/S O7

REGENERATING SYSTEM SOFTWARE

~ Charles B. Haley

Dennis. M. Ritchie
Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

This document discusses how to assemble or compile various parts of the UNIXt system
software. This may be necessary because a command or library is accidentally deleted or other-
wise destroyed; also, it may be desirable to install a modified version of some command or
library routine. A few commands depend to some degree on the current configuration of the
system; thus in any new system modifications to some commands are advisable. Most of the
likely modifications relate to the standard disk devices contained in the system. For example,
the df(1) (‘disk free’) command has built into it the names of the standardly present disk
storage drives (e.g. ‘/dev/rf0’, ‘/dev/rp0’). Df(1) takes an argument to indicate which disk to
examine, but it is convenient if its default argument is adjusted to reflect the ordinarily present
devices. The companion document ‘Setting up UNIX’ discusses which commands are likely to
require changes.

Where Commands and Subroutines Live

The source files for commands and subroutines reside in several subdirectories of. the
directory /usr/src. These subdirectories, and a general description of their contents, are

cmd Source files for commands.
libc/stdio Source files making up the ‘standard i/o package’.
libc/sys Source files for the C system call interfaces.
libc/gen Source files for most of the remaining routines described in section 3 of the
manual.
libe/crt Source files making up the C runtime support package, as in call save-return and
long arithmetic. ‘
a libc/csu Source for the C startup routines.
games Source for (some of) the games. No great care has been taken to try to make it
obvious how to compile these; treat it as a game.
libF77 Source for the Fortran 77 runtime library, exclusive of I0.
1ibl77 Source for the Fortran 77 IO runtime routines.
libdbm Source for the ‘data-base manager’ package dbm (3).
N libfpsim Source for the floating-point simulator routine.
libm Source for the mathematical library.

Famn) tUNIX is a Trademark of Bell Laboratories.

libplot Source for plotting routines.

Commands

The regeneration of most commands is straightforward. The ‘cmd’ directory will contain
either a source file for the command or a subdirectory containing the set of files that make up
the command. If it is a single file the command

cd /usr/src/cmd
cmake cmd_name

suffices. (Cmd_name is the name of the command you are playing with.) The result of the
cmake command will be an executable version. If you type

cmake —cp cmd_name

the result will be copied to /bin (or perhaps /etc or other places if appropriate).

If the source files are in a subdirectory there will be a ‘makefile’ (see make(1)) to control
the regeneration. After changing to the proper directory (cd(1)) you type one of the following:

make all The program is compiled and loaded; the executable is left in the current direc-
tory.

make cp The program is compiled and loaded, and the executable is installed. Everything
is cleaned up afterwards; for example .o files are deleted.

make cmp The program is compiled and loaded, and the executable is compared against the
one in /bin.

Some of the makefiles have other options. Print (cat(1)) the ones you are interested in to
find out. '

The Assembler

The assembler consists of two executable files: /bin/as and /lib/as2. The first is the O-th
pass: it reads the source program, converts it to an intermediate form in a temporary file
‘/tmp/atm0?°, and estimates the final locations of symbols. It also makes two or three other
temporary files which contain the ordinary symbol table, a table of temporary symbols (like 1:)
and possibly an overflow intermediate file. The program /lib/as2 acts as an ordinary multiple
pass assembler with input taken from the files produced by /bin/as.

The source files for /bin/as are named ‘/usr/src/cmd/as/asl?.s’ (there are 9 of them):
/lib/as2 is produced from the source files ‘/usr/src/cmd/as/as2?.s’; they likewise are 9 in
number. Considerable care should be exercised in replacing either component of the assem-
bler. Remember that if the assembler is lost, the only recourse is to replace it from some
backup storage; a broken assembler cannot assemble itself.

The C Compiler

The C compiler consists of seven routines: ‘/bin/cc’, which calls the phases of the com-
piler proper, the compiler control line expander ‘/lib/cpp’, the assembler (‘as’), and the loader
(‘1d’). The phases of the C compiler are ‘/lib/c0’, which is the first phase of the compiler;
‘/lib/cl’, which is the second phase of the compiler; and ‘/lib/c2’, which is the optional third
phase optimizer. The loss of the C compiler is as serious as that of the assembler.

The source for /bin/cc resides in ‘/usr/src/cmd/cc.c’. Its loss alone (or that of c2) is not
fatal. If needed, prog.c can be compiled by

/lib/cpp prog.c > temp0
/1ib/c0 temp0 templ temp2
/lib/cl templ temp2 temp3
as — temp3

Id —n /lib/crt0.0 a.out —Ic

The source for the compiler proper is in the directory /usr/src/cmd/c. The first phase
(/1ib/c0) is generated from the files ¢00.c, ..., c05.c, which must be compiled by the C com-
piler. There is also c0.h, a header file included by the C programs of the first phase. To make a
new /lib/c0 use

make c0

Before installing the new c0, it is prudent to save the old one someplace.

The second phase of C (/lib/cl) is generated from the source files ¢10.c, ..., cl3.c, the
include-file cl.h, and a set of object-code tables combined into table.o. To generate a new
second phase use

make cl

It is likewise prudent to save cl before installing a new version. In fact in general it is wise to
save the object files for the C compiler so that if disaster strikes C can be reconstituted without
a working version of the compiler.

In a similar manner, the third phase of the C compiler (/lib/c2) is made up from the files
¢20.c and c21.c together with c2.h. Its loss is not critical since it is completely optional.

The set of tables mentioned above is generated from the file table.s. This ‘.s’ file is not in
fact assembler source; it must be converted by use of the cvopt program, whose source and
object are located in the C directory. Normally this is taken care of by make(l). You might
want to look at the makefile to see what it does.

UNIX

The source and object programs for UNIX are kept in four subdirectories of /usr/sys. In
the subdirectory h there are several files ending in ‘.h’; these are header files which are picked
up (via ‘#include ...’) as required by each systtem module. The subdirectory dev consists
mostly of the device drivers together with a few other things. The subdirectory sys is the rest
of the system. There are files of the form LIBx in the directories sys and dev. These are
archives (ar(1)) which contain the object versions of the routines in the directory.

Subdirectory conf contains the files which control device configuration of the system. L.s
specifies the contents of the interrupt vectors; c.c contains the tables which relate device
numbers to handler routines. A third file, mch.s, contains all the machine-language code in the
system. A fourth file, mch0.s, is generated by mkconf(1) and contains flags indicating what
sort of tape drive is available for taking crash dumps.

There are two ways to recreate the system. Use

cd /usr/sys/conf
make unix

if the libraries /usr/sys/dev/LIB2 and /usr/sys/sys/LIB1, and also c.o and l.0, are correct. Use

cd /usr/sys/conf
make all

to recompile everything and recreate the libraries from scratch. This is needed, for example,
when a header included in several source files is changed. See ‘Setting Up UNIX’ for other
information about configuration and such.

-4.

When the make is done, the new system is present in the current directory as ‘unix’. It
should be tested before destroying the currently running ‘/unix’, this is best done by doing
something like

mv /unix /ounix
mv unix /unix

If the new system doesn’t work, you can still boot ‘ounix’ and come up (see boot(8)). When
you have satisfied yourself that the new system works, remove /ounix.

To install a new device driver, compile it and put it into its library. The best way to put it
into the library is to use the command

ar uv LIB2 x.0

where x is the routine you just compiled. (All the device drivers distributed with the system
are already in the library.)

Next, the device’s interrupt vector must be entered in L.s. This is probably already done
by the routine mkconf(1), but if the device is esoteric or nonstandard you will have to massage
Ls by hand. This involves placing a pointer to a callout routine and the device’s priority level
in the vector. Use some other device (like the console) as a guide. Notice that the entries in
l.s must be in order as the assembler does not permit moving the location counter °.' back-
wards. The assembler also does not permit assignation of an absolute number to ‘.’, which is
the reason for the ‘. = ZERO+100 subterfuge. If a constant smaller than 16(10) is added to
the priority level, this number will be available as the first argument of the interrupt routine.
This stratagem is used when several similar devices share the same interrupt routine (as in
dill’s). ’

If you have to massage l.s, be sure to add the code to actually transfer to the interrupt
routine. Again use the console as a guide. The apparent strangeness of this code is due to run-
ning the kernel in separate 1&D space. The call routine saves registers as required and prepares
a C-style call on the actual interrupt routine named after the ‘ijmp’ instruction. When the rou-
tine returns, call restores the registers and performs an rti instruction. As an aside, note that
external names in C programs have an underscore (‘_’) prepended to them.

The second step which must be performed to add a device unknown to mkconf is to add
it to the configuration table /usr/sys/conf/c.c. This file contains two subtables, one for block-
type devices, and one for character-type devices. Block devices include disks, DECtape, and
magtape. All other devices are character devices. A line in each of these tables gives all the
information the system needs to know about the device handler; the ordinal position of the line
in the table implies its major device number, starting at 0.

There are four subentries per line in the block device table, which give its open routine,
close routine, strategy routine, and device table. The open and close routines may be nonex-
istent, in which case the name ‘nulldev’ is given; this routine merely returns. The strategy rou-
tine is called to do any 1/0, and the device table contains status information for the device.

For character devices, each line in the table specifies a routine for open, close, read, and
write, and one which sets and returns device-specific status (used, for example, for stty and gtty
on typewriters). If there is no open or close routine, ‘nulldev’ may be given; if there is no
tead, write, or status routine, ‘nodev’ may be given. Nodev sets an error flag and returns.

The final step which must be taken to install a device is to make a special file for it. This
is done by mknod(1), to which you must specify the device class (block or character), major
device number (relative line in the configuration table) and minor device number (which is
made available to the driver at appropriate times).

The documents ‘Setting up Unix* and ‘The Unix IO system’ may aid in comprehending
these steps.

i -‘v-'",

Vs r

The Library libc.a

The library /lib/libc.a is where most of the subroutines described in sections 2 and 3 of
the manual are kept. This library can be remade using the following commands:

cd /usr/src/libe

sh compall

sh mklib

mv libc.a /lib/libc.a

If single routines need to be recompiled and replaced, use

cc —¢c =0 x.c
ar vr /lib/libc.a x.0
rm Xx.o

The above can also be used to put new items into the library. See ar(l), lorder(1), and
tsort(1).

The routines in /usr/src/cmd/libc/csu (C start up) are not in libc.a. These are separately
assembled and put into /lib. The commands to do this are

cd /usr/src/libc/csu
as — X.§
mv a.out /lib/x

where x is the routine you want.

Other Libraries

Likewise, the directories containing the source for the other libraries have files compall
(that recompiles everything) and mklib (that recreates the library).

System Tuning

There are several tunable parameters in the system. These set the size of various tables
and limits. They are found in the file /usr/sys/h/param.h as manifests (‘#define’s). Their
values are rather generous in the system as distributed. Our typical maximum number of users
is about 20, but there are many daemon processes.

When any parameter is changed, it is prudent to recompile the entire system, as discussed
above. A brief discussion of each follows:

NBUF This sets the size of the disk buffer cache. Each buffer is 512 bytes. This number
should be around 25 plus NMOUNT, or as big as can be if the above number of
buffers cause the system to not fit in memory.

NFILE This sets the maximum number of open files. An entry is made in this table every
time a file is ‘opened’ (see open(2), creat(2)). Processes share these table entries
across forks (fork(2)). This number should be about the same size as NINODE
below. (It can be a bit smaller.)

NMOUNT This indicates the maximum number of mounted file systems. Make it big enough
that you don’t run out at inconvenient times.

MAXMEM This sets an administrative limit on the amount of memory a process may have.
It is set automatically if the amount of physical memory is small, and thus should
not need to be changed.

MAXUPRC This sets the maximum number of processes that any one user can be running at
any one time. This should be set just large enough that people can get work done
but not so large that a user can hog all the processes available (usually by
accident!).

NPROC

NINODE

SSIZE

SINCR
NOFILE

CANBSIZ
CMAPSIZ

SMAPSIZ
NCALL

NTEXT

NCLIST

-6-

This sets the maximum number of processes that can be active. It depends on the
demand pattern of the typical user; we seem to need about 8 times the number of
terminals. :

This sets the size of the inode table. There is one entry in the inode table for
every open device, current working directory, sticky text segment, open file, and
mounted device. Note that if two users have a file open there is still only one
entry in the inode tabie. A reasonable rule of thumb for the size of this table is

NPROC + NMOUNT + (number of terminais)

The initial size of a process stack. This may be made bigger if commonly run
processes have large data areas on the stack.

The size of the stack growth increment.

This sets the maximum number of files that any one process can have open. 20 is
plenty.

This is the size of the typewriter canonicalization buffer. It is in this buffer that
erase and kill processing is done. Thus this is the maximum size of an input type-
writer line. 256 is usually plenty.

The number of fragments that memory can be broken into. This should be big
enough that it never runs out. The theoretical maximum is twice the number of
processes, but this is a vast overestimate in practice. 50 seems enough.

Same as CMAPSIZ except for secondary (swap) memory.

This is the size of the callout table. Callouts are entered in this table when some
sort of internal system timing must be done, as in carriage return delays for termi-

‘nals. The number must be big enough to handle all such requests.

The maximum number of simultaneously executing pure programs. This should
be big enough so as to not run out of space under heavy load. A reasonable rule
of thumb is about

(number of terminals) + (number of sticky programs)

The number of clist segments. A clist segment is 6 characters. NCLIST shouid be
big enough so that the list doesn’t become exhausted when the machine is busy.
The characters that have arrived from a terminal and are waiting to be given to a
process live here. Thus enough space should be left so that every terminal can
have at least one average line pending (about 30 or 40 characters).

TIMEZONE The number of minutes westward from Greenwich. See ‘Setting Up UNIX’.
DSTFLAG See ‘Setting Up UNIX’ section on time conversion.
MSGBUFS The maximum number of characters of system error messages saved. This is used

NCARGS

HZ

as a circular buffer.

The maximum number of characters in an exec(2) arglist. This number controls
how many arguments can be passed into a process. 5120 is practically infinite.

Set to the frequency of the system clock (e.g., 50 for a 50 Hz. clock).

A;Ev&nz}- .

