UNIX(TM)
o
Author(s) Location Extension Charging Case: 49461-60
B. R. Rowland IH 4140 Filing Case: 40125
ABSTRACT

The C programming language is currently in widespread
use across Bell Laboratories. It is the primary pro-
gramming language (along with FORTRAN 77) on computers
using the UNIX(TM) operating system and is available on
many other gemneral purpose computers such as the IBM
System/370 with TSS and 0S, the Intel 8086, and
Honeywell HIS-6080 with GCOS. C is inmplemented for
several of the processors produced by the Bell System
including MAC-8 and 3B-20. C is a language Wwith a
flexible variety of both control and data structures as
well as low level data access primitives. Recently C
has evolved to meet new Bell Laboratory needs.

This memo describes recent enhancements to the C
language that are not currently documented. These
include:

- structure assignment e

- structure valued functions

- structure valued parameters

- enumerations

- non-unique structure and ﬁnion members

- fully qualified structure and union references
Examples of all the above are given. CONTAINS PROPRIETARY

ﬁ%ﬁgggggN& BELL TELEZ-TIONE LABORATORI

0 [ { - PUSLISHED
AND I3 NOT TO BE REPRCDUCED 01
“ﬂtﬁéhf'BELL LABORATORIES APPROVAL,

Pages Text: 8 Other: ) Total: o

No. Figures: 0 No. Tables: 0 No. Refs.: 8

E-1932-U(3-76)SEE REVERSE SIDE FOR DISTRIBUTION LIST



BELL TELEPHONE LABCRATORIES, IRN..

COMPLETE MEMOBANLDUN IC
COBRESPONDERCE FILES

OFFICIAL FILE COPY
PLUS CNE COPY FOR

EACE ADDITIONAL FILIKG -

CASE BEFERENCED

DATE FILE COPY
(FORM E~1328)

10 AEFERENCE CCEIES

AAGESEN,JOEN
ABATE,JOSEPH
AITCHESON,E J
ALBAGLI,V B
ANDREWS ,W J
APPELBAUM,MATTHEW &
AECHER,RUSSELL E,JR
ARMAN, THOMAS D
ABVIDSON,W P

BABU ,BAJESH RATLLAL
bAKER,MITCHELL B
BALENSON,CHRISTINE M
BALLANCE,RCBERT A
BAROPSKY ,ALLEN
BAKGN, BOBEBT V
bARR,CAVILC L
BARTON,M E
BAUBE,BARBARA T
BAYEE,D 1

BECKETT,J T
BEENHARDT,RICBARD C
BIREN,IRNA B
BITTRICH,MARY E
BLA2IER,S D
BLECEHMAN,BRONALD I
BLEIER,JOSEF
BLINN,J C
BLUM,MARICON

BOEHM, EARL W
BOEEM,KIM &

BOGART, THOMAS G
BOUMa ,BERMAN J
BOURNE, STEPHEN R
BEADLEY,M HELEN
BEAUN,DAVID A
BRENSKI,ECWIN F
BRITT,WARREN D
BROSS,JEFFREY D
BROWN, ELLINGTON 1
BEOWN,H R

BUBRNET, EOSE M
BUTLETT,DARRELL L
BYORICK,BRCBERT S

COMELETE MEMORANLUM TO

CHANG,HEZBERT Y
CHANG,JO-MEI
CHABLES ,JOYCE
CHELLIS,ALICIA L
CHEN, ROBERT
CHODROW,M M
CHOU,PAO-LO P
CHBRISTENSCN,DENNIS &
CICHINSKI,STEVEN
CLARK,C A
CLIFFORD,COURIENAY B
CLINE,LAUREL M 1
CLINE,TERBY W
COBEN,DAVID
COHEN,HARVEY S
COLEMAN, ELARE
CONKLIN, DANIEL 1L
COOK,DIANA

COOK,T J
COWELL,ARLINE C
CRISTOFOK , EUGENE
CROWE,MARGARET M
CSASZAK,MARYANN
CSURI,JOHN O
DAVIDSON,CHARLES LEKIS
DAVIDSON, ROSEET F
DAVIS,D B

DAVIS,E DREW

DE GRAAF,D A

DE JAGEE,D S

DE TREVILLE,JCBN b
DEAN,JEFFREY S
DENNY,MiCHAEL .S
DIE,GILBERT
DICKMAN, BERNAED N
DIESEL,MICHAEL E
DIXON,DAVID A
DOEDLiNE, BARBARA ANN
DOLOTITA,T A
DONOQHOQE,D C
DOWDEN, DOUGLAS C
DOWD, PATRICK G
DUBMAN,M R

DUCHARME, RCBEET LAWRENCE

DUNLOF,ALFRED E
DNOkAK,F S
DWOBAK,MARY [
DWYER,T J
EISEN,STEVEN R
ELDOMIATI,I I
EPLEY ,EOBERT V
ERWIN,R J
EVENSON,E K
FARLCW, COLON W
FAVIN,D L

DISIRIBUTION
(BEFER GEI 13.9-3;

COMPLELL MEMORANCUN TO

FITTON,MICHAEL J
PLAMHOLZ ,JACK
FLANDRENA,R
FLEISLEBER, BAYMOND C
FLEMING,J4MES n
FONG,K T

POC, YEOW PIN
FORTNEY,V J
POUGHT,B T

FOY,J C

PREEMAN,K G
FREEMAN,MARTIN
GALE WALLIAM A
GALLANT,k J
GANGAKARZ,BERNICE C
GECRGEN,MICHAEL R
GEPNER,JAMES k
GIBSON,H T,JR
GILBERT,DAVID &
GLASSER ,ALAN L
GLAZER, STANLEY
GOLDSTEIN,A JAY
GOCDNOW ,JAMES E,211
GOBDON, MOSHE B
GROSS ,ARIHUR G
GUEBCIU,4 M
GUIDI,PIER V
HAIGHT,k ¢
HALLER,R M
HALLIN,THBOMAS G
HALPIN, I
HAMES,RQSALYN
HAMM,DEBOLALE 4NN
HANSEN,k C

HANSON, BRUCE L
<HARKNESS,CAROL J
HARRISON,JAMES FRANCIS
HARK,JOEN A
HARTCIN, BOBERT k
HARTWELL ,STEVEN
HAYES,MARILYIN E
HAXWARD, HENRIETTA of
HECHT ,MATThEW S
>HEINY,WILLIAM C
HESSELGRAVE,MARY K
HBINES,JOHN NED
HBOERL,DAVID F
HO,DON T

HBO, TIEN~-L.N
HSU,TAU
HUBER,sICHARD V
HWANG ,4ENEX
IMAGLA,C P
ISMAN,MABSHALL A
JABLONSKI,GRAZYNA C

ZOMPLETE MEMORANDUM TO

RAPLAN, BOBERT S
KAT2,MARILYN
KAUFMAN,ANN S
KAYEL.R G
>KERNIGHAN,BRIAN W
KEVORKIAN,D E
KILGORE,D

KINCAID,B M
KIRCEHOFF,LELAND ¥
RLAPMAN,RICHARD N
KOENIG,aNDREW R
KOLOR,RICHARD W
KOWALSKI,THADDEUS J
KOZAR,MARY ANN
KOZLOW,JAN D
KURAS,JOHN E
KU,VICKI P
KWONG,TONY C W,JR
LaMB,J ELI

L1A0E,J E
LAUTENBACH, DEBORAH A
LAU,EDNIN J
LAWRENCE, WATSON A,JR
LAYTON,H J,JR .
LEDFORD,RANDALL D
LEEPER,DAVID G
LEEPER,EVELYN C
LEEPER,MARK R
LEONARDO,MILDRED
LESCINSKY,F W
LESSEK,P V
LETH,JAMES W
LEVENBERG,R A
LEVIE,IRMELIN G
LEVIE,STERLING L,JR
LIkW,Y S

LIEBERMAN, ARTHUR Z
LIER,Y EDMUND
LINDSEY,CHRIS P
LIND,R ©
LOOTS,ROGER W
LOUDEN,T MICHAEL
LOW, GEORGE

L' HOMMEDIEU ,CARMELA
LUKACS,M E

LULD, JOHN C

LUTZ ,KENNETH J

MAC DONALD,ANTONINA H
MACCHIONE,WILLIAM
MADOR,B P

MARANTZ ,LYN
MARANZANG,J F
MARSH,ROBERT L
MARTELLOTTO,N A
MARTIN,JOHEN L

TM-79-3621-2

COMPLETE MEMORANDUM TO / \

MC ELEOY,J D
MCCONNELL, RONALD C
MCLEAN,RICHARD B
MEE,C,III

MEBBRICK, THOMAS B
MESSINGER,ARMIDA J
MEYER, BRIAN C
MICHAUD,D A
MILLER,JO ANNE H
MILLER,L D
MILLS,ARLINE D
MILNE,D C
MITCHELL,WILLIAM J
>MITZE,ROBERT W
MCNTEMA YOR, ROGER
MORGAN,DENNIS J
MROZ,WAYNE ‘F
MUELLER,MABK B
MUHA , RALPH
MULLER, B ALLAN
MURPHY ,LAWRENCE E
MUSEN, ROBERT M
NEY, LESLIE
NIEDFELDT,B G
NIPPERT,JAMES W
NOLAN,JULIANNE
NOWITZ,D A

O KANE,J J

O SHEAW T

OH, RICHARD YOUNG
ORSHAN, SCOTT
O‘BRYAN,H M,JR

0’ CONNOR, JOHN J
OTT, PETER A

PRO, T W
PAPATHOMAS,THOMAS V
P ASCHBUBG,RICBARD H
PAULE, W JOSEPH
PEARSON,MARK
PECK,¥ DOUGLAS
PELLEGRIN,J P
PETEESON,RALPH W
PHALEN, GEORGE B
PEILLIPS,JOANNA
PIERCE,BETSY L
PILLA,M A

PLADEK ,ROBERT B
POLLI, PHILIP V
POND,E W

PRINS,G C

PUCCI,M F
PUERLING,BRUCE ¥
PURZYCKI,MICHAEL J
PUTTRESS,JOHN J
RAMSEY,DAVID A

CAMPBELL, JERBY K PEAY,MARY R JENKINS ,JERRY MARTIN, PATRICIA D RATTI,P A
CANADAY,BUDD B FEINBEEG;HENEY R +JCHNSGN, STEPHEN C MAST,C A +REED,R A
CARBAN,JOEN B FENG,FEANK H KAHN ,MORRIS S MC CABE,P S REGELSON, KENNETH
CABR, LAVID C FISCHER,HERBERT B KANE,J RICHARD MC CARTHY,JOAN T KEICHERT,W G,JR
CHAFFEE,N P PISHMAR,DANIEL H KANODZI& , 5AJENDBA K %C DONALD,H S REILLY,J W
¢ NAMED BY AUTHCEK > CITED AS REFERENCE < REQUESTEC BY KEADEK  (RAMES WiTHOUT PREFIX 395 TOTAL
WERE SELECTED USING THE AUTHOR'S SUBJECT CR CBGANIZATICNAL SPLCIFiCATION AS GIVEN BELOW)
MEBCUBY SPECIPICATION . eeceooenoasesosononss omssowssnenansssissssssssssssesscessesssssessesssssessssseossssssnonsssssenasssossssssosns
COMPLETE MEMO TO:
364 1-50P 3642-SUP  3643-SUP 3644-SUF  3645-SUP  3046-SUP
UNPLCL = C LANGUAGE
COVER SHEET TO:
COPLGF = CCMPUTING/PRCGRAMMING LANGUAGES/GENERAL PURPOSE
UNGI# = GENERAL INFCRMATION (DESCRIPTICN,EECPOSALS,BEGINNEES INFORMATION, -
H40 CORRESPONDENCE FILES TM=-79-3621-2
EO 008 /4 /09 TOTAL PAGES 10

TO GET A COMPLEIE COPY:

1. BE SUBE YOUR CORBECT ADDRESS IS GIVEN ON TBE OTHER SIDE.

PLEASE SEND A COMPLETE

2. FOLD THIS SHEET IN HALF WITHE THIS SIDE CUT AND STAPLE.

3, CIBCLE THE ADDRBRESS AT EIGHT.
4, INDICATE WHETHER MICROFICHE OR PAPER IS DESIRED.

USE NO ENVELCEE,

TO THE ADDRESS SHOWN ON THE

( ) MICROFICHE CCPY

OTHEE SIDE.

{ ) PAPER COPY

~



- —— 7.

Bell Laboratories

subject: Recent Changes to C date: October 2, 1979
PN Case: 49461-60
File: 40125 from: B. R. Rowland
IH 3621
x4140

3621-791002.02TM

TM: 79-3621-2

1. INTRODUCTION

The C programming language has been successfully used in systenms
programming as well as general purpose programming environments
across Bell Laboratories on a wide variety of computers anad
stored program processors. Among these machines are the PDP-1l
series, IBM/360-370 series, VAX 11/780, UNIVAC 1100 series,
Honeywell HIS-6080, Interdata 832, Intel 8086, 3B Model 20, and
MAC-8. This success stems partly from its flexible control and
data- structuring and low level data accessing primitives but is
also due to a large measure because C compilers have proved rela-
tively easy to port to new machines and the C language is fairly

~~ simple to learn.

The definition of the C language has evolved as C is becoming
more widely used in Bell Laboratories. In response to changing

- needs and requirements of C programmers {(as summarized in
[Row 79b]), a few extensions have been made to the C language
beyond what is described in the reference document ("The C Pro-
gramming Language," Kernighan and Ritchie, Prentice-Hall, 1978).
The extensions consist primarily of changes in the use of struc-
tures and unions, and the introduction of a new data type,
enumeration. Along with descriptions of the syntactic and seman-
tic changes to the C language, examples of the new features are
illustrated. .

As the C language changes, the compilers that implement the
language have been tracking the changes. For the most part this
involves the UNIX* system C compiler for the PDP-1l maintained by
D. M. Ritchie and the Portable C Compiler [Joh 78] and Lint
[Joh 77) developed by S. C. Johnson for which design control has
been transferred to Department 3621. The changes described in
this memorandum have been incorporated into these compilers.
Other existing C compilers should follow suit by picking up the
71—~ changes from the C compiler each is based upon.

*= UNIX is a trademark of Bell Laboratories.



2. NEW FEATURES

2.1 Structure assignment

Structure assignment has been added to the C language to simplify
both the source and object code associated with transferring the
value of one structure instance to another and to allow functions
to return aggregate values when invoked. Since many processors
now contain some type of ‘move block’ instruction, structure

assignment will permit more efficient use of many machines.. It.

also makes source programs more readable.

Structures may be assigned, passed as arguments to functions, and
returned by functions. The types of structure operands taking
part must be the same. Other plausible operators, such as egual-
ity comparison and structure casts, are not being implemented due
to the difficulties associated with "holes"™ in structures caused
by alignment restrictions.

The following code demonstrates the new structure assignment
features.

struct clock{
int hour, minute, second;
};
struct date{
int year, month, day;
struct clock time;
}:
struct clock now={1l3,2,36};
extern struct date spring();
struct date today, tomorrow;

struct date nextday( day ) struct date day;:{
struct date tempday:;
return tempday;

}

main(){
today = spring();
tomorrow. = nextday( today );
tomorrow.time = now;

}

There is a subtle defect in the PDP-11l and VAX 11/780 implemen-
tations of functions that return structures: if an interrupt
occurs during the return sequence, and the same function is
called reentrantly during the interrupt, the value returned from
the first call may be corrupted. The problem can occur only in
the presence of true interrupts, as in an operating system or a
user program that makes significant use of signals; ordinary

-’

of



-3 -

recursive calls are quite safe. This same defect is not present
in the Basic-16 [Hei 79], IBM 370 [Row 78a] or 3B C compiler
[#it 78] implementations.

2.2 Enumeration Type

There is a new C data type analogous to the scalar types of Pas-
cal [Wir 71]. Enumerations are unique types with named con-
stants. They serve to replace in part the use of #define’d con-
stants in C, but they offer the additional advantage of scoped
constant names and strong type checking in the use of such names.

To the type-specifiers in the syntax on p. 193 of the C book add

enum-specifier
with syntax

enum-specifier:
enun { enum-list }

enum identifier { enum-list } -
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The role of the identifier in the enum—-specifier is entirely
analogous to that of the structure tag in a struct-specifier; it
names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark };
enum color *cp, Col;

col = claret;

cp = & col;

if( »cp == burgundy )...

makes ‘color’ the enumeration-tag of a type describing various
colors, and then declares ‘cp’ as a pointer to an object of that
type, and ‘col’ as an object of that type.

The identifiers in the enum-list are declared as constants, and
may appear wherever constants are required. If no enumerators
with "=" appear, then the values of the constants begin at 0 and
increase by 1 as the declaration is read from left to right. an
enumerator with "=" gives the associated identifier the value



-4 -

indicated; subsequent identifiers continue the progression from
the assigned value.

enum interrupt{
halt = 0,
bad_instr = 01001,
mem_fault,
div_zero = 02001,
overflow,
underflow
} icode;

if( (int)icode & 02000 )/* arithmetic fault =/

The previous example illustrates specific enumeration value
specification. 1In particular, the symbol ‘overflow’ has internal
value 02002. ’

Enumeration constants must all be distinct, and, unlike structure
members, are drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type
distinct from objects of all other types, and Lint flags type
mismatches. In the PDP-11 implementation, all enumeration wvari-
ables are treated as if they were int . Portable C Compiler
implementations map enumerations into a convenient storage unit
(char, short, or int) depending on the values associated with the
enumeration constants.

2.3 Non-Unique Structure Member Names

The C language has been changed in a nearly upwards compatible
fashion to allow more flexibility in the reuse of structure

member and structure field names. The obscure case in which.

upwards compatibility is not maintained is explained in detail at
the end of this section. This enhancement permits more natural
‘structure and union member naming conventions in C programs and
results in stronger type checking of both structure and union
member references.

2.3.1 Former member name restrictions. Prior to this change,
there were only two ways in which structure member names could be
reused.

A. Member names of two distinct structures declared at any
block levels (including different block 1levels) that
represented the same member type and offset could be identi-
cal. For example, the name “Xyz’ is used in both of the
following two structures:

w 3



struct sl{

long abc;
char xyz;
float def;
};

struct s2{
long abc;
char xyz;
short 3jkl;
}:

with such a construction, the structure member name “Xyz’
could be referenced from any structure variable or any
pointer without ambiguity.

B. Member names could be reused within a new name scoping
(block) 1level. In the following code section, the member
name ‘f_one’ is reused:

struct outer{
int £_zero:2,
f_one:4,
f_two:10;
struct outer =next;

};

function(){
struct inner{
int f_one, g_one, h_one;
}:

oo

}

When member names are redeclared at different block levels,
the innermost declaration serves to block the outer declara-
tions of the same name within the inner scope. In the pre-
wvious example, the four-bit field “f_one’ could not be
referenced (even from structures that are explicitly
declared to be type ‘outer”’) within the function ‘function’.

2.3.2 New flexibility for member names. The language change for
structure member names allows the reuse or redeclaration of
structure member or field names with only a single restriction:

1. A particular name may not be used for two distinct members
within the same structure. (However, a name may be reused
within nested structures.)

The impact of this change is stronger type checking for struc-
tures and unions. Call a structure (or union) member unique if
it is declared only once, or if all its declarations conform to
the requirements of case A above. If a uniquely-named member is
mentioned in a structure reference in which it is not a member of



-6 -

the structure, a warning diagnostic is issued. This a.lows o0ld C
programs that violate the language rules to continue to compile.
Bowever, if a member that is not uniguely -named is used in a
~structure reference in which it is not a member of the structure,
a fatal diagnostic is issued.

The  case in which upwards compatibility 4is not maintained
involves structure member name redeclarations of type (B)
described above.

struct x{
int a,b;
} %_obj;
main(){
int =ip;
struct {
int b,a;
} y_obj;

ees ip=>a@ ...
L y-Obj.a LI
ees X_Ob3ed ...

}

In the example above, prior to the language change, each of the
references ‘ip->a’, ‘y_obj.a’, and ‘X_obj.a’ were considered leg-
itimate, and an offset of two bytes (on a sixteen-bit processor,
such as the PDP-11) for the integer referenced by ‘a‘’ was used.
With non-unique structure members, the integer referenced by ‘a’
in ™X_obj.a’” would have an offset of 2zero bytes from the address
of X _obj’. The reference ‘“ip->a’ could either be considered a
user error by a particular compiler or a warning could be issued
and the innermost declaration of ‘“a‘’ could be used to resolve the
reference. Because of the lack of existing code with such poten-
tial ambiguities for most PCC compiler instances, a fatal diag-
nostic will be issued by the PCC for ‘ip~->a’.

2.4 Complete Structure/Union Member Reference Qualifications

In past C compiler instances, a reference to a structure or a
union member could be abbreviated in some cases. A structure or
union member reference is a chain of member references (qualifi-
cations) that are prefixed by either a pointer to a structure or
" union or a structure or union proper. Since each qualification
implies the addition of an offset within an address computation,
it was possible in the past to omit those qualifications that had
an offset of zero. Zero offsets occur in the first member of a
structure and in all members of unions. With the two following
declarations: )



-l

struct xx{
struct yy{
int yl; char y2;
} ym;
} =xp;
union u{ , -
struct af{
int al,az,a3;
} mema;
struct b{
char bl,b2,b3;
} memb;
} »up;

the following references were allowed:
Xp->y2 /» same as =/ Xp->ym.y2
up->52 /* same as =/ up->memb.b2

Due to the ambiguities that can arise with incomplete Qqualifica-
tions and non-unique structure and union member names, complete
qualifications are now required for structure and union member
references in the C language. This change also serves to enforce
stronger type checking of structure and structure pointer use
within C. At the present time, incomplete qualifications will be
flagged with user warning messages. Lint, run in its heuristic
mode, will suggest how to complete an incomplete qualification.
Union members that are structures must be named, so that complete
gqualifications can be constructed.

Of the references in the previous example, only the following
structure and union member references are now legitimate:

Xp=->ym.y2

up->memb.b2
2.5 Tag Names
Structure, union, and enumeration tag names are the names associ-
ated with a declared type and always appear after the keyworads
struct, union, and enum, as in the following examples:

typedef enum bool {false, true} bool;

struct list =head;

union cell {unsigned word; char byte(2];};

Previous implementations of C required that all structure and
union tag names be distinct from structure and union member



_8—
names. This restriction has been removed from the C language.
As a result, four name pools now exist:

I. # define’d macro names
(Processed separately by /lib/cpp.)

II. structure, union, and enumeration tag names

III. structure and union members
(These may be non-unique.)

IV. all other names
(Includes: typedef names; array, structure instance, and
variable names; and enumeration constant names.)

2.6 Vertical Tab Character Literal

2 new character literal has been added to the C language. The
vertical tab character (VT, octal 013 in ASCII and EBCDIC) can
now be represented as “\v‘ in addition to /\013“. This character
can also be used within character string 1literals (eg.:
nypper left\t\t\t\v\vLower rignt\n"). Vertical tab is now
included in the definition of white space and thus can be used to
delimit tokens in a C source file.

3. SUMMARY

A significant number of changes to the C language have occurred
since the 1last release of the C reference manual [KR 77]). The
changes affect mainly the use of structures and unions and the
naming restrictions in the language. Cooperative efforts among c
compiler and Lint implementors are leading to coordinated
releases of these compilation tools with new language features.

4. ACKNOWLEGEMENTS

The language changes described in this memorandum are a result of
language design work performed by Dennis Ritchie and Steve Jonn~
son. A nontrivial effort was involved in reviewing a host of
requested language enhancements and selecting and refining._those
that were compatible with the nature of the C language, Ample~
mentable in existing tools, and compatible with nearly all exist-

ing code written in C. ,_m 2 ;

IH-3621-BRR—mn B. R. Rowland

att.
References

(@ ”

of



R 3

REFERENCES

[Hei 79]

[Jon 77]

[Jon 78]

[KrR 78]

[Mit 79]

[Row 79a]

" [Row 79b]

[Wir 71]

W. C. Heiny. "YBasic 16 C Compiler Implementaﬁion,"
Memorandum for File, 3243-790521-01MF, (May 24, 1979).

s. C. Johnson. ®Lint, a C Program Checker," Technical
Memorandum, TM=-77-1273-14 (September 16,1977).

8. C. Johnson. "“A Portable Compiler: Theory and Prac-
tice," Conference Record of the Fifth Annual ACM
Conference on Principles of Programming Languages, Tuc-
son, AZ (January 23, 1978) 97-104.

B. W. Kernighan and D. M. Ritchie. The C Programming
Language, Prentice-Hall, Inc., Englewood Cliffs, NJ
(1978).

R. W. Mitze. "An Overview of C Compilation of UNIX
User Processes on the 3B," Memorandum for File, 5521~
780329.02MF ' (March 29, 1978).

B. R. Rowland. "Status Report for IBM 370 C Compiler
and its Indian Hill TSS Implementation,® Memorandum for
File, 2521-790201.01MF (February 1, 1879).

B. R. Rowland. "C Language Enhancements: Laboratory
252 Recommendations,"® Memorandum for File, 2821~
790305.02MF (March 5, 1979).

N. Wirth. "The Programming Language PASCAL," Acta
Informatica 1, 1 (1971) 35-63.



