. | /S 30
Bell Laboratories Cover Sheet for Technical Memorandum

The information contaned herein is for the use of emplovees ot Bell Laboratories and is not Jor publication (see GEI 13.9-3)

Title: DOC: A Dialect of the Programming Date: February 14, 1980
Language C
T™M: 80-1359-2
Other Keywords: preprocessor
programming language
reliable programming

Author(s) Location Extension Charging Case: 39394

D. K. Sharma MH 7B224 2914 Filing Case: 39394
ABSTRACT

This paper describes the programming language DOC, a dialect of C. DOC provides
control statements that have clean semantic properties, are easier to understand and
use, and allow the program text to be formatted neatly. These control statements
are modelled after the guarded commands proposed by E. W. Dijkstra and are
extremely useful in developing correct programs.

As compared to their C counterparts, DOC programs are expected 16 be easier to
read and write, and therefore easier to understand and maintain — program proper-
ties whose importance can not be over emphasized. It has been the author’s obser-
vation that DOC programs are at least as efficient as the C programs, and frequently
they are indeed more efficient.

DOC programs are translated into C using a preprocessor, whose output is then
compiled by a regular C compiler. They can contain the C preprocessor commands,
such as #define and #include, and their object modules can be linked with
those of C programs.

This paper also contains the manual pages for the preprocessor, the command to
compile and link DOC programs, and the filter program to underline DOC

keywords. . :
Pages Text: 9 Other: 12 Total: 21
No. Figures: 0 No. Tables: 0 No. Refs.: 2

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

Frpme }

BELL TELZPHONZ LADCEATCERIZS, IAC.

COMPLETE MEMORANDUM TO

COBRESPCNDENCE FILES

CFFICIAL FILE CCFY
PLUS CNE COPY FCa

EN T

COMPLETE MiMC AANDUM TO

MOBGAN, SAMYEL 7
NETRAVALILA N
NINRZ,WILLZaM B
PENZIAS,d 4

EACH ADCITICRAL FLIING PRIV, R C

CASE REFCRENCED

DATE FILE ccY
(FCRM E-1329)

10 BEFZRENCE CCFIZS

ALLEN,ROBEAT B
ALLES,H G
ANSELNC,UONALL &
AENCLLC, THOMAS F
<BABON,BCBERT V
SERGLAND,G D
BLALUT,D £
+BLEWETT,C DOUGLAS
BCHNING,J 8
BBOWN,% STANLEY
CAMLET,Jd V,J&
CANADAY,RUCD &
CHOW,% F
CHEISTSNSEN,C
CiCGSTCN, ALBRRT M
CCPP,DAVID i
DE GRAAF,C A
COLOTTA.T &
DORAK,F S
ELJREDGE,GAKY E
EPSTEIN, SCBERT &
FISHER,SOWALS &
FRASER(A G
FRZENY,STAN L
+GEMANT, NABAIN H
<GIORCANO,FHILIP P
HAIGHT,R <
EALL, ANDZEW D, JB
+HANNAY,N 8
HCEMANN,A &
¢JAGANNATHIN, aNANE
+JUDICE,C N
+KATIENELSON,JICCB
<KEZSE, b M ° .
¢KIZNIGHAN,ORIAN &
KCGELNIK, B
LIMB,JCHN O
LUCKY R o
LUDZBEE, OTTFRIED w &
MARANZANO,Jd F
MARTELLCTIC, N A
MAST, o A
MAXEMCHUK, KICHOLAS F
<MC DOMALO,H S
+MC DONNELL,J P
MCILBCY,M LCUGLAS
MILLER,STE#ART E
MOLINELLL,JCHN J

¢+ NAMED BY AUTHCS

RALELGH,T M

BEZD,E 2

REUDINK,D C
*3ITCHIE,D M
BOBERTS,CRABLES S
¢AC3IN,ROBESNI FIiiilé
BCVESNO ,HZLEN D
RCWLAIND, BAUCE B
SABSEZVITZ,d 1
<SCHONFELD,TIBCR J
SadaMa, D K

SIMCNE,C F
SINCVWITZ, NORMAN §
SLANA,M T
SLICKItR,d »?

SC,H ¢
<STCRER,JAMES &
SWABTIWNELSER,J <
TIGUEZ,I3EBRLEY A
T2RRY,MILICR E
<TEWKSBURY,3 K
TACMAS,LEZ C
dELLZR,D &
¢wWETHERELL,CHAZLES S
YICOBELLIS, 508831 &

78 NAMES

COVER SG&ZET CN1Y TC

CCRRSSPONLSNCE FILES

4 COPLZS PLUS CXE
COPY FOB EACH FILING
case

AAGESEN,JCiN
ABATIMA BCO, TERESA M
ABATZ ,JCSE2H
ACKEBMAN, d THBANK
ACKEGMAN,J T
ACKLAND, 3RYAL D
ACKBOTFFP .,JCAN ~

AHO, ALFRED V

A 3ZLNS, RAINER 8
43UJL,50001R &
AL3AGLI,V A
ALBERALLA, RICRARD O
ALCALAY,D

ALEXIS, A D,JR
ALKCNS, FRZVERICK
ALLISCN,C E,JR
AMIN,ASRCK T
AMITAY N

> CITZD A8 RIFERENCE

< REQUZISTEL 3Y BREADER

- DISPAIBUTICH

(BEFEN Gai td.9-4-.

COVER 3HEil UNLY TV

AMFON, LaVInG
ANDEBSUh, FAZDCRICK L
ANCERSON, KA THaYld J
ANCERSON,MLILTON M
ANDIRSWL,R ©
AnNDEAasUt. A R
ANTERSCH, ARVEEKRT V
ANDERSUN, W A
ANDSESS,a J
ANTCGLICR,CAVID &
APPELBAUM, MATTHEW A
ARCHER,RUSSELL £,d8
ARMSTEONG,D 3
ARMSTEON,F C,JR
ABNET,SENNIS L
AENJLS,GECaGE W
ABNOLE,JaM=S
ARNCLD, PHRYLLLS &
ARVIOSUN,n ¢
ASELTINE,SD=ARD G
ASMUTH, aICiaan L
ASTHANG, ABIIAYA
ATAL,BISHNU S
AXELICN,4 L
BABU,AdJdcSii aATilalL
BAILZY,CATEZALINE T
BAKER,DONN
BAKER,MITCHELL B
BALDRIN,GECAGE L
BALENSON,CoBISTINE M
SALLANCE,RC52RI A
BARSATV, AUSERT R
BARCLAY,DAVID &
Ba&MS,a L
BARCTSKY,ALLEN
SARR,2AVID L
BATIAGLIA,FBARCES
BAUSR,34BB4RA T
BAUEg,d C
BAOER,AZLEN A
<BAUER,WCLFGANS F
<BAUGH,S &
BAUMAN,STEVEN
<BAXTEa,lESLiZ a
BAYER,D L
BEACHY,8I2IC0N
3EBLO,WILLiAM
BECESRRA,PEZRO U
BECKER,CURTLIS A
BECKER,GARY £
BECKEB,Jacco I
BECKER, hiLliAhD &
BECZZTT,Jd T
BEDNAR,JCS:P A,J8
BEGLEY, ALOYSIUS 4
BEIGHLZY ,KEITH A
BZNCC,LAVID S
DENIECH, JEAN
BENNETIT, RAYHOND @
BENMETT,ICHARD L

COVER SHEET ONLY TC

BENNETT,SILLIAM C
BENLJYITL, P
BINSING,JAMES EDWARD
BEZRENDAUM, ALAN
BZBRGH,A A
BZRKEY M A
BERK,DCNALD A
BEANHARCT,2ICHARD C
8EENOSKE, BEVEALY G
BEANSTEIN,DANIZLLE 3
BEENSTEIN,L
BEIANSTEIN, RAULA R
BERATMAN,2 D
BERZINS,ALSXANDER H
<BEYEB,JEAN-CAVID
BEYLER,ERIC
BEATIA,RAJLY
3LANCHI,M H
BICKFORS, MEIL B
BILASH,TIMUTHY D
BILLINGTCN,MARJCRIE J
BILOWOS, R M
BIREN,IBMA 8
BLlL5HOP,J DANIEL
SISHOP, THOMAS ?
ISHOP, VERONICA L
BIITNER,B B
BITTRICH, MARY E
BLAXZ,GARY D
S8LA2IZR,S D
BLECHMAN, PONALD I
BLEIER,JOSEF
BLINJS,J €
BLCSSER, PATRICK A
3LUM, MABION
20CHULA, CDWARD J
BOCKJS,EZ0BERT J
ZOCK,NANCY 2
BOCDIE,JAMES B
SODEN,.P J
BOZHAM, EARL #
B0EEM,KIM 3
2OESE,J ©
BOGAST,F J
B0GART, THUMAS G
BOIVEIEZ,SICEARD H
BOLSKY MOZ2LS I
BONANNI,L
aonp,f €
BORDELON, EUGENE P
BOGLG,KEVIN I
BORISON, SLLIN 4
603E,DEBASI 5K
BCSTON, AGHALD E
BOSWELL, PAULA S
EOUMA ,HERMAN J
BOUBNE, STEPHEN R
BCWEM,S G
BCEYER,L RAY
SOYCE,¥ M

{NAMES WITECUT PREPIX

WESE SELZCTED USING IHE AUTHOR'S SUBJECT CE CRGANI2ZATICNAL SFECIZICATIICN AS GIVEIN BELCH)

T™-~80-1359-2

COVER SHEET ONLY 0 /™
BOYZR, PHYLLIS J
BOTLE,GZRALD €
BBADFCRD,EDVWARD G
BRADLEY,® HELEN
BRADLEZY,R H
SRAINAED,R C
BRANDT, RZCHARD 3
VEIONE,ZAVID P
SRAUN,DAVID A
BREILANC,JOHN &
BRINSKI,EDWIN F
ERESLER, RENEE A
BRIGGS,GLORTA A
BRITT,WARREN D
BROAD,MARTHA M
BRONSTEIN,M
BEONZO, JOSEPH A
8BOOKS, CATHERINE AN
BEOSS,JEFFREY D
BECVMAN, INNA
BEOUNING ,JASON DAVID
BRGWN, 2ARL F
BRCUN,ELLINGTON L
BHOWN,LAURENCE MC FEE
BRCWN,MARK 8
360WN, SLUART G
BPOUN,d R
BRUECKNER, DOUGLAS
BRYANT,CAVID J
BUCK,I 2
SULZEY,5 M
BUFGESS,SOHN T.JR
803G,P M
BUSIC,MILORAD R -
BUEKZ,MICHAEL £
BOSKZ. 5 J
BURNETTE,4 A
BURMETT,DAVID S
BUENET, 3GSE M
ZOROFF, STEVEN &
B0RROWS, THOMAS 2
BOR2A,DAVID JCSEPH
BUSCH, XZNNETE J.
SUTLETT, DARRELL L -
BOTTON, BEVZRLY

CSUTIIEN,PAUL E
SYEXLZE,R W
BYCAICK,ROBZET S
BYFNZ,ECWARD § -
CALL,PEIER T
CALVERT ,KENISETH L
CAMPDELL,JERFY H =~
CAMPIELL,MICHALL &
CANDRZA,BONALD D
CANDY,5 €
CANNATA, PHILIP ®
CAREY,J E
CARRAN,JCHEN H
CASRIGAN,EAYMOND J
CARR,DATID €

-~

(L]

Ve

1016 TOTAL

MERCURY SPECIFICITIOH.........................-...---.--....-.-..-.-------.........---.-..-.--..........--...---............-..-J;;.\

COMPLETE MENO TC:
135-DPH 13-0138
3641~-S0P 3644-S02

CCYVER SHEET TC:
135-amIS

11-21D
363-0PH

13-210
3631-5UF

COPLGP = COMPUTING/PRCG2AMMING LANGIAGES/GENXsAL PURPOSE
COPRMP = CCMPUTER EEOGEAMAING METHCDOLOGY

UNPLCL = C LANGUAGE

TO GEZT A CCMPLETE CCRY:

.

J. CIACLE THE ALDRES> A1 R1GJIT.

™
H

3B SURE YOOA CCUSREZCT ATDELSS IS GiVIN CN THE CTHER SITE. ()
2. FCLD THAIS SHEET il HALF w1Til Tiil$ JIDE CUT AND STAPLE.

USE NO FNVELCEL.

15-2XD 16-£1D 1359- 4475 127-ppY 36-D1a 364-DPE
3633-50p
HC CULBBEESPUNCENCE FILES ™-80-1389-2
4G 18127 TOTAL FAGES 20
PLEASE SEND A COMPLETE .
7
MiCBOFICHE COPY {) FAPER COFY -

TC ThE ADDEESS SHOWN 0N THE CTHER SIDE,

Bell Laboratories

2

subject: DOC: A Dialect of the Programming date: February 14, 1980
Language C
Case: 39394 from: D. K. Sharma
File: 39394 MH 1359

7B224 x2914

T™™: 80-1359-2

MEMORANDUM FOR FILE

1. INTRODUCTION

The programming language DOC is a dialect of C [1] in which the control statements have
clean and simple semantic propertiecs. We believe that if the formal semantics of control sta-
tements is easily grasped, they are easy to understand intuitively, and their usage is less error
prone. The control statements in DOC are succinct and permit the control structure of the pro-
gram to be displayed neatly. This makes DOC programs easy to read and write and therefore
easy to understand and maintain. These program properties are crucial in developing reliable
software, and their importance can not be over emphasized.

The control statements in DOC are: the do statement, if statement, cif (constant-if) sta-
tement, and for statement. Compound statements are enclosed by begin and end, but this
is necessary only once per function definition. The do and if statements are similar to those
proposed by Dijkstra [2], except for the following differences. The guards, defined in Section
5.4, are evaluated in the order of their appearance until a true guard is found; the statements
following that guard are then executed. In [2], if several guards are true, the statements fol-
lowing any one of them may be selected for execution, thus giving rise to the nondeterministic
DO and IF constructs. The cif statement is similar to the switch statement of C, and as far
as its semantics is concerned, it is really a special case of the if statement. The for statement
is almost the same as in Pascal; it is intended to execute a statement sequence while stepping
through the values of a variable in steps of +1 or —1.

DOC may be used for program development in two ways.

1. Readers familiar with [2] may develop a program and its proof using the nondeterministic
DO and IF constructs. They may run the resulting program as it is — the DO and IF con-

_ structs are correétly implemented by the do and if statements of DOC. Or on the other
hand, they may choose to

a. make use of the else-clause and the prespecified order of guard evaluation to elim-
inate redundant expression evaluations (Section 5.6), and

b. replace certain if statementis by cif statements to enable the compiler to generate
more efficient code.

2. Alternatively, readers who do not wish to use the above method may develop DOC pro-
grams just as most programs are currently developed, that is, by the ‘operational approach’,
in which the programmer thinks during program development as the computer would act
during program execution.

.2-

A4

In either case, it is quite natural to write DOC programs that are more efficient than what
would be natural to write in C (Section 5.6). This, of course, is not to say that equally efficient
C programs can not be written (such a statement would be false in view of labels and the goto
statement in the language), but that they would be unduly cumbersome to write. Readers who
are interested only in the main aspects of DOC may at this point skip to Section 5, where we
describe the syntax and semantics of the various statements informally and give examples to
illustrate their usage.

In addition to the control statements, DOC also differs from C in a few other respects. The
names of a few operators have been changed. The syntax of structure and union declarations
has been slightly altered, and additional data types bool, boolptr, charptr, intptr,
floatptr, and doubleptx have been introduced.

DOC programs are translated into C using a preprocessor whose output is then compiled by
a C compiler. The error messages from the C compiler can be easily traced back to the source
programs in DOC, because the DOC preprocessor does not change line numbers and does not
introduce new variables or remove the existing ones. DOC programs can contain the C prepro-
cessor commands, such as #define and #include. The files thus ‘included’ must themsel-
ves contain DOC program segments, and the same holds for nested ‘include’ files also. The
object modules of DOC programs can be linked with those of C programs.

Appendix A contains the manual pages for the preprocessor and for the command to com-
pile and link DOC and C programs. The manual page for a filter program that underlines the
keywords of DOC is also included. On hardcopy terminals with back-spacing capability, this
program is intended to produce program listings that are easy to read: the control flow and the
global structure of programs can be quickly discerned by looking at the underlined keywords.
Appendix B contains a sample DOC program.

In the following, we assume that the reader is familiar with the C language [1] and describe
only the aspects of DOC in which it differs from C.
2. COMMENTS

Comments begin with { and end with }.

3. DECLARATIONS)
The syntax of declarations is essentially the same as in C, except for the following changes.
3.1 Variable Initializations

The assignment operator := is used to initialize variables, and (: and :) are used to0
begin and end aggregate initializers, respectively (instead of { and } in C). See also Section
4.8.

3.2 Pointer Declarations
The unary operator B is used to declare pointers. For example,
int Bxp, x:=1;
declares xp as an integer pointer and x as an integer which is initialized to 1.

Alternatively, pointers may be declared by using one of the gpe-specifiers charptr,
boolptr, intptr, floatptr, and doubleptr. For example

intptr xp, fip(), (Bpfip)();

declares xp to be an integer pointer, £ip to be 2 function returning 2n integer pointer, and
pfipto be a pointer to a function reiurning an integer pointer.

3.3 Structure and Union Declarations

In. struct and union declarations, the left brace is omitied, and the right brace is repla-
ced by end. The semicolon preceding end is optional (Section 5.8). Thus,

struct
int i;
char c; .
end s;

declares a structure s with components i and c, and

struct

int i;

struct char a, b end p;
end s;

declares a structure s with another structure p as one of its components.

Identifiers can not be declared as swucrure-tags or union-tags which are described in the C-
reference manual. Type definitions must be used for that purpose. In the following example, a
data type complex is defined and then used to declare a variable z.

typedef struct
float real;
float imagin;
end complex;
complex z;

The real and imaginary parts of z are accessed by z.rxreal and z.imagin, respectively.
3.4 Boolean Variables

Boolean variables can be declared using the ppe-specifier bool. In addition, the two
boolean values are available as the identifiers true and false. They can be assigned to
boolean variables and used in logical expressions.

3.5 Function Declarations

Function declarations may be preceded by one of the keywords procedure and
function The keyword function should be used when the function is expected to return
a value, and procedure should be used when no return value is expected. See Section 5.3
for an exampie.

4. EXPRESSIONS

The syntax of expressions is the same as in C, except that four predefined constants are
available and a few operators are represented differently, as described in the following. The
operators in C, and only those, that are not equivaient to the operators described below remain
unaffected.

4.1 Constants

The keywords nullptr, nullch, true, and false are treated as constants. (They
stand for 0, “\0’, 1, and O, respectively. The representations of these constants should not,
in principle, be included in the language definition; this has been done here to facilitate interfa-
cing DOC and C programs.)

4.2 Primary Expressions

-

The operator *. replaces the arrow operator (->) of C.

4.3 Unary Operators

Bpointer-expression : lvalue expression referring to the object that resides ‘at’
the location given by pointer-expression.

* lvalue : pointer to the object referred to by value expression.

not expression : logical not of expression

bnot expression : bit-wise not (i.e., one’s complement) of expression.

The other unary operators, namely,
- ++ == (pype-name) sizeof

remain the same as in C.
4.4 Arithmetic Operators

expression Aiv expression
expression moQd expression

The div and mod operators are the same as / and %, respectively; their use is recommen-
ded for clarity when both the expressions vield integer values. The / and % operators should
be used for real valued expressions. All the arithmetic operators of C, i.e.,

*» / % + - << >>
remain unaffected.
4.5 Equality Operators

expression = expression . true when the iwo expressions are equal and
false otherwise.

expression <> expression. true when the two expressions are not equal and
false otherwise.

The relational operators of C, namely,
< > <= >=
remain the same.
4.6 Logical Operators
expression ang expression : logical and of the two expressions.
expression Or expression : - logical or of the two expressions.

The operators and and or should be used where their operands can be interchanged
without affecting the program. If, however, that is not the case, the operators cand and coxr
(conditional and and conditional ox, respectively) should be used. They are defined as fol-
lows: If x equals false, then the value of x cand yis false and y is not evaluated; oth-
erwise, the value is y. Similarly, if x equals true, then the value of x cor yis trueand y
is not evaluated; otherwise, the value is y. For example, in the evaluation of
(i>0 cand ali-1]=’ *) and (i<>0cand (jdiv i)=>5) for i=0, the operand fol-
lowing cand is not evaluated.

4.7 Bitwise-logical Operators
expression band expression : bit-wise logical and of the two expressions.

expression box expression : bit-wise logical or of the two expressions.

expression bxor expression : bit-wise logical exciusive-or of the two expres-
sions.

4.8 Assignment Operators
Simple assignment operator 1=
Compound assignment operators

v = i i/ % div o mod i>> <<
:band :bxor :bor

Here, "a := b" should be read as a becomes b, or a gets b; "a :+ b" should be read as a
becomes a plus b; etc.
5. STATEMENTS

This is the syntactic category in which DOC differs the most from C and which was also the
primary motivation behind creating DOC.

The statements of DOC discussed in the following are: skip, simple, compound, if, cif,
do, and for statements. The break and continue statements are not available in DOC,
and the case and default labels are not needed. The return, goto, labelled, and null
statements are the same as in C and are not discussed below. Section 5.8 summarizes the treat-
ment of semicolons.

5.1 Skip Statement
It has the form

skip;
and is equivalent to the null statement of C.

5.2 Simple Statement
A simple statement is

expression ;

Note that expressions can have embedded assignment operators.
5.3 Compound Statement

We define statement sequence as a sequence of statements optionally separated by comments
or white spaces (i. e.. spaces, tabs, and newline characters). Then the compound statement has
. the form

begin
{ deciarations
stalement sequence
end

where the brackets delineate optional items. This is the same as in C, except that the braces
are replaced by beginand end. For example,

procedure swap(x.y)
int x, y:
begin
int temp:
temp := x;
X =y
y = temp;
end

The part enclosed by begin and end is referenced quite frequently in the following, and
for convenience we will call it compound body. That is, compound body is

| declarations)
siatement sequence

5.4 If Statement

The 1if statement has the following form

if expression -> compound body

{1 expression => compound body

expression -> compound body
else ~> compound body)

[) i p—
He e -

To execute the if statement. the expressions. also known as the guards. are evaluated in the
order of their appearance until a true expression is found. The compound body corresponding to

that expression is then execuled. If none of the given expressions are true. two-cuses arise: (1) if

the optional else-clause is nol present. the program is aborted with an crror message. and (2)
if the else-clause is present, ils corresponding compound bodv is executed. Thus. else
should be thought of as the complement of the disjunction of all the other expressions. If the
guards in an if statement are all-inclusive, the last guard may be replaced by else o0 avoid
unnecessary expression evaluation.

For example.

if a=1 -»> t= 2: {Initialize}
3

c
d :=

P

ti a=2 -> int temp; {Swap using a local variable}
temp := c:
c := d:
d := temp:

11 else -> print("Improper value of a");

fi

5.5 Constant-if (or cif) Statement
The cif statement has the form
cif expression

is constant expression list -=> compound body
V1 constant expression list => compound body

G

\ | constant expression list -> compound body

i1 else -> compound body]

fic

where constant expression list is a comma-separated list of constant expressions (the guards), and
all the constanr expressions in a cif statement must have distinct values. Constant expression is
completely defined in [1]; briefly, it evaluates to a constant and can involve only int con-

stants, char constants, bool constants, and sizeof expressions. Note that constant expres-
sions do not contain embedded comma operators.

A cif statement is executed by evaluating the expression and then executing the compound
body whose constant expression has the same value as expression. If the value of expression does
not match any of the conswmant expressions, two cases arise that are analogous to the if sta-
tement: (1) if the optional else-clause is not present, the program is aborted with an error
message, and (2) if the else-clause is present, the compound body corresponding to it is execu-
ted. The interpretation of else is the same as in the if statement described above. Notice
that the case and default labels and the break statement of C are not available.

For exampie,

cif i

is 1 -> print("message 1");
-1 2 -> print("message 2");

i1 3,4,5 -> print("message 345");

i1 else -> print("unknown i");

fic

5.6 Do Statement

The do statement has the form

do expression -> compound body
] .
| | expression -> compound body

| | expression -> compound body
od

Each iteration through the do statement involves evaluating the expressions (the guards) in
the order of their appearance until a true expression is found. The compound body corresponding
to that expression is then executed. This is repeated until all the expressions become false; the
do statement is then terminated. Notice that the continue and break statements of C are
not available.

For example, the following program counts the number of tab characters in the string
line. It was obtained using the scheme described in [2]: the assertions related to its proof are
omitted. ' '

count := 0; i:= 0;

do line[il<»>nullch -> if line[il= ‘\t’ -> count++; i++;
i1 line[i]<>’\t’ -> i++;
fi

od

By merging the guards of the do and if statements, we obtain the following program.

count := 0; 1i:=0;
do line[i]<>nullch and line[il= ‘\t’ -> count++; i++;
i1 line[i]<>nullch and line[il<>’\t’ -> i++;

od

Note that both these programs do not rely upon the order of evaluation of the guards and that
in the second program, the first component of the first guard is redundant. If we decide to
make use of the order of guard evaluation, the second component of the second guard also
becomes redundant, and the program reduces to

count := 0; i:= 0;
do linefi]= ‘\t’ -> count++; i++;
11 line[iJ<>nullch -> i++; .

od

This exemplifies how a DOC program obtained using the scheme described in [2] may be
transformed to make it more efficient. It is, however, obvious that using the ‘operational
approach’, the above program could have been obtained directly, but of course without a proof.

We now use this example to point qut that certain DOC programs are more efficient than
what would be natural to write in C to do the same task. Let t and n be the number of tab and
non-tab characters, respectively, in line. Then, the number of comparisons done in the
above program is t+2n. A C program to do the same task is

count = 0; i = 0;
while(line’[i] != ‘N0’){
if(line[i] == ‘\t’)count++;
i+43
} .
The number of comparisons in this case is 2t+2n, as each character of 1ine must go through
two comparisons. The following C program is as efficient as the improved DOC program given
above.

count = 03 i = 0;

for(;;){
if(line[i] == ‘\t’)count++;
else if(linel[i] =

= '\0’)break;
i+44; .
}
It is, however, more cumbersome to read and write than both the other programs. Note that
all the three programs would benefit considerably from the use of pointers and register varia-
bles, but that was not done for the sake of clarity.

5.7 For Statement

The for statement is provided to step through a list of items in steps of +1 or —1. All
other tasks requiring a looping construct are expected to use the do statement. The for sta-
tement has two forms:

for var : = expressionl to expression? ->
compound body
rof

and
for var : = expression? downto expressionl ->

compound body
rof

-9.

In the first (second) case, the variable var is first initialized to expressionl (expression2); then, if
var <=expression? (var>=expressionl), compound body is executed; after this, var is incremented
(decremented) by 1, and the control goes back 1o testing the inequality. The loop terminates if
the inequality is not satisfied, and the value of varis left as expression2 +1 in the first case and
as expression/ -1 in the second case.

In case of a transfer of control from the middle to the outside of the loop, var retains its
value just before the transfer. Transfer of control from the outside to the middle of the loop
should be avoided.

The example

sum := 03

for i := 0 to n-1 ->
sum := sum + af[i]

rof

does the same as

sum := 0;

for i := n-1 downto 0 -»>
sum = sum + afi)

rof

except for the final values of i.

5.8 Semicolons

Semicolons followed by end, f£i, fic, od, rof, or || can be omitted. This rule applies

to structure declarations also. Semicolons may thus be treated as statement separators, in con-
trast with C, where they are treated as statement terminators.

6. MISCELLANEOUS

6.1 Preprocessor Command Lines

The preprocessor commands allowed in DOC programs are the same as in C. Note that
these commands are acted upon by the C preprocessor, which is invoked before the DOC
preprocessor during the process of compiling DOC programs. The DOC preprocessor ignores
those commands. The files specified in #include commands must contain DOC program
segments; the same holds for nested ‘include’ files, too.

6.2 Standard I/0 Library

DOC programs that access the routines from the standard I/O library must ‘include’ the file
docio.h, which defines appropriate macros and variables and is the DOC equivalent of
stdio.h
ACKNOWLEDGEMENTS

The author is grateful to N. Gehani and B. Dwyer for their comments on an earlier version

_of this paper. iy
————'—'_——_—_

MH-1359-DKS-dks D. K. Sharma

Atts.
References 1-2
Appendixes A and B

REFERENCES

(1] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
1978.

2] E. W. Dijkstra, 4 Discipline of Programming, Prentice-Hall, Inc., 1976.

APPENDIX A
This appendix contains the manual pages for the following three programs:
i) docpp: the DOC preprocessor 1o translate DOC programs into C.

(2) dce: the DOC and € Compiler to compile DOC and C programs and link the
resulting object modules.

(3) ulk a filter program 10 under-line DOC kevwords.

DOCPP (1) A-2 DOCPP (1)

NAME

docpp — DOC preprocessor

SYNOPSIS

docpp [infile [outfile]]

DESCRIPTION

The DOC preprocessor accepts a DOC program from infile, converts it into an equivalent C
program, and leaves the output in outfile. If-outfile is absent or is —, it is assumed to be the
standard output. If infile is absent or is —, it is assumed to be the standard input. Note that
infile can not be absent without outfile also being absent.

Docpp produces one output line for each input line. That is, the line numbers in the resuiting
C file are the same as those in the input DOC file. Therefore, the error messages generated by
the C compiler can be easily traced back to the source program in DOC, as they all contain line
numbers in them. Docpp does not introduce new variable names or remove the old ones in the
process of translation.

Docpp leaves unchanged the lines beginning with the character #. As a result, it does not
expand macros, include files, etc. -- a task that is done by the C preprocessor.

Docpp prohibits the use of the following: (1) keywords of C not used in DOC, namely, while,
switch, defanlt, case, break, continue, and entry, (2) the operators: &, !, ~, ==, !=, &&,
and |, (3) the composite assignment operators of C, which are of the form =op or op=, where
opis +, -, * /, %, >>, <<, &, , or |, and (4) the use of * for indirection in variable
declarations and casts that begin with a predefined type specifier, namely, char, beol, int, etc.
This is not the case if a type-specifier defined using typedef is used.

The k? ord ebss is translated into end, and etext and edata ar2 not modified. Recall that 1d
treats i end, _etext, and._edata as read-only reserved symbols.

For if and cif statements, to deal with the run-time condition when none of the specified alter-
natives apply, Docpp generates the calls IFERROR (filename, lineno) and CIFERROR (filename,
lineno), respectively, where filename is a string pointer and lineno is an int. Standard version
of these routines are available in docerror.d, and their object modules are in libd.a. They may
be replaced by user supplied versions. '

SEE ALSO

Page 1

D. K. Sharma, DOC: A Dialect of the Programming Language C.
dec(1), ulk(1)

February 1980

-

DCC(1)

NAME

A-3 DCC (1)

dcc — DOC and C compiler

SYNOPSIS

dcc [option l... arg...

DESCRIPTION

Page 1

This command has the following purposes: (1) to compile DOC and C programs, (2) to assem-
ble assembly source programs. (3) to link the resulting object modules with libraries and pre-
viously obtained object modules, and (4) to run the C and DOC preprocessors in cascade in
that order or individualiy.

It accepts several types of arguments:

Arguments whose names end with .d or .c are taken to be DOC or C source programs, respec-
tively; they are compiled, and each object program is left on the file whose name is that of the
source with .o substituted for .d or .c. If a single DOC or C program is compiled and loaded all
at once, the .o file is deleted.

Arguments whose names end with .s are taken to be assembly source programs and are assem-
bled, producing a .o file.

The .d files are converted to object files by running the C preprocessor, DOC preprocessor, and
other passes of the C compiler in that order. The C preprocessor expands macros, include files.
etc., and the DOC preprocessor converts the resulting DOC program into C. Thus, the files
specified in the #include statements in .d files must themselves contain DOC program seg-
ments; the same holds for nested include files also.

The .c files are converted to object files just as in the cc command: by running the C preproces-
sor followed by the other passes of the C compiler. Thus, the files specified in the #include
statements in .c files must contain C program segments; the same holds for nested include files
also. -

The following options are interpreted by dcc. See /d(1) for load-time options.

-c Suppress the loading phase of the compilation, and force an object file to be produced
even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of times each
routine is called; also, if loading takes place, replace the standard startoff routine by
one which automatically calls monitor(3C) at the start and arranges to write out a
mon.out file at normal termination of execution of the object program. An execution
profile can then be generated by use of prof(1).

-f In systems without hardware floating-point, use a version of the C compiler which
handles floating-point constants and loads the object program with the floating-point
interpreter. :

-0 Invoke an object-code optimizer.

=S Compile the named DOC and 'C programs, and feave the assembler-language output

on corresponding files suffixed .s.

~E{dcb] Run only the designated preprocessors on the named DOC and C programs, and send
the result to the standard output. When the flag value is d, run DOC preprocessor
only; when the flag value is ¢, run C preprocessor only; when the flag value is b, run C
and DOC preprocessors in that order. When no flag value is specified, run DOC
preprocessor on .d files and C preprocessor on .c files.

—Pldcb] Run only the designated preprocessors on the named DOC and C programs, and leave
the result on corresponding files suffixed .i. See the description of -E option regarding
which preprocessor is run.

February 1980

DCC(1) A-4 DCC(1)

=ooutput
Name the final output file ouspur. If this option is used, the file a.out will be left
undisturbed.

-C Comments are not stripped by the C preprocessor.

=D name=def

=D name

Define the name to the C preprocessor, as if by #define. If no d-eﬁnition is given, the
name is defined as 1.

=Uname
Remove any initial definition of name. .

—Idir Change the algorithm for searching for #include files whose names do not begin with
/ to look in dir before looking in the directories on the standard list. Thus, #include
files whose names are enclosed in "" will be searched for first in the directory of the
file argument, then in directories named in —I options, and last in directories on a
standard list. For #include files whose names are enclosed in <>, the directory of
the file argument is not searched.

—~Bsring
Find substitute compiler passes in the files named szring with the suffixes cpp, docpp,
¢0, cl and ¢2. If sring is empty, use a standard backup version.

—t{pd012) :
Find only the designated compiler passes in the files whose names are constructed by a
—B option. In the absence of a —B option, the siring is taken to be /lib/n.

Other arguments are taken to be either loader option arguments, or C-compatible object pro-
grams, typically produced by an earlier dcc or cc run, or perhaps libraries of DOC- and C-
compatible routines. These programs, together with the results of any compilations specified,
are loaded (in the order given) to produce an executable program with name a.out. The
libraries libd.a, libc.a, and liba.a are searched in that order, libd.a currently has routines to
print the run-time error messages for DOC.

FILES
file.d input DQC file
file.c input C file
file.s input assembler file
file.o object file
a.out loaded output
/tmp/ctms= temporary
/lib/cpp C preprocessor
/usr/lib/docpp DOC preprocessor
Nib/cl01] compiler, cc
/lib/oc[012] backup compiler,cc
/1ib/ocpp backup C preprocessor

/lib/odocpp backup DOC preprocessor
/1ib/fcl01) floating-point compiler, cc

/lib/c2 optional optimizer
/usr/lib/comp compiler,pce
/lib/ert0.0 runtime startoff

/lib/mert0.0 startoff for profiling

/1ib/fert0.0 startoff for floating-point interpretation
/usr/lib/libd.a DOC library

/lib/libe.a C library, see (3)

February 1980 Page 2

.

A-5 DCC(1)

DCC(1)
/lib/liba.a assembler library used by some routines in libc.a.
Jusr/include standard directory for #include files

SEE ALSO

D. K. Sharma, DOC: A Dialect of the Programming Language C.

B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, NY, 1978.
B. W. Kemighan, Programming in C—A Tutorial,

D. M. Ritchie, C Reference Manual.

docpp(1), ulk(1), adb(1), Id(1), prof(1), monitor (3C).

DIAGNOSTICS]
The diagnostics produced by the compiler are intended to be self-explanatory. Occasional mes-

sages may be produced by the assembler or loader. Of these, the most mystifying are from the
assembler, in particular m, which means a multiply-defined external symbol (function or data).

Page 3 February 1980

ULK (1) A-6 ULK(1) -

NAME

ulk - underline keywords of DOC
SYNOPSIS

ulk
DESCRIPTION

This program can be used as a filter only: it reads from the standard input file and writes on the
standard output file. The output of u/k is such that when it is printed on hardcopy terminals
with back-spacing capability, certain keywords of the programming language DOC come out
underlined. Each character to be underlined is replaced by an underscore, a backspace, and the
character itself in that order.

Ulk is intended to produce listings of DOC programs that are easy to read: the control flow and
global structure of the program can be quickly discerned by looking at the underlined keywords.

SEE ALSO
D. K. Sharma, DOC: 4 Dialect of the Programming Language C.
dee(1), docpp(1)

Page 1 ’ February 1980

kS

APPENDIX B

This appendix contains the listing of tab, a sample DOC program that expands or
compresses tabs according to the tabstops specified by one of its arguments. The listing was
obtained by passing the file tab.d through the filter program u/k and then printing the output
on a DASI 450 terminal.

The underlined keywords in this listing make the control structure easily discernable and the
program more readable. The reader is urged to closely examine the formatting of nested DOC
statements: The branching conditions for if and cif statements and the looping conditions
for do statements are displayed on the left and their corresponding statement sequences on the
right.

{ Name
Call s

Explan

}
$¢define
#define
#define
#define
$define
#define
#define
#include
charptr

procedure main(argc,argv)

begin
file

char
int

char
bool

progname

for 1 :=
cif
Te
is

: tab
equence: tab option filel file2
Where option is +[n] or -[n] or blank.

ation :

If option is +n, tabs are expanded as if tab stops have
been placed at columns 0, n, 2n, etc. If option is =-n,
the inverse of the above is done by replacing
consecutive spaces by tabs. Blank option means +8, and
absent n means 8.

An absent file name stands for stdin or stdout. Note
that infile can not be absent with out the outfile also
being absent.

Linesize 257
FilopE "1
FilovrE 2
FlgcntE 3
FilcntE 4
LinlenE 5
FlgvalE 6
"header.h"
progname;

int argc; charptr @argv;

ptr infile, outfile,
openwdef(); { Opens a file; returns a fileptr.

Aborts with a message if an existing

file may be overwritten. Returns
default fileptr supplied in the
call, if file name is null.

}
ptr infilnam:="", outfilnam:="", result, getl();
filec := 0, { File name count.}
flagec := 0, { Flag count. }
flagv := 8, { Flag value. }

i, nvalue();
line[Linesize];
exp := true;
:= argv(0]; { Used by error() and errors().}
1l to arge-1 ->
argvii] {0]
='y, '4+' => flagc++;
cif flagc

is 1 =-> flagv := nvalue(argv[i]+l);
if flagv=0 -> flagv := 8 ||
cif argv([1l](0)
is '=-' => exp := false;
TT '+' => exp := true;

|| else -> error(FlgcntE);

fic

else -> Tilec++;
cif filec

is 1 -> infilnam := argv([i];

else -> skip

Il 2 => outfilnam:= argv[i];

|| else -> error(FilcntE);

fic
fic =

rof

openwdef(infilnam, "r", stdin);

infile := r",
:= openwdef(outfilnam, "w", stdout);

outfile

result := getl(line,infile); { Nullptr returned at the end of file! }
do result <> nullptr -> if exp -> expand(line, flagv, outfile);

TT else-> compress(line, flagv, outfile);

fi

Tesult := getl(line, infile);

od
exit(0);
end { main }
{ Convert an ascii string to an integer.}
function int nvalue(p) charptr p;
begin
charptr q;
char (o3
int i;
{ Note: The do construct following this comment critically

relies upon the guards being evaluated in the order
they are written. Considering it a nondeterministic do
construct would be an error: examine the case when ¢ =
'a'., This loop is, however, more efficient than its
nondeterministic counterpart, which is
g := p; ¢ := @q;
do c <> '\0'=> if ¢ >= '0' and ¢ <= '9' -> q++; c := @q;
|| else => error(FlgvalE);
fi

fl ~e

P
>

(¢]

c <= '9' => g++; ¢ := @q;
ch -> error(FlgvalE);

3o~
(o]

od
sscanf(p,"$d","i); { i = 0 if p points to a null or blank string.}
return(i);

end { nvalue }

{ Read a line from iostream fp. If the line in fp was
longer than Linesize, abort with the error message
corresponding to LinlenE.

}

function charptr getl(line, fp) char line(}; fileptr fp;
begin

charptr result, fgets();

line[Linesize-2] := '\n’';

result := fgets(line, Linesize, £p);

{ If the last character read is not '\n', the line in the

B-4

} file is longer than Linesize-1 -- an érror.
if line[Linesize-=2] <> '\n' -> error(LinlenE);
1T else -> return(result);
i

end T getl }

{ Expand tabs into spaces. It is inverse of compress.}
rocedure expand(line,tabv,fp) char line[]:; int tabv; fileptr £p;
Eegln '

Hh

int nspaces, i, j, k;
i :=0; 3 := 0;
do line[i] = '\t'-> nspaces := tabv - j mod tabv;
for k := 1 to nspaces -> putc(' ',fp) rof
J :+ nspaces; i++;
|1 line[i] <> nullch -> putc(line[i), £p):

J++; i+
od
end { expand }
#$define putl fputs
{ This procedure is the inverse of expand. }

procedure compress(line, tabv, fp) char line([]; int tabv; fileptr fp:
begin
int nchtogo, nspaces, i, j;
{ i and j are indices into the source and destination
arrays which, in this case, are both line[]. nspaces is
the no. of spaces transferred into the destination array
after the last non-blank character. If the source array
has nchtogo blanks after a non-blank character, they
will be replaced by a tab in the destination array. Note
that nchtogo is a function of i and tabv.

= 0; J =

}
i 0: nspaces := 0; nchtogo := tabv;
do line[i] !

=> if nspaces=nchtogo - 1 -> j :- nspaces;
line[j] := "\t';
nspaces := 0;
nchtogo := tabv;

Pl else -> 1line[3j] := ' ';
nspaces++;
fi
J¥+; it+;
[l line[i] <> nullch -> line[j] := line[i];

J++; i++;
nchtogo := tabv - i mod tabv;
nspaces := 0;

od

line[j] := nullch;

outl(line,fp);
end { compress }

function charptr errmsg(i) int i;
begin

charptr p;

cif i

~

is FlgcntE ->

"too many flags present (max = 1)*
TT FlgvalE ->

-"improper flag value"
|| FilentE => "too many file names present (max = 2)"
|| LinlenE -> := "an input line too long (max = 255)"
{ The following error messages are used by errors(..).
They contain one $%s specification.
}

‘0 'c T ‘U

noronon

|| FilovrE => p := "file \"%s\" already exists"
|| FilopE =-> p := "can not open \"%s\""
fic
return(p);
end { errmsg }

{ Print the i-th error message, the pointer to which is
returned by errmsg(). The string must not contain any
format specification.

}

procedure error (1) .int i;
begin

charptr errmsg();
fprintf(stderr, "%s: %s.\n", progname, errmsg(i));
exit(i);

end { error }

{ The string the pointer to which is returned by errmsg()
. must contain one %s.
}

procedure errors(i,sp) int i; charptr sp;

begin

charptr errmsg();
fprintf(stderr,"%s: ", progname);
fprintf(stderr, errmsg(i), sp);
fprintf(stderr,".\n");
exit(i);

end { errors }

