Ly /S ¥ 3

-~ .
@ Bell Laboratories ~ Cover Sheet for Technical Memorandum
- The information contained herein is for the use of employvees of Bell Laboratories and is not for publication. (See GEI 13.9-3)
Title- Beautifying C Code Date- April 15, 1980
T™- 80-1271-4
Other Keywords- Programming style .
o~
Author Location Extension Charging Case- 39199
L. Cherry 2c516 6067 Filing Case- 39199-11
ABSTRACT

For a program to be easy to understand, it must be readable. The best
method of enhancing program readability in free format languages like C is to use
indentation to reflect the nesting level of the code. The program cb automatically
adds such indentation. cb has two levels of operation. At the first level it enforces
a minimum of rules, allowing the user to maintain a great deal of individuality in

7™ code layout. At the second level, it enforces many layout rules, putting the code in
a canonical form. This strict level of operation makes cb uscful in large projects
for enforcing standards. In this paper [will discuss commaon liyout conventions for
C code, design criteria for the beautifier, and how it works.

-

7-—

o
Pages Text 10 Other 1 Towal 11
No. Figures 0 No. Tables 0 No. Refs. 3

E-1932.U (6-73) SEE REVERSE SIDE FOR DISTRIBUTION LIST ‘

. pELL TELEPUCRE LABCEATOKIES, INC.

COMPLETE MEMCBANDUM TC

CORBES FONDENCE FILES

OFFICIAL FILE CCPY
pPLOS ONE COPY FOR

ZACH ADDITIONAL FILING

CASE BEPERENCED

DATE FILE COPY
{roaM E-1326)

10 BEPERENCE CCPIES

<AHO,ALFRED V
<BALENSON,CHRISTINE M
<BARON,20BEET V
<BECKER (BICHARD A
BROWN,W STANLEY
<CHEN,STEPHER
<CHEREY,LORINDA L
<PELDMAR,STUABT I
<PBASER,A G
<GOLDSIEIN.A JAY
<GRAHAM,R 1
¢HANNAY,K B
<JOHNSOH ,STERHEN C
CKEESE,W M
<KEBRIGHAN,BRIAN W

<IUDERER.GOITIRIED W 2

<MARANZANG,J I
<MABKY,GERAIDINE A
*MC DONALD,H S
<MC GILL.B
MCILROY M DOUGLAS
<MENNIKGER,8 E
<NOBGAN, SAMUZL P
+PRIN,B C
<BALEIGH,T ¥
<RIDDLE,GUY &
<SCHLEZGEL,C T
CSTORER,JAMES &
¢STREETER,LYNN 4
<SZIMANSKI,THCMAS G
TERRY,MILICN E
<WEINBEDGESR,PETER J
+WONSIXWICZ,.3 C
CYARNAKAKIS,MIHALIS
36 NAMES

COVER SHEET ONLY TO

COREESPONDENCE FILES
8 CORIES PLUS CRE

COPY PCE EACH FILING

CASE

AAGESER,JORN
ACKERMAN,J T
ALEENS,RAINZR B
<AHUJA,SUDHIE B

+ NAMEFD BY MUTHOR

> CITED AS BEPERENCE

COVER SHEST OBLY TC

ALDERALLA RICHARE J
ALCALAY,D
ALKORS, FREDELICK
ALLEN,R C
AMITAY N
ANDERSON, RATHBRIN J
ANDEBSON,MLLTCR M
AANDT,DERNIS L
AGNOLD,GECRGE ¥
ABNOLD,JAMES ¢
ARNOLD, PHYLLIS &
ABNOLD, THOMAS F
ABZBZBGER.C B
3SELTINZ,EDUARD G
AOLL,DENIS ¥
BAGGA,YUDHVEER S
BAKEL,BRENOA S
BALLANCE, BOBERT 3
BALL\RD,Z D,Jk
BABBATO, ROBEZT 2
BARO’SKY,ALLEN
BAUB3,BABREARA T
BAUEi, HELEN)
<BAUG4.C B
BEAC {¥,MILTON
BEAOMCNT LELAND B
DEBLI,WILLIAM
BEDNAR,JOSEPH 3,J2
BENCO,DAVID S
BENISCH,JEAN
BENNETT,BAYMOND W
BENNETT,WILLIAM C
BERG:.AND,G D
BERRHARDT,RICHARL €
BEANSTEIN,L
BERZINS,ALEIANDES B
BEYLER, ERIC
BICKPORD,NEIL &
BILOWOS,2 M
<BIREN,IRMA B
BISHOP,J DANIEL
B1SKOP, THOMAS P
BITTIER.8 B
BLAKE,GARY D
BLAZIER,S D
BLECHMAN, RONALD 1
BLEIER,JOSEF
BLINN,J C
BLCSSER,PATRICK &
BLUM,MAEION
BODEN,.F J
BOEHM,KIM 2
BOGART, THOMAS G
BOIYIZ,RICHARD B
BOLSKY,MORBIS 1
BORISC, ELLEN)
BOUBNE, STEPUEN &
BOWYEE,L 8aY
<BOYCE,V M
BOYER,PHYLLIS J
BOYLE,SERALD C
BRADLEY M HELEN

< REQUESTED BY AEALER
WERE SELECIED USING THE AUTHOR'S SUBJECT CR ORGANIZATIONAL SPECLF

DISTHALUTION
(BEFEE GEI 13.5-3)

COVEE SHEET ONLY TO

<DRANLCT, RICUARD &
BblvGi,uinld A
DECAZ ,MAlind M
BRCOKS, CATHLKIN: ANN
BROSS ,JEFFPREX D
BaCVMAN, INNA
BRCWN,ELLINGTON L
BROWN,W &
BRUECKNEER,DOUGLAS
BUIST, L &
BUEG,F M
<BUANETT, DAVID S
BUECFE,STEVEN 4
BOURRCHES, THOMAS &
BUILETT, DABAELL L
BYEELEE,E &
BYRNE,ZDRARD B
CABLE,GOUDON G JE
CALES30,6IULL0 L
CAMPBELL,JERBY B
<CANADAX,BUDD B
CAALSCN,HELEN ¥
CAGTER,DCNALD &
CASPEBS,BAABARA
CASTELLANC, MARY ANN
CAVINESS,JOHN D
CERMAK,1 &
CBAI,D 7
CHAMBEBS,B C
<CHAMBERS,J ~
CHANEY,F @
CHANG,JEAN L
CHANG,JC=~NEI
CBAPPELL,S 6
CHENG (Y
CHEN,PING C
CHZSSON,GREGORY L
CHILDS,CABCLYN
CHI,M C
CHCDRCU ¥ M
CBCNG,PHEE
CHRIST,C W,J&
CIEMINSKL,ZESBA F
CLARK,DAVIL L
CLARY,JOEN &
CLAYTCN,D 2
CLINE,LAUKEL M I
COHEN,HABVEY
COHEN,k1CHARE L
<COLE,IOULS o4
COLLICOTI,E B
CORCON,J H
CONKLIN,DANIEL 1
CCHNERS, BONALD E
COCK,JOEL M
COOK,T J
COCPER,ANINUE E
COSTELLO,J W
COTTRELL,SENNIE L
COVINGTCN,&ALPH L
CRAGUN,JOAR
CBAIG,JCHN B

COVER SHEET ONLY TO

CEISTCPOA, EVGENE
CLRIME,L L

CIUKL JCSEPY A
CIENCSIIS, BAENDA N
DIGNALL.C H,.JP
DAVEY ,DOOGLAS A
DAVIS,R OubL¥
DIWEONR ,JUdR £
Dat,r @

L PAZIOM J

DI GBRAAE,D A

DI TREVILLE,JCUN D
DLAN,JEFFEREY S
DILLNER,8 J
DENKMANN,§ JOHN
DINNY MICHAEL S
DENSHQRE, SUSAR
USSMOND ,SCHR PATRICK
DEVLIN.SUSAN J

DI PIEIRO,E S
DI8,GILEBRT
.DIMARCO,BOBERT T
<DIMMICK,JANES ©
DINZEN, THOMAS J
DISZEL,DAVID B
DCEDLINZ,BABBARA ANN

DCLATCUSKI, VIRGINIA M

BOLOTTA,T &
DCMANGUE,JAMES C,J2
BIEDEN,DOUGLAS C
DAAKE (LILLIAN
OAZIILER,H R
D°ANDBEA,LOUISE A
DODICK (ANTHCONY
DISGER,SONALD D
DOMAIS,VALERIZ
<DUNCARSQON, BCPEBT 1
DUTNEIN, PATRICIA
DSIER,T J
DIZR,MARY £
EDAUNDS,T ¥
EICHOBKR,XURT B
<EIIELBACH,DAVID L
EXSTBOM,.SUSAN
ELORIDGE,JOEN
ELLICTT,RUBY J
ELLIS,DAVID J
Er,? €
EiZEY,BOBEBI V
EiSTEIN,BOBERT H
BESZRMAN,ALAN B
EVANS ,MELVIN J
EYLBMAN, THONAS L,JR
FBISCH,M P
PAGEICIUS ,WAYNE N
FLIRCHILD, DAVID L
FAULKNER,kKGGEK &
FELER,J
FESBEL,NANCY L
FLOSTER,I REEL
<ZICHINER, WOLPGAKRG
PILDES ,NEAL B

(HAMLS WITHCUT PREZIX
ICATICH &S GITEN BELOW)

TH=80=171~a

CCVER SHEET ©OKLY 70

FISCIER.HEABERT B
FISLMAN,SANIEL i
FLANLHEND, &
FLEISCNER, A I
FLEMING, AMES B
FLCAEL,ELLEN 2
PCONG K T
FCRTNEY,V J
FQUGUT,b T
PCUNTOUKIDIS, &
POULER,B50CE R
FCELER,GLENN D
FOX,PHYLLIS A
rCY.Jd C
FBANKLIN,JAMES ¥
FRANK,AMALIZ g
PREEMAN,K G
PHEEMAN,MARTIN
FRENCH,4 F,JB
FREY,d C
PRIED, LASRENCE &
FROST,R JONNELL
ESUCHTMAR,DARRY
POLLERTGN,L WAXNZ
ru,C
GABBE, JOEN D
GALGONSKI,ANN L
GLRMISE,iOBERT
GARBISCN,GARY 2
<GATES,G b
GEABY, 4 J
GEEES, T J3,J8
GEEG,E ¥

GIBSON,J C
GIESKZ ,NILLIAM E
GILKEY ,TEQMAS J
<GILLETYIE,JE&N
GIMPEL,J P
<GITHINS,J 3
GITHINS,J0Y L
<GLASSER,ALAN L
GLUCK,F G
<GLOSHKC,FOBZRT J
CGNANADESLKAN, R
GOFF,CARCLY: &
GOLABEK,:02H T
GCLDENBEFd.d B
<GORMAN,J E
GCRION,D 2
GCITDENKIR, 3
GAEENLAW,.R L
GROSS,ALN M
GROSS, AB.HUR G
GHECSE,T n
GRUENWALT,JO

HE
GRZELAKCSSXI,MATPEEN E

GUBITOSI,LOVUIS E

6395 70TAL

o T hen

MEBCORY SPECTZICATION cene e e oosassseconsssasnsveonesssssosesssansosensotos o0sesesssssssesststecsssrsesesscsssecsesecssonnsesecsns:

COMPLETZ MEMO TO:
127=-50p

COVER SHEET TO:
12-D18

13-p12

127

COPRDS = CCMPUTZR PRCGBAM DOCUMENTAZION AND STARDALDS

ecvsssssscscnnsas

TO SET A COMPLETEZ CCPY:

N

G CLARESTULLINCE FPILES

he 1A1&?

PLEALE SEND § CONPLLIE

1, BZ SURE YOTK CORRZCT ADDRISS IS wiVEN ¢ 1HE CTHER SITE.

2. TOLD THIS SUEST 1K UALF WITH TUIS SIDE JUT ALD STA2LE.
3. CIRCLE T&t ALDALIL AT alulli.
4, IRDICATE WILTHER MICAQFICHE OR PAITH IZ J:S51iED.

Usill NG ZNVELCPL.

TC Ulil. ADDub.c 3SHGwH ON Tig

MisUFlCui QoY

TM=08.127 1=y
TGTAL chuid 11

) PAPEER corY
CTHER S1DE.

@

Bell Laboratories

Subject. Beautifying C Code date: April 15, 1980
Case- 39199 — Fife- 39199-11
from: L. Cherry
™: 80-1271-4

MEMORANDUM FOR FILE

1. Introduction

The most important attribute a computer program can have, other than being bug-free, is to
be easy to read and understand, and, therefore, easy to maintain and debug. Free format languages
like C and Pascal allow the user great flexibility in program layout to enhance readability. The
compilers have no built-in restrictions on code layout. Conventions have developed to display the
structure of the code through indentation. Each level of nesting is displayed visually by the level of
indentation. Unfortunately, the same flexibility that allows layout to enhance readability, aiso
allows the user to totally obscure the structure of the code with its layout. Although the structure of
poorly formated code may be obvious to the author, it is usually less than obvious to her/his col-
league, who later must maintain the program. Even if the code is formated to show its structure, it
may follow a different convention than the one to which the maintainer is accustomed. Although
one solution to the problem of different conventions is for each programmer to have her/his own
beautifier. another, more universal, solution is to have one program that puts the code in some
agreed upon form. The program cb may be used to put a program in a standard form, and should
help programmers who inherit programs from others.

cb was originally written with the philosophy that it should improve program readability by
adding proper indentation, while allowing the code to retain all other features of individual layout
style. This flexibility allowed users to add as much (or as little) other white space to the code as
they wished to enhance readability. It also allowed several different conventions for placement of
curly brackets. This ph:losophy is fine for individual users maintaining their own code but is too
flexible for large projects in which programs are passed among many programmers. Such projects
. usually develop strict standards for code layout that all programmers are required to follow. How-
ever, defining standards and enforcing them are two very different problems. To accommodate the
large software pro;ects using C, cb has a second level of beautification, I'll call stricr. In strict mode
cb puts the code in a canonical form that conforms to the layout style used by Kemlghan and
Ritchie in “The C Program Language” [1].

In this paper I will discuss the design criteria for the beautifier, the different layout conven-
tions used for C code, the algorithms used by cb and the problems these algorithms occasionally
have.

2. Background and Design Criteria

The first C beautifier [2], which was never really used, was written with the philosophy that a
beautifier's job is to produce a beautiful listing of a program. In addition to adding indentation, it
capitalized keywords, added line numbers, and pointed out null statements. Other programs with
this philosophy add numbers on the line to indicate nesting depth [3]. The philosophy of a program
lister, the term “‘prettyprinter” has been coined, creates several problems for the user. First, the
user cannot use the lister to put the actual code in a canonical form because the lister adds

-2.

characters to the code that are not part of the syntax of the language. Second, when debugging a
program, the user is forced either to read two. possibly very dissimilar, versions of the code or to
edit the real code to look like the beautified version. Third, programmers now debug and maintain
code in a time sharing environment with context editors where the concept of line numbers is rarely
important or used.

The C beautifier, the ¢b command on UNIX? , was written with the philosophy that the only
job of a beautifier is to produce syntactically correct source code that adheres to a2 minimal number
of layout rules that improve code readabilitv. At the lowest level of beautification ¢b enforces two
rules: (1) only one statement is allowed per hine. and (2) each statement has a standard amount of
indentation reflecting its nesting depth. Other than leading white space, all user layout stvie is
preserved. This philosophy allows the user to write in an individual style but enforces *‘standard™
indentation. In strict mode cb enforces many additional rules on white space and layout but only
adds blanks, tabs and newlines. The code remains syntactically correct C.

After basic philosophy about the job of a beautifier, the next design issue is how to do that
job. cb uses a heuristic approach to beautifying C code, getting clues to what it should do from the
punctuation ie the syntax of C. The most important punctuation characters are “{™, “}”, “(", *)*,
and *;". By using heuristics and adopting a press-on-regardless attitude, cb also becomes useful in
the development stage of a program. The user can run the beautifier on a program that is not syn-
tactically correct C and see where the indentation goes awry. Errors like missing closing brackets
are often hard to find and are discovered by the compiler some distance from where the user
intended the bracket. The visual blocking of the code done by cb frequently makes the missing
bracket very apparent. One problem with using punctuation to beautify a program is that punctua-
tion hidden from cb in preprocessor statements will cause errors in indentation. Although it would
be nice to handle this problem, since cb only adds white space in non-damaging places, the conse-
quences of being wrong are simply that the indentation may be wrong. If the input to cb would
compile, so will the output. :

Before presenting the heuristics c¢b uses in detail, a brief discussion of variability in C code
layout might be useful. The following questions have interesting and surprising answers:

What is “standard™ indentation?
It depends on whom you ask.

How many different styles of C layout are there?
Not quite as many as there are C programmers!

The next two sections will discuss some common conventions in indentation and layout.

3. ‘Indentation Conventions

There are three different conventions for general indentation. The first, used by cb , follows
that of Kernighan and Ritchie. With a few exceptions, each level of curly bracket causes one more
level of indentation. Also, simple consequents of control statements. if they appear on a separate
line, are indented one level more than the control statement. The following example from [1] ilius-
trates this style:

main()
{
int len;

max = 0}
while ((len = getline()) > 0}
if (len > max) {

+ UNIX is a Trademark of Bell Laboratories.

-3-

max = len;
copy();
}
if (max > 0)
printf("%s",save);
} .

Although this indentation style is very common, it is by no means universal among C programmers.
Examination of the source code for UNIX commands shows two other indentation conventions.

The second style indents everything one level less than the first. In this style all code in a
function at the first level begins on the left margin and all further nesting is reflected in the indenta-
tion from there. Programmers who write in this style claim it is easy to read and keeps the code
from migrating too far to the right. Programmers who do not use this style complain of having dif-
ficulty finding global variable definitions, function definitions, and labels. The previous example in
this style is:

main()
{

int len;
max = 03
while ((len = getline()) > 0)
if (len > max) {
max = len;
copy();
}
if (max > 0)
printf("%s",save);
}

The third style indents consequents of control statements one level more than the first. This
style is usually accompanied by different treatment of curly brackets. Although this style is as easy
to read as the first, the code does migrate quickly to the right, sometimes creating a line length
problem. Our example in this style is:

main()
{
int len;
, max = 0;
while ((len = getline()) > 0)
if (len > max)
{
max = len;
copy();
}
if (max > 0)
printf("%s",save);
}

Other conventions in indentation involve particular types of statements, rather than general
program layout. One such statement is the switch statement, which has the three layout styles
illustrated below.

switch (¢) {
case ‘a’:
i+4;

switch (¢) {

case ‘a‘:
ie+;
switch (e) {
case ‘a’:
1e+3

In the last example the case is indented half a tab (4 spaces) from the switch and the i++ is
indented one full tab. Also connected with the switch is what I'll call the hidden while or for
statement. This convention seems to be used when a major block of code is controlled by a for or
while statement whose entire consequent is a giant switch statement. Here many programmers
omit one level of indentation and write the for and switch on the same level as:

while ((type = getop(s)) != EOF)
switch (type) {
case ‘+’:

This construction is sometimes written:
while ((type = getop(s)) != EOF) switch (type) {

case ‘+’:

Another control statement that is sometimes hidden is the else in constructions like:

if (a)
b; else
(-

Here, if bisa me expression, it is easy to miss the conditional execution of ¢.
There are two styles of indentation for argument definitions in function definition.

func(argl,arg2)
int argl, arg2;
{

and

func(argl,arg2)
int argl,arg2;
{

Finally, there are three different conventions for continuing statements across lines. First, the
continued code is indented half an indent more than the current indent level; second, the continued
code is indented one level more than the current level; last, the continued code is indented to the

current level. cb uses the first convention because it seems to point out that the statement is contin-

ued, while not obscuring either the control statements themselves or their consequents.

4. Other Layout Conventions

After indentation the next area of differences in program layout in C is the location of curly
brackets. The following conventions are used:

if (a) {
b;

if (a) {
bs

if (a)
{

if (a)
b;

In the first three styles the matching closing bracket is usually lined up with the beginning of the
if. In the last style the closing bracket is usually lined up with the opening bracket. In all styles
the closing bracket may be on the line with the last statement in the block as in:

if (a){
b;
c; }
Finally, there are three conventions for placement of the body of control statements.

if(a){
if (a) {
if (a) {

In the last style the open bracket is usually on the next line directly below the “(*". The code inside
the block is indented to the same level as the bracket. This style is hard to read because of the
similarities between the characters *“(” and “{" and the separation of the keywords from the state-
ment body. ’

Some programmers use a combination of the above styles, using one for for, while and
switch statements and another for if-else statements. The combination style is the hardest
code to read because the rules for where to look for brackets depends on the type of statement in
control of the block.

5. Methodology

The first approach to writing a C beautifier might be to use the first pass of the C compiler to
parse the code. Although this approach has the advantage of guaranteeing that the beautifier would
track the syntax of the language, it will not solve the problem. The code to be beautified is not C
at all. The input to the beautifier is a combination of C and C preprocessor statements. It may not
even be syntactically correct C. For example,

#define ever ;;

for (ever) {

-6-

is correct C only after the preprocessor makes the substitution for “ever”. In the following more

extreme example, the coding language can be defined by the preprocessor so that the code no longer
even resembles C.

#idefine IF if(

#define THEN M

#define ELSE } else {
#define ELIF) else if ¢
#iefine FI - 3}

IF a
THEN b;
ELIF ¢
THEN d;
ELSE e
FI

The use of preprocessor conditionals in the next example illustrates another problem

func(al, a2,
#ifdef A

a3); .
#else

ad);
#endif

Of course a cleaner way to write this code would be

#ifdef A
func(al,a2,a3);
#else
func(al,a2,ad);
#endif

But cleaner or not the beautifier must be prepared to handie or at least recover from the code in
either form.

Short of keeping all the punctuation from the define statements, which may be in include
files, it is not possible to beautify code that redefines the language. Even if cb went to the trouble

of resolving the define statements, the problem of what to do with preprocessor conditional code
is even harder to resolve.

cb is designed to work almost entirelv on C punctuation to beautify the code. Although C
syntax is rich with punctuation. not all punctuation is used consistently in C syntax or in standard C
layout. The main inconsistencies are:

1. ;ends a statement except inside a for statement.

2. {increases the indentation by one except inside structure initializations like:

struct a key = {
{ "if", 13,
. { "while", 2 },
S H
Here the outside curly brackets increase and decrease the indentation level, but the inside

curly brackets do not.

3.} decreases the indentation level by one and appears alone on a line except: 1) in structure
initializations as described above, 2} when closing a compound-consequent of an if statement
that is followed by an else , and 3) when preceding the while part of a do-while state-
ment.

The operators * & and — are both unary and binary.

: ends a label, a case statement, or is a separator in the ?: construction.

() surround the body of control statements and are used for grouping in arithmetic statements.
The else if construction is ap exception to the general indentation scheme.

Using the above exceptions and the general structure of C syntax, cb keeps a stack for each
level of curly bracket. The stack holds the current indentation level, a stack of the indentation lev-
els of if statements and the depth of control statements with simpie consequents. By keeping track

of parentheses, curly brackets, semicolons, and a few special keywords, cb is able to decide where to
increase and decrease the level of indentation. For example, in the fragment

NS wn e

for (1 = j = 0; s{i] != * 75 i++)
if (s[i] != ¢)
s[j++] = s[i];

cb collects characters until it finds the blank after the for It identifies for as a keyword and
notes that it is now in a control statement. It continues to collect characters, ignoring the *;”
because the parenthesis are not balanced, until it encounters the *“)”. Since the next character is
not an open bracket, it knows that the for has a simple consequent and increases the level of
indentation by one. cb continues in this manner until it finds the *‘;” at the end of the third line.
The “;” ends the consequent of the control statements and therefore causes the level of indentation
to return to that of the for.

In the fragment

if (¢ == ’.")
for (i++; (c=getchar()) >= ‘0’ && ¢ <= ’9';i++)
if (i < 1lim)
s[i] = c3
else
error(i);
else

e e

cb remembers the indentation levels of the if statements so that it can return to that level with the
corresponding else statements.

The do-while statement also requires special treatment, since it is the only control state-
ment with a complete C statement between its halves and the while (or preceding *}) should line
up with the do. In the code

if (¢ == ’.’
do
14+
while ((c=getchar()) '= ’.”);
- printf("%d\n",1); .

the while must be indented to the same level as the do before the code can pop back to the
indentation level of the if.

6. Strict Mode

In addition to adding standard indentation and enforcing one statement per line, the —s flag

will cause cb to canonicalize the input to a standard layout style as follows:

1. Simple consequents of control statements are placed on a separate line and indented one tab

more that the control statement, as in
if (a)
b;

2. Openu:rlybracketsarcalwaysprmdedbyaspaceandplawdoutheendonthehneeon-
taining the control statement to which they belong. ’Ihematchmgcloangbm:ketxsaloneon
a line and indented to the level of the control statement, as in

while (a) {
}

3. If the body of a do-while statement is simple, it is on a separate line and indented one tab
more than the do. The while lines up with the do. If the body of a do-while state-
ment is compound, the do and the open bracket are on the same line, asaretheclosingmrly
and the while.

4. The argument definitions in a function definition are on separate lines and the bracket that
opens the function is at the left margin.

5. Control keywords are followed by a space. angletypekcywordsamfollowedbyatab
Several type keywords in a row are separated by blanks and the last is followed by a tab.

6. Binary operators are surrounded by spaces except in subscripts.

7. Commas are followed by a space.

8. Comments, alone on a line, are indented to the same level as the next statement. Comments
at the end of lines are untouched.

9. In structure or union initialization, only the first level of { increases the level of indenta-
tion.

10. Null consequents of control statements are alone and indented on the next line.

11. else is on the same line with the closing and opening brackets. else if is indented to th.e
level of the last if or else if.

12. The bracket that ends a function is followed by two blank kines.

13. Preprocessor statements are passed through untouched.

14. Extra blank lines are preserved.

7. Line Length

There are two interacting limits on line length: first, the maximum number of leading tabs per

line, and second, the maximum number of characters per line. These are separate limits to avoid
the situation in which the leading white space aimost equals the maximum number of characters,
causing one line to be split over several that are mostly tabs. The default tab maximum is 10; the
line length is 120 minus 10%, or 108. cb treats the maximum line length as a soft limit, splitting
the line at the first operator or comma after the limit is reached. When the tab maximum is
exceeded, cb outputs a comment and folds the code to the left margin. Succeeding code is indented
from the left margin until the indent level falls below the maximum again, when another comment
is output and the code returns to the proper indentation level. The user may specify the maximum
line length with the flag —1 n. The limits are then calculated as follows:

-

——

-9.

finelimit=n—.1*%n
maxtabs = linelimit/8—2

Another line length issue is whether to join lines that were split by the user before the limit. ~
With long arithmetic expressions the user may wish to display parallelism in the code by splitting a
statement across several lines. Here it is undesirable for cb to put the lines back together. At the
other extreme is the user who has inherited a long program in which lines have been split unneces-
sarily, making the code very difficult to read. By default cb retains all user newlines. The —j flag
may be used to join lipes in the Yatter case.

8. Problems

When operating in strict mode, ¢b usually produces output that is identical to the layout a per-
son would produce. However, sometimes the decisions a person makes regarding code layout are a
matter of aesthetics rather than the application of strict rules. On these occasions the cb output will
differ slightly from that of a person. For example, although not everyone agrees that all binary
operators should be surrounded by blanks, even those who agree in principle with the rule find some
situations where the code is more pleasing without the blanks. Most of the aesthetic decisions made
by people are made on the basis of looking at a whole expression or statement. cb, however, does
only local beautification, seeing at most two tokens at a time. Although it might be possible for the
beautifier to look at whole expressions, the payoff does not seem worth the complication of doing a
more global job.

Another difference between the automatic layout and the laycut done by people is in structure
and array initialization. In small structures or arrays initialization frequently takes the form

struct date d = {4, 7, 1776, 186, "Jul"};
cb transforms this into

struct date d = { . .
4, 7, 1776, 186, "Jul" }; .

Here, the beautifier is applying a strict rule and the person is using her/his knowledge that the struc-
ture has only one value.

Casts and typedefs occasionally cause cb to mistake a unary operator for a binary operator.
cb attempts to solve this problem for global and external variables by assuming that occurrences of
the ““** operator outside curly brackets are unary. This is almost always correct. A harder problem
is presented by casts in arithmetic expressions like

typedef DATA int;
«.. (DATA)*ptr ...

Without knowing what DATA is, the beautifier has no way of knowing that the “*” is a unary
operator. -

When c¢b is run on the 2183 lines of code in [1] there are 53 lines in which the program out-
put differs from the book layout. Most of these differences are places where the authors chose not
to put blanks around binary operators. Nowhere in the program output does the addition of the
blanks cause the line to grow by more than 4 or 6 characters.

-10-

9. Conclusions

A program to beautify C code has been written that operates on two different levels. At the
first level it is useful to individual programmers who want to maintain their own coding style but
have standard indentation automatically added to the code. At the second level, in strict mode, cb
is uscful to large projects that want to cnforce a canonical layout style on a large body of code. The
only requirement for cb to work properly is that major punctuation not be hidden in preprocessor
statements. Last. but far from least, cb is useful as a debugging tool for visually pointing out miss-
ing curly brackets and if-else groupings.

MH-1271-lic-unix L. Cherry !
Att.
References

-11-

References

1. Brian W. Kemighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall
Inc., Englewood Cliffs, N. J. (1978). -

2. L. A. Dimino, internal memorandum, 1973.

3. Mitchell H. Cliftion, “A Technique for Making Structured Programs More Readable,” SIG-
PLAN Notices, 1978, vol. 13, no. 4, pp. 58-62.

