o UNPL /5/2
@ Bell Laboratories Cover Sheet for Technical Memorandum

" - The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEI 13.9-3)

(3

Title: BITE users guide. Date: October 8, 1979
™ Other Keywords: BASIC T™: 79-2425-4
Interpreters
BITE
Automatic Testing
Author(s) Location Extension Charging Case: 20239-7048
J. P. Hawkins WH 8C-001 4610 Filing Case: 40295-2
_— '
§
ABSTRACT

BITE (BASIC Interpreter for Testing and Engineering) is a BASIC language inter-
preter designed for use in automated test systems controlled by PDP-11 microcom-
puters. The interpreter implements an extended instruction set designed for instru-
ment control using the IEEE 488 Instrument Bus.

The major benefit of BITE to the user is that the development time for algorithms is
decreased markedly since the user may run his/her program immediately upon mak-
ing a change without recompiling.

a Nearly the entire process of development and debugging of a test program requires
only a knowledge of BITE as opposed to familiarity with compilers, assemblers, link-
ing editors, assembly language debuggers, archiving, etc. required by present tech-
niques. BITE includes self contained debugging aids.

Another significant benefit afforded by BITE lies in the users ability to extend the
instruction set to provide control of new hardware configurations. The task of
configuring Documentation for this purpose is provided in a Technical Memoran-
dum 79-2425-5 entitled "Guide to the Internals of BITE" by R.B. Drake.

This memo describes the syntax of the language, the modes of operation of the
interpreter, describes useful programming techniques, and shows several examples.

IF\

R

-
Pages Text: 13 Other: 4 Total: 17
No. Figures: 0 No. Tables: 0 No. Refs.: 4

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

BELL TELEPHONE LABORATORIBS, IRC.

COMPLETE MEMORANDUM TO
CORBESPORDENCE FILES

OFPICIAL PILE COPY
PLUS CNE COPY FOR
EACH ADDITICNAL FILIKG
CASE REFERENCED

DATE FILE COPY
(FORM B-1328)

10 REFERENCE COPIES

BISHOP,J CANIEL
+BOROS, VICICE B
+BOUANE, STEPHER R

CLARKE,P ¥

DI PIAZZA,G

D1SHMAN,JCHEN M
>DRAKE,RICHARD B

FICKENSCHESR, H

FISHER,P D

HAMILTCN,B B

KELLY,L C
+LAHTII,J N
LITHACK,B

LOMBARDI,J A

LUER,H J

MASSEY,R P

MC ELBOY,J D

MENKES,H E

MICHELET, RCBERT W

MOBRRISON,8® J

MOTTEL, SAMUEL

OSTAPIAK,R

RIDDLEBERGER,C ©

SCUDERI,R

SHENNOM,R H

SMITH,DONALD H

¥ADLINGTON,J C

WALK, R

W ISNEWSKI,STANLEY E

#ITT,EUGENE P .

30 NAMES

COVER SHEET ONLY TO
CORRESPONDENCE FILES

4 COPIES PLUS ONE
COPY FOR EACH FILING

COVER SHEET ONLY TC

ACKERMAN,J T

ACKBOPFP ,JOHN M
AHO,ALFRED V

AHRENS, BAINER B
AHUJA,SUDHIR R
ALBAGLL,V B
ALBBRALLA ,BICHABD 4
ALBERTS,BARBABA A
ALCALAY,D

ALEXIS,A D,JR
ALKONS, FREDERICK
ALLISON,C E,JB
ALTHAMER, CATHERINE V
ALT,DOBROTHY L
AMABILE ,GEORGE R
AMITAY,N

AMOSS,JOHN J
AMRON,IRVING
ANDERSON,C R
ANDBRSON, XKATHRIN J
ANDERSON,R E
ANDERSON,R R
ANDERSON, BOBERT V
ANDBEWS,¥ J
ANTOQLICK,DAVID R
APPELBAUM,MATTHBW 2
ARCHER, RUSSELL E,JR
ABMSTRONG,F O,J8
ARNOLD,GEQRGE W
ARNOLD, JAMES Q
ABRNOLD, PHYLLIS A
ARNCLD, THOMAS P
ARTIS,H P

ARVIDSON, W P
ASELTINE,EDWABD G
ASMUTH, RICHARD L
ASTHANA,ABHAYA
ATAL,BISHNU S
AXELSON,A L

BABU, RAJESH RATILAL
BACCASH,JEANNE M
BACH,MAURICE J
BACKUS.C F,SE
BAILEY,JAMES R
BAILY,DAVID E

BAKER, DONN
BAKER,MITCHELL B
BALASHEK,S
BALDWIN,GEOBRGE L
BALENSON, CHRISTINE M
BALLANCE, ROBERT A
BABBATO, ROBERT R

DISTRIBUTION
(REPBR GBI 13.9-3)

COVER SHEET ONLY TO

BAUER,3ARBARA T
BAUBR,HE C
BAUER,HELEN 2
BAUGH,C B
BAXTER,LESLIE 2
BAYER,D L
BEBLO,WILLIAM
BECERRA, PEDRO D
SECKER,JACOB I
BECKER, RICHARD A
BECKETT,J T
DECK,R P
BEGLEY,ALOYSIUS A
BEIGHLBY,KEITH 2
BENCO,DAVID S
BERISCH,JBAN
BENNETT, BAYMOND W
BENNETT,ICHABD L
BENNETI, WILLIAM C
BENOWITZ,P
BENSING,JAMES EDWARD
BEBRENBAUM, ALAN
BERGERON,R F,J&
BERGLAND,G D
BEBKEY,M A

BEBK ,DONALD A
BEBNHABRDT,RICHARD C
BERNOSKE, BEVERLY G
BEBNSTEIN,DANIELLE B
BEBNSTEIN, L
BERNSTEIN, PAULA B
BERN,DAVID
BERRIN,LLOYD
BERRYIMAN,R D
BERTH,3 P
BERZINS, ALEXANDER H
BEYER,JEAN-DAVID
BHATIA, A1V
BIARCHI,M H
BICKFQRD,NEIL B
BILASH,TIMOTHY D
BILOWOS,BR M
BIREN,IRMA B
BISHOP, VERONICA L
BITTNER,b B
BITTRICH,MARY =
BLAKE,GARY D
BLAZIER,S D
BLECHMAN, BONALD I
BLEIER,JOSEF
BLINN,J C
BLCSSER, PATRICK A

COVER SHEET ONLY TO

BOEEM,EARL W
BOBHM,KIM B
BOGABRT,P J
BOGART, THCMAS G
BOGINSKY,LINDA S
BOIVIE,RICHARD H

BOLINSKI,NANCY V DEVLIN

BONACHEA,B N
BONANNI,L E
BOND,? C
BOND, HOLTON C,JB
BORG, KEVIN B
BORISON,ELLEN 2
BOSE,DEBASISH
BOSTON, BONALD B
BOSWELL,PAULA S
BOTHUR.R H
BOWYEB,L BAY
BOYCE,¥ M
BOYEBR,PHYLLIS J
BRADPORD, EDWARD G
BRADLEY ,M HELEN
BRADLEY,R H
BRANDAUER,C M
BBANDT, RICHARD B
BRAUNE,DAVID P
BRAUN,DAVID A
BREILAND,JOEN R
BRENSKI,EDVIN P
BRESLER,RENEE A
BRIGGS,GLORIA A
BRITT,WARREN D
BROAD,MARTHA M
BEBONSTEIN,N
BBOOKS,CATHEBINE ANN
8B0SS,JEFFREY D
BROVMAN, INNA
BROWNING, JLSON DAVID
BROWNLOW,D 1
BROWN,C W
BROWN, ELLINGTON 1L
BROWN, LAURENCE MC FEE
BEOWN,MABRK S
BBOWN, STUART G
BEOWN,W R
BBOWN,W STANLEY
BUCHANAN,D N B
BUCK,I D
BULLEY,R M
<BURCKBUCHLER,F V
BURGESS,JOHN T,JR
BURIC,MILORAD R

L
TM=-79-2825-4

COVER SHEET ORLY TO

BUSCH, KENNETH J -~
BUTLETT,DABBRELL L

BUTTON, BEVERLY
BYORICK,BROBERT S

BYENE, EDWARD R

CAFFARBA,M G

CALL,PETER P

CALVERT, KENNETH L
CAMPBELL,JBRRY B -~
CAMPBELL,MICEAEL B :
CANADAY,RUDD B
CANDREA ,RONALD D
CANNATA,PHILIP B
CABREY,J E

CARPENTER, THOMAS 1,1IX
CARRAN,3OEN H

CARR, DAVID C
CARTER,DONALD H
CASELLA, CHARLES B
CASPERS,BABRBABA B
CATO,H B
CAVINESS,JOHN D .
CELLEE,GEOBGE X .
CERMAK,I A £
CHAFFEE,N F

CHAI,D T

CHAMBERS,B C

CHAMBERS,J M

CHANEY,P ¥

CHANG ,JO-MEI

CHA0,C

CHAPMAR, LESLEY A

CEAPMAN, ¥ P,JR

CHAPPELL,S G

CHARLES, JOYCE

CHEE,T

CHELLIS,ALICIA L
CHENG-QUISPE, ENRIQUE

CHENG, Y

CHEN, B

CHEN, ROBERT

CHEN, STEPHEN

CHEN, YUNGKAKG C
CHERRY,LORINDA L

CHEUNG, BOGER C

CHE,HER=DAW 4
CHIANG,?T C

CHILDS,CABOLYN

CHODROW,M M

CHONG, PHEE

CHOWANIEC,P P

CHRISTENSEN,S W

CASE BARNS,R 1 BLUMER, THOMAS P BURKE,MICHAEL B CHRISTENSON, DENNIS A
BAROFSKY, ALLEN BLUM,MARION BURKE,B J CHRIST,C W,JR
AAGESEN, JCHN BARGN, ROBERT V BOCKUS,BOBERT J BURNETTE W A CHUNG , MICHAEL
ABATEMARCC, TERESA M BARR,DAVID L BOCK,NANCY E BUENETT,DAVID S CHUNG, TSUNG-JEN BEN
ABATE, JOSERH BATISTONI,F J BODDIE, JAMES R BUBNET,BOSE M CICHINSKI,STEVEN
ACKEAMAN, A PRANK BATTAGLIA, FRANCES BODEN,? J BUROPF, STEVEN J CIEMINSKI,DEBRA F
+ NAMED BY AUTHOR > CITED AS REFERENCE < REQUESTED BY GEADER (NAMES WITHOUT PREFIX 1434 TOTAL
WEBE SELECTED USING THE AUTHOR'S SUBJECT OR OBGANIZATICNAL SPECIFICATION AS GIVEN BELOW)
MEBCUBY SPECIEICATIONa encee omans « o oremmom o amim o eramms omem ommemcsam sa #8aaasm s sssocastasssesss aasasesssosssesnssssssssnsanssonessosson
COMPLETE MEMO TO:
242-s0p -~
COVER SHEET 10:
2425
COPLIE = COMPUTER INTEBPRETEES AND EMULATOBS
COPLSP = SPECIAL-PURPOSE COMPUTER PROGEAMMING LANGUAGES AND PBOCESSORS
UNOSLS = LSI RELATED DOCUMENTS ONLY
UNPLS = PBOGRAMMING LANGUAGES: GENERAL OB SUBVEY PAPERS ONLY
UNSA$ = UNIZ SPECIAL APPLICATIONS/SUBVEY DOCUMENTS
hO CORBRESPONDENCE FILES TM-79-2825~4 7
HO 1a~127 TOTAL PAGES 17

TO GET A COMPLETE COPY:

1. BE SUBRE YOUR CORRECT ADDRESS IS GIVEN ON THE OTHER SIDE.
2. FOLD THIS SHEET IN HALP WITHR THIS SIDE OUT AND STAPLE.
3. CIBCLE THE ACDRESS AT RIGHT, USE NO ENVELCPE.

4., INDICATE WHETHER MICBROFICHE OR PAPER 1S DESIRED.

PLEASE SEND A COMPLETE

{) MICHOFICHE COPY

{) PAPER COPY

TO THE ADDBESS SHOWN ON THE OTHBR SIDE. m

CONTENTS

INTRODUCTION ¢« « « .« .

1.1 Generai Description « + « + + « « o .
1.2 Microand Mini Versions « « « .+ . .
1.3 Scopeof Thismemo

2. Conventions . . .+« « ¢ + + e o o o &+ e 4 e 4 e a4

3. Commands . . . e e e e e e e e e e e e e e
3.1 Standard Commands e e e e e e e e e e e e e e e
3.2 File Commands . . e e e
3.3 ATS Instrument Commands (Extended Instrucnon Set)

4. Functions . . . e e e e e e e e e e
4.1 Standard Funcnons . . e e e e e e e e
4.2 Instrument Functions (Extended Set) e e e e e e e

5. Modesof Operation ¢« ¢« « « o o « o s o s o =

5.1 EditororldleMode« « ¢ v ¢ ¢ 4 .
52 RunMode . . . e e e e e e e e .« e .
5.3 Immediate Execution Mode e e e e e e e e

5.4 Single Step Mode . e e

6. Interruptionof program ¢ ¢ 4 o v e e e

7. Programming Techniquesand Tools

10.

11

7.1 Program Segmentation« .+ + ¢ ¢ + + e e . .
7.1.1 Chaining 9
7.1.2 Overlaying 10

7.2 SystemShellControl + « ¢« « + ¢« « &

Error Messages . . e e e e e e e e e e e e e
8.1 Standard Error Messages . e . e e e e e e e e
8.2 Test Set and Instrument Error Messages e e e e e e e

Acknowledgement i 4 h 4 e e e e e s

APPENDIX: A . . e e e h e e e e e e
10.1 SAMPLE FILE I/O PROGRAM e e e e s e s e e e
APPENDIX: B

11.1 SAMPLE PROGRAM TO STEP VOLTAGE ON POWER SUPPLY .

11.2 WAITFORBUTTONPRESS e e
11.3 EXERCISE SCANNER AND RELAYS

VW W OCOVOOVO 000000 ~IJW N N— -

11

12
12
13

13

15
15

16
16
16
16

-

&

Bell Laboratdries

subject: BITE users guide. date: October 8, 1979
Case: 20239-7048
File: 40295-2 from: J. P. Hawkins
WH 2425

8C-001 x4610

T™: 79-2425-4

MEMORANDUM FOR FILE

1. INTRODUCTION
1.1 General Description

BITE is a BASIClanguage interpreter designed for use with automated test equipment. The
interpreter runs on PDP-11 mini- and micro-computers using the UNIX* operating system.
BITE is distinguished from other BAS/Cinterpreters in the following ways:

e BITE is written in the "C’ language. It is, therefore, portable and can be installed and used
on any system with a standard 'C’ compiler.

¢ The interpreter provides an extended set of commands and functions for controlling and
reading electronic instruments using the IEEE 488 Buss. The extended instruction set can
be expanded by the user who is knowledgeable in C’ programming by implementation of
"custom commands” [ref Drake].

e BITE can be executed from a script running on the Bourne Shell of UNIX. Thus the string
manipulation of the Shell and the control and computational capabilities of BITE are com-
bined to provide a uniquely powerful system.

o BITE accepts BASIC language programs using the original Dartmouth syntax with little or
no modification required. Those features described above which differ from standard
BASIC are extensions of BASIC rather than exceptions to the syntax rules.

1.2 Micro and Mini Versions

There are two versions of BITE. One version is designed for the PDP-11/70 UNIX environ-
ment and the other version is a "standalone” program which runs in the PDP-11/03 and is
invoked from the LSX version of UNIX.

e The PDP-11/70 version has complete interface capabilities with the Bourne Shell as
described below and all math functions are available.

o The other version is designed for the PDP-11/03 micro-computer. This version contains
the extended instruction set for instrument control. Differences between this and the host
version include omission of verbose error messages, Shell and system call facilities, omis-
sion of some math functions and reduced user working storage. The omissions of features
are due to the drastically reduced memory availability on the PDP-11/03 as compared to
that of the PDP-11/70 with memory management. Since most core space is used up, the
PDP-11/03 version is "standalone” (operating system not resident) with a skeleton version

* UNIX is a Trademark of Bell Laboratories.

-2-

of UNIX for file I/0. This version must be loaded with a special loader pl;ogram BITEX
which is included with the software release package.

1.3 Scope of This memo

In the following, the syntax of BI/TE is described. When a command differs in the two versions,
this fact is noted explicitly. Programming techniques, including control of BITE by the Shell,

are described.

2. Conventions
This Memo

expr

Operators

Relationals

Source Path

Source Program

Statement

Strings

Variables

All things enclosed in [] are optional.

Any algebraic expression which could be a constant, variable, math func-
tion or a combination of same, separated by arithmetic operators as in:
a-+b*3.14*(4.4 +c2*in (b+s)) +a(2,2) See "variables” and "math func-
tions" below.

+,-,*,/ or ~ for addition, subtraction, multiplication, division or exponen-
tiation in order of lowest to highest precedence. + and - have the same
precedence and * and / have the same precedence. Parenthesis () around
expressions forces the contents to be higher precedence than all parts of
the expression outside those parenthesis. Note also that when the - is
used as a unary it maintains its low precedence, hence the expression
-2"2 yields -4 instead of 4. In all cases a good rule of thumb to insure
precedence is to enclose the part of high precedence in parenthesis,
thereby (-2)"2 yields 4.

<, >, =, <=, >=, <> for less than, greater than, equality, less or
equal, greater than or equal and not equal.

When reference is made to a BITE source file (i.e. the old and load com-
mand), two directories are searched, the first being the current directory
and then /usr/lib/bites which is a "pool” where shared programs should
be stored. The /usr/lib/bites directory is analogous to the /usr/bin direc-
tory in UNIX.

Name
The source program name is twelve or less characters suffixed by a .b .

A basic statement consists of a line number (integer value between 1 and
32767) followed by a command, space and operand which follows the
syntax governed by the command as in:

1060 print "Hello World"

A statement can be typed without a line number in which case”it will exe-
cute immediately. This is true for all commands, but doesn’t make sense
for some commands such as for. Immediate execution is handy for diag-
nostic purposes such as: print a, to find out what the value of 'a’.

Sequences of ASCII characters delimited by double quote characters at
the beginning and the end. '

All variable names are either a lower case alpha character (a-z) or a
lower-case alpha character followed by an integer (0-9). Arrays have the
same name convention as regular variables and take the form

varname (exprl,expr2,expr3....expr10) where exprl-exprl0 are the
dimension attributes of the array and can take the form of any legal
expression (including another array) as in a(b(2,2),x).

-,

3. Commands
3.1 Standard Commands
bye or q Exit the interpreter. Typing the control/D key will also exit the inter-
preter.

call name,line#
Call Overlay Subroutine. Name is the name of a file (name.b) containing
a subroutine. The subroutine must be sequenced such that line# is the
first line# in the file. The first line must be "line# rem name" where
"name” must match the one in the call statement. Call checks the line
"line#" to see if the subroutine has already been loaded. If it has, a
“"gosub line#" is executed. If the subroutine is not already loaded, it
loads it and then does a "gosub line#".

com [mon] Preserve variables for subsequent run. Issue of the run command other-
wise de-allocates all variables.

con [line#] Continue normai execution from single step mode. See sing command.

data (expr), (expr), (expr),.........
The data statement is a string of defined constants or expressions
referred to by the "read” statement. Unlike most BASIC interpreters, the
data is stored only in the form of text strings which allows the read state-
ment to evaluate expressions as well as constants.

dellete] lownum [, highnum)
Delete line-number specified if only lownum given. Delete all lines
between lownum and highnum if both are specified. See the undo com-

mand.
dim variable(exprl,expr2,....... ,exprl0) ’
Allocate space and define the dimensional characteristics of subscripted
variable.
end Define logical end of program. Causes termination of current run.
expunge Force all variable space, including subscripted variables to be freed. Or
de-allocate used variable space.
f Typing 'f” causes the currently referenced file (if any) to be displayed.
for - next Cause code enclosed by this combination to be executed under the condi-

tions specified in the for statement as in: for variable = exprl to expr2
[step exprl.

gosub line# Goto subroutine, resume from following statement after refurn encoun-
tered.

goto line# Force execution to continue starting at the line# specified.

if (exprl) relational (expr2) then line#
Redirect program flow to line# if exprl is related to expr2 by the
specified relational. The then in the if statement can be optionally
replaced with goto go 1o or gosub. The ifstatement can also take the
form:
if (exprl) relational (expr2) then var = (expr)

input [_fildeslvar1[,var2,var3,....]
Prompt for input and assign inputed value to variable. If 's’ is typed pro-
gram is halted.

fiet] variable = expr
Assign the value of expr to variable. The let is optional.

1fist) liownum [, highnum]]
List the text in working storage. If lownum is given then only that
number is listed. if lownum and highnum are specified, then a listing is
displayed between the given statement numbers.

load [program name]
Same as the old command, except working storage is not cleared.

mov startnum, endnum, newnum [,increm]
The mov command causes the lines beginning with startnum and ending
with endnum to be moved (ie. resequenced) to the line beginning with
newnum and incremented by increm. The default value for incremis 10.
All references to the moved lines are updated. The user is responsible to
see that line numbers associated with moved lines do not conflict with
existing lines which will cause loss of program text. movis similar to
reseq (see below) except that only the specified lines are resequenced.

n List the next 23 lines. Useful for paging through a listing on a CRT.
new Clear program working storage for new program to be typed.

old [program name]
Clear user space and load program. If old is typed with no argument it
will prompt the user for a program name if not defined or load the last
defined program name.

on (expr) goto line#, line#,.....
Is a selective goto with multiple line number targets. The target branched
to depends on the value of expr which is truncated. Control is passed to
the first line# specified after goto if the value of the expression is 1.
Control passes to the second line# if the value is 2, the third if 3 and so
on.

on (expr) gosub line#, line#,......
Same action as on-goro, except action taken is that of gosub.

pause Causes execution to be suspended until a "newline” or "return” is typed.
This is useful for programs which need to be continuously in run, but
need to allow a time for user action i.e. unit insertion.

prlint] [_fildes] (expr’s, quoted strings or tab operators)
The print statement is a limited format display statement in which
expressions are evaluated and displayed along with quoted literals. The
tab(expr) operator causes the print head to move to the absolute column
position computed by expr provided the current head position is smaller.
The specifiers must be separated by one or more commas or semicolons.

printf (format string) [,exprl,expr2,.....,expr10]
This is an interpretive implementation of the UNIX *C’ library routine,
printf. It is, however restricted to only the floating point format control
specifiers 'f" and 'g’. Use of any of the other specifiers such as 0, ’d’ or
s’ will give erroneous results. Print controls such as \b (backspace), \n
(newline), \r (return) or \t can also be used. The printf format was
chosen in lieu of the usual print using command because it was felt that
printf is not only a "C’ language standard but easier to use than print
using.
Usage Exampie:
100 printf "Var a=%2.2f\tVar b=%g.\n",a,b

comes

-5-

randomize Causes rnd statement to start at an "unpredictable” value.

read varl,var2,var3,............
The read statement causes data to be assigned to each variable in the list
from the constants or expressions contained in dara statements. The
reading starts at the location of the data pointer. The data pointer points
to the last data field accessed if a read was done or to the first data field
in the first data statement if the restore statement is issued or the pro-
gram is re-run.

fem

reseq [startnum

restore

return

-6-

The remark statement causes no operation in BI/7E but may be followed
by any string of characters for the purpose of commenting a program.
Unlike compiler languages, remarks do take up program buffer space;
however, they are of paramount importance in making a program read-
able by human beings and are therefore strongly recommended.

[, increm]]}

The resequence command causes the statement numbers and all refer-
ences to them (such as if’s goto’s, gosub’s, etc) to be resequenced start-
ing at startnum and incremented by increm. If startnum and/or increm
are omitied, the default values are 10 and 10 respectively.

Restores the data pointer to the first field of the first data statement.
Return from subroutine called by gosub statement.

run [program name]

Run basic program specified. If no argument is given, run attempts to
execute whatever is currently in working storage.

s line#/old-string/new-string{/]

sing [line#]

‘size

stop

Substitute in line line# the new-string for the old-string. The last delim-
iter is optional, unless new-string is null in which case it is desired that
old-string merely be removed. See the undo command.

Enter the single step mode starting at the line# specified or at the first
line of the program if no line# is specified. In single step mode an
instruction is executed and then the prompt **' is displayed. At this time
the user may enter any command (i.e. print) or hit the "return” key to
execute the next instruction. See the con command.

Causes amount of storage used and remaining or free space in decimal
number of bytes.

Stop execution of program.

save [program name]

undo

Save the contents of working storage in file-name specified by program
name. If no program name is given, last referenced file-name is used. If
no file name was referenced, the user is prompted for a name.

Undo last s command or single line deletion

UNIX shell command invocation allows system commands to be exe-
cuted from the interpreter. This command is not included in the LSI-
11703 versions of BITE.

3.2 File Commands

The file commands: append, openi, and openo are followed by one or more file-names
separated by commas, each file-name being no more that 14 characters long. Files are assigned
to designators (integer values between 1 and 4 inclusive) in the order that they are open. All
commands such as print and input which refer to a file use the designator number preceded by a
>_’ character to refer to that file as in: 100 print _I"hello world" or 100 input _3a(x,y) .

append filel[,file2,.....,.filed] _
If file exists open for output cause new data to be appended. If file does
not exist, the named file is created.

openi filell, file2,.....,filed]
Open file for input. File must exist.

openo filel|,file2,.....,filed]
Create named file(s) and open for output. If named files exist, the oid
data is destroyed.

close _fildes
Close file associated with file designator.

closeall Close all files input and output.
3.3 ATS Instrument Commands (Extended Instruction Set)
These instructions are those which were implemented for the Production Test Set.

buspr ’busadr (text and expressions)
Buspr is merely an extension of the print statement which allows the
print string which would otherwise be displayed on the tty to be sent via
the IBV-11 bus to the bus address specified by "busadr’. The ° preceding
busadr distinguishes the following character from anything other than a
single character to be interpreted as an address. The address character
can be any ASCH character except ones which are possibly interpreted by
the system as control characters such as back-space.
Usage Example:100 buspr *6"F2R";r

cmd string Send character string over IBV-11 command lines.

delay Causes a delay of num 60ths of a second where num is an integer.
Usage Example:100 delay 120 (delay 2 minutes or 120/60ths
sec)

dvminit Initialize Digital Voltmeter.

dvms function, range
(for HP 3455A digital voitmeter) Digital voltmeter set command, where:
function is ’ac’, 'dc’ or "ohms’ and range is .1, 1, 10, 100, 1k, 10k or
‘aut’. i.e.
Usage Example:100 dvms dc, 1k

hprintf (format string)
(for HP 5150A Thermal Printer) Formated print to strip printer. Syntax
rules are the same as printf. Strip printer is 20 columns wide, anything
past the 20th column is truncated.

lodset lodnum,mode, value
(for POWER DESIGNS X-510 & TRANSISTOR DEVICES DLP 50-
60-1000 electronic loads) Set load. Where lodnum an integer describing
which load referred to, mode is the manner in which the load is set and
value is an expression describing the current or resistance the load was
set to depending on the mode. Mode is a single character 'r’, 'R, "’ or

-8-

'I" where °r’ is resistance mode (value in ohms) and °i’ is current mode
(value in amperes). Small letter causes a hunt for the value and capital
causes set on first try.

relay function, relnum1{, relnum2, relnum3,...]

(for HP 6940B MULTIPROGRAMMER) Set multiprogrammer relays.
Function is m (make), b (break) or ¢ (clear). Function is followed by all
relay numbers to be acted upon which may be expressions or variabies.
The clear function when not followed by anything, simply means open all
relays. When followed by relay numbers, clear means all relays are open
EXCEPT the ones specified.

Usage Example:100 relay m,10,20,21,a,b,rnd (10)

ps psno,voltage,current limit,overvoltage

(for KEPCO ATE 75-15M, ATE 150-7M, ATE 55-1M & JQE Power sup-
plies) Set power supply parameters. Psno is an integer representing the
power supply number describing which power supply is to be used, vol-
tage, current limit and overvoltage are self explanatory. Each one of the
parameters may be a legal algebraic expression so that they may be con-
trolled by the program.

Usage Example:100 dvms 1,10,1,11 or 100 dvms n,v1,il,vl+1

scan scanner-channel

4. Functions

(for HP 3495A SCANNER) Set 3495A Scanner channel to number
specified.

4.1 Standard Functions

abs(expr)
atn(expr)
cos{expr)
exp(expr)
int(expr)

log(expr)
rnd (expr)
sin (expr)
sqr(expr)

btn (expr)

dvmr()

error()

Absolute value.

Arc-tangept.

Cosine.

Natural exponential.

Integerize or truncate fractional part of result of expr.
Natural log.

Return random number between 0 and evaluated expr.
Sine.

Square root.

* 4.2 Instrument Functions (Extended Set)

Button-function returns non-zero if control button number (expr) is
depressed.

Return digital voltmeter reading.

Return 1 if last instrument command caused instrument error, otherwise
return 0.

q——

S. Modes of Operation
5.1 Editor or Idle Mode

When the BITE interpreter is invoked with no argument, a prompt '*’ appears meaning that the
interpreter is waiting for the user to enter something from the keyboard. BITE is then said to
be in the Editor or Idle mode.

Editing is accomplished as it is in any BASIC language interpreter in that lines are entered by
typing a line-number followed by the statement and removed or deleted by merely typing the
line-number. Listing is accomplished with the /ist command (explained under “Standard Com-
mands®). In addition to the above, it is possible to list single lines by typing the return key in
which case the program is listed one line-at-a-time, starting at the first. When the last one is
reached, the sequence starts at the first line again. At any time it is also possible to type the ’-’
symbol to "backup” a line-at-a-time. Other editing facilities are s, delete, and reseq also
explained under "Standard Commands".

§.2 Run Mode

If the run command is typed and a program is currently in user storage, the program begins
execution, starting with the first line of the program, then executing each line in order of line
numbered sequence. The sequence of execution is altered by program flow control statements
like if, for-next or any statement containing a goto.

5.3 Immediate Execution Mode

Immediate execution is accomplished by typing a command without preceding it with a line
number. Although this is possible with ail commands, it doesn’t always make sense. For
example, using commands that control program flow in immediate mode is unlikely and often
disastrous.

Immediate mode is designed so that the user may get immediate action as in the command run
or print a. Some commands are almost always used in immediate mode such as q, delete,
expunge, load, list, old, resegq, save, etc.

$.4 Single Step Mode

Single step mode is entered with the sing command and exited with the con command. During
this mode, one may find "BUGS" in the program by observing the program flow or sequence or
examining the values of variables at given points in the program to see if they have the
expected values. See sing or con under the "Standard Commands” section of this paper.

6. Interruption of program

At times it becomes necessary to escape from an endless loop or abort an action such as list
before it completes. To cause such an interruption, the (DEL) or (RUB) key is typed.

7. Programming Techniques and Tools
7.1 Program Segmentation

In situations of limited memory space as in the case of the LSI-11/03 it becomes impossible to
fit large programs in storage at any one time time. It then becomes necessary to write the pro-
gram in pieces or segments each of which must be loaded separately as needed. Segmented are
handled by “chaining” or "overlaying".

7.1.1 Chaining Chaining is accomplished by insertion of the run command in the program text.
If a program is to be split into say, programl and program2 then by simply inserting the line
"run program2” as the last executed statement of programl, program2 is now chained to pro-
graml. Upon completion of program2, if it is desired to reload program1, the last executed
statement should be "old program1* which will clear user space and reload programl.

-10-

It must be noted that execution of a run causes variables to be wiped out. To preserve variables i)
from one program to the next, the statement common must be executed prior to the chaining
run statement.

The chaining process may go on indefinitely, the only expense being some time delay for each -~
program load. d

The chaining point must sometimes be strategically chosen so that it will not occur during an
instrument action or some time critical part of the program.

" 7.1.2 Overlaying Overlaying is best accomplished with the call command. This technique is par- .
ticularly useful where core space is minimal and lends itself to keeping programs modular. The
call command has a built-in feature which prevents loading a module which is already resident.
In a line numbered language, overlay segments are delimited by line number boundaries rather -
than address boundaries as is true in machine level programming. The following is an example
of a simple implementation of an overlay:

100 rem THIS IS THE ROOT SEGMENT OF THE PROGRAM
110 rem The "root" segment remains resident and usually contains
120 rem all the commonly called subroutines

130 call pscheck,2000 call in power supply check overlay
140 call loadck, 2000 call in load check overlay
150 call loadck,2000 call load check again

150 rem THE R|ES’I' OF THE "ROOT" SEGMENT
I

|
900 stop ™
2000 rem oldstuff
2010 rem THIS PART OF THE PROG IS DESTROYED WHEN OVERLAYS ARE CALLED
2020 return)

2000 rem pscheck

2010 rem This is the power supply check routine which is called in
2020 rem the root segment

2030 rem the first line (2000) must appear in the program as shown

I
3000 return

2000 rem loadck
2010 rem This is the load check overlay. This occupies the same
2020 rem line number space as pscheck and will therefor replace it

’ I

3000 return

In the above example, two overlays (pscheck and loadck) are called. If those routines are

found on disk they will be loaded and replace the old program text starting at line 2060. Note)
that loadck is called twice in succession. The second call will not cause a load since loadck is

already resident. The interpreter believes this to be true by virtue of the rem statement with the

name of the overlay at line 2000.

-11-

7.2 System Shell Control

Invoked by the Bourne shell, BITE can be a powerful tool which can add mathematical capabili-
ties to the shell. The following shell-script invokes BITE without running it, loading the pro-
gram add.b, entering a data statement with two numbers to be added, issuing the run command
and putting the result in file "result".

: shell script to add two numbers

i:ite -add < <! > result
115 data 31,52

run
1

Thé following is the add.b program invoked by the above shell script.

90 rem BASIC PROGRAM TO BE RUN BY SHELL SCRIPT
91 rem add numbers in data statement and output to standard output

100 read a,b get the values of the 2 numbers in the data
110 print a+b output the result

115 rem This line is replaced by a shell script line data statement

120 bye exit

BITE gives the Bourne shell the complete ability to EXECUTE BASIC INSTRUCTIONS! This
is accomplished by putting all the command lines in the shell-script and using the < <! device
pass the program to BITE.

Below is a shell script which adds two numbers passed to it as arguments. Note that the state-
ments need not be in numerical order, since BITE will order them as they are entered. Type
this program in, give it a name, say add and make it executable via chmod. Then try it <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>