;o /IS4 9
@Bell Laboratories Cover Sheet for Technical Memorandum

/. The inforr;lrion contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEI 13.9-3)

Title- Hi - Plus ' Date- April 8, 1980
TM-80-9544-1
e
Other Keywords —
Author(s) Location and Room Extension Charging Case - 49059-6
#™ R. J. Yanofchick MH 5A-139 7380 Liling Case~ 49059-1

ABSTRACT

Hi is an interactive hierarchical data management system that
runs under the UNIX* operating system. It was originally built
to experiment with small to moderate sized data bases and with a
language similar to that of the UNIX text editor. The objective

~ was to learn more about hierarchical data management and to
evolve a system that could accomodate a variety of users.

As part of the process, new concepts are being added and old
ones are being replaced. Some added concepts include the ability
to reference specific fields in a record, the ability to easily
éefine or change field delimiters, a simple mathematical package
which includes addition, subtraction, multiplication, division,
column summation, cross products of columns etc., the ability to
specify an alternate output file (which may be a UNIX file or
another device) and an alternate input file or files, the ability
to extract sets of fields from different nodes in the hierarchy
and create new records which can then be managed separately or
7~ added to the data base.

A general purpose, screen oriented Data Entry and Update System
is available for use with the systen.

26 Address Label
Pages Text___z:!'__.__. Other Total

No. Figures__._z____ Ne. Tables 0 No.Refs. Q0

Bell Laboratories

subject: Hi - Plus date: April 8, 1980
Charging Case - 49059-6
Filing Case - 49059-1 from: R. J. Yanofchick

TM 80-9544-1

MEMORANDUM FOR FILE

INTRODUCTION

Hil is an interactive hierarchical data management system
that runs under the UNIX* operating system. It was originally
buiit to experiment with small to moderate sized data bases and
with a language similar to that of the UNIX text editor. The
objective was to learn more about hierarchical data management
and to evolve a system that could accommodate a variety of users.
The system provides the capability to structure nodes or record
types into a hierarchy and then to manipulate records in the
hierarchy with a language similar to that of the UNIX text edi-
tor. In the original version of Hi every record in the data base
is treated as a character string and the system does not expli-
citly distinguish fields in a record. Instead, the user
addresses the contents of each record with the same regular
expressions allowed in the UNIX text editor. The schema is com-
pletely specified by creating a file with the names of the
records in a table of contents format which reflects their
hierarchical structure. Thev system treats the hierarchy as a

17 Kayel, R.G., "Hi - An Interactive Hierarchical Data
Management System for UNIX".

UNIX is a trademark of Bell Laboratories.

-2 -

flat file, allows M:N relationships between record types without
physical redundancy, and facilitates dynamic restructuring of the

hierarchy.

Hi-Plus subsumes the original system and provides several

new concepts which allow it to satisfy the needs of a larger user

- community. They include the ability to reference specific fields

in a record, the ability to easily define and change field delim-
iters, a simple mathematical package which includes addition,
subtraction, multiplication, division, column summation, cross
products of column, etc., the ability to specify an alternate
output file (which may be a UNIX file or another device) and an
alternate input file or files, the ability to extract sets of
fields from different nodes in the hierarchy and create a new
record which can then be managed separately or added to the data

base.

Hi-Plus integrates well with UNIX. The output of a query is
a structured stream of characters which can be used as input to

other UNIX tools, grep, awk, etc., or to user supplied tools.

Shell procedures containing Hi query statements can be put
together to make a simple but effective application or report
generation ;ubsystem. Current applications use shell procedures
containing query statements to produce parameterized canned query

and report generation facilities.

The query language provides the wuser with the power and

flexibility to view data stored in nodes at different levels of a

Y

-3 -

hierarchy as though they were contained in a single record type.
‘Consider a tree with a root node A having children B and C. The
language features "extract" and "pipe" can be used to produce two
files of the form b,, a, and b;, ¢, which can be fed to the rela-
tional "join" command of UNIX to produce b1, aj;, ¢y. On the
other hand, these same two features of Hi-Plus can simulate this
*join" directly by "extracting" and "piping" data to a new file
containing records of the form ag, b1, ¢, directly from the

stored hierarchy.

One application is now using this system to manage a data
base of about 32K records. This data base currently contains

about 500K bytes of data and is still growing.

NEW CONCEPTS

1. Fields and Field Delimiters

Each data record may be considered to be divided 1into
fields. Fields are normally delimited by a tab character; how-
ever, the field delimiter may be changed, as described below.
The command "del?" will display the value of the current field
delimiter, and the command "delim" ailows the user to specify or
change the current delimiter. A delimiter may be any string of

up to 12 characters. For example:

del?

current delimiter is TAB

- -
Change the current delimiter to the pattern 'pass=z!

delim

delimiter = pass=

del?

current delimiter is passs

Fields are referred to as $1, $2, etc., where $1 is the first
field, $2 is the second field. This concept of fields may be
applied to both print commands (p and P) and all qualified
sequencing commands (see Appendix 1 for a complete list of com-
mands). The following examples make use of the presidential data

base shown in Figure 1.

A record will not be printed unless the command “p¥ or ®mpw g
given (the only difference is that the "P¥ will show the internal
identifier for the record). The command "rpP" will get the first
presidential record and print it without the internal identifier

and then with the identifier.

rpP
pres: Eisenhower 10-14-1890 03-28-1969 Rep
pres(1): Eisenhower 10-14-1890 03-28-1969 Rep

But Suppose we only wanted to print the name and the party of the

president , the command would be

rp$1,4P$1,4

pres:

pres:

pres:

pres:

pres:

Eisenhower 10-14-1890
elect: 1952 votes=442
elect: 1956 votesz 457
admin: 49 inaugdate=z01-20-1953
admin: 50 inaugdate=z01-20-1957
state: Alaska pop=4070
state: Hawail pop=8950
cong: 83 SRep%=50 SDem%=49
cong: 84 SRep%=49 - SDem%=51
cong: 85 SRep%=49 SDem%=51
cong: 86 SRep%=34 SDem%=66
Kennedy 05-29-1917 11=-22-19
elect: 1960 votes=303

admin: 51 inaugdate=01-20-1961

cong: 87 SRep%=36 SDem%=64
cong: 88 SRep%=33 SDem%=67
Johnson 08-27-1908 01-22-19
elect: 1964 votesz486
admin: 52 inaugdatez11-22-1963
admin: 53 inaugdate=01-20-1965
cong: 88 SRep%=33 SDem%=67
cong: 89 SRep%=32 SDem%=68
cong: 90 SRep%=36 SDem%=64
Nixon 01-09-1913 NULL
elect: 1968 votes=301
elect: 1968 votes=301
elect: 1972 votes=520
admin: 54 inaugdate=z01-20-1969
admin: 55 inaugdate=01-20-1973
admin: 55 inaugdate=01-20-1973
cong: 91 SRep%=43 SDem%=57
cong: 92 SRep%=4y SDem%=54
cong: 93 SRep%=z42 SDem%=56
Ford 07-14-1913 - NULL
admin: 56 inaugdate=08-09-1974
cong: 93 SRep%=42 SDem%=56
cong: 94 SRep%=37 SDem%=60
Figure 1

42

03-28-19
lsr=Stev
lsr=Stev
vp=Nixon
vp=Nixon
(4]

00

63
lsr=Nixo

69
enson
enson

votes=3
voteszi
HRep%=49
HRep%=47
HRep%=46
HRep%=35
Dem

n

vp=Johnson

73
1sr=Gold
vp=NULL
vp=Humph

Rep

HRep%=U40
HRep%=41
Dem
water

rey

HRep%=z41
HRep%=33
HRep%=43

l1srzHumphrey

l1sr=Wall
lsr=McGo

vp=Agnew
vp=Agnew

vp=Ford

Rep
vp=Rocke

ace
vern

HRep%=44

HRep%=41

HRepZ=44

feller
HRep%=44

HRep%=33

3rdParty

HDem% =50
HDem%=53
HDem% =54
HDem% =65

HDem%=60
HDem%=59

HDem%=59
HDem%=z=67
HDem%=5T7

HDem%=56
HDem%=59
HDem%=56

HDem%=56
HDem%=66

which would produce

pres:
(1) Eisenhower
(4) Rep
pres(1):
(1) Eisenhower

(4) Rep

Notice that we did not have to repeat the "$" for each field we

printed. "$1,2,3,4" will reference fields 1,2,3 and 4.

To display the presidential records for all Republican presidents

we would execute

g/$l4=Rep/p

to produce

pres: Eisenhower 10-14-1890 03-28-1969 Rep
pres: Nixon 01-09-1913 NULL Rep
pres: Ford 07-14-1913 NULL Rep

An alternate approach would be
g/$41=Dem/p
which would exclude all Democratic presidents and produce

pres: Eisenhower 10-14-1890 03-28-1969 Rep
pres: Nixon 01-09-1913 NULL Rep

-6 -

pres: Ford 07-14-1913 NULL Rep

The allowable conditional operators are: =, !z, >, >z, < and <=

. The general form for a qualified search of this type is

/$idconditional operator>/

2. Arithmetic Operations

Hi provides the user with a simple computational subsystem.
This subsystem was designed to allow the user to apply a limited
set of arithmetic operations to data stored in the data base or
to perform stand-alone computations. The general form of a com-

putational statement is:

(1) C [< expression >]
or

(2) C "label" [<'expression >] .

The interpretation of the expression proceeds from left to right.
An operator 1is executed 1if its operator precedence is greater
vthan or equal to the operator to its right. Balancing

parentheses may be used to alter the order of the execution.

The operations currently implemented are:

Operator Meaning
(1) + sum

(2) - (underscore) difference

(3) * product
(4) / guotient
(5) ! summation

Operators 1 through 4 have the normal algebraic precedence. The
summation (!) operator really has no precedence; it simply indi-
cates to Hi that the numbered field must be summed before any

other operator is applied.

The following examples make use of the data base shown in
Figure 2. This data base has two nodes which will be used in the
computations. At the Header node we will be interested in field
1, the company name and field 3, the product name. At the Movrev
node we will be interested in field 2, the number of units
installed dﬁring the period and field 3, the ﬁumber of units

removed from service during the period.

Consider the following -query. Identify those companies
which provide the product d100 and compute the net gain (or net
loss) for this product during the year 1978. Net gain (or 1loss)
can be computed by summing fields 2 and 3, then taking the
difference, total field 2 - total field 3. The command

g/$3=d100/ p c{Movrev} g/.*/ C[!$2_!$3]

)

)

Header: sc 03 d100 01

Movrev:
Movrev:
Movrev:
Movrev:

Header: sw 02
Movrev:
Movrev:
Movrev:
Movrev:

Figure 2

7A

1978
2q78
3q78
4q78

d100
1978
2978
3q78
4q78

70
98
86
94

01
75
92
80
53

=3~y

~N OO 0

Which has the structure

(1) find each Header record having product d100
(a) print the record
(b) change to its' Movrev children
’ (b.1) for each child sum fields 2 and 3
(2) subt}act the sum of field 3 from the sum of field 2

and print the result
would produce _—

Header: sc 03 d100 01 17v+
Header: sw 02 d100 01 17v+
629.000000

Using the second form of the bompube.statement shown above we can

label the result with the following statement

g/$3=2d100/ p c{Movrev} g/.%/ C"Net change for product d100
="[1$2_1$3]

to produce

Header: sc 03 d100 01 17v+
Header: sw 02 d100 01 17v+
Net change for product d100 = 629.000000

Another command uhigh can be useful when performing field summa-
tion 1is the 'H' command. 'H' allows the user to specify field or
column titles to be used when printing the results of a computa-

tion. The general form of the 'H' command is

o

-9 -

H"<specified field titles>"

The results of field summations are printed in columns 1, 16, 32,

48, etc. . This should be kept in mind when trying to align

titles. The following example uses the 'H' command in conjunction

with a command to sum field 2, sum field 3 and then take their

difference.
H"Installations Removals Net Change"
g/$3=d100/ p c{Movrev} g/.%/ C[!1$2!$3(1%2_15$3)]
Header: sc 03 d100 01 17v+
Header: sw 02 d100 01 17v+
Installations Removals Net Change
648.000000 19.000000 629.000000

As mentioned above this subsystem can also be used ¢to

form stand-alone computations. For example, the command
cla2+2]

would produce

4.,000000

Again we can now label the result of the computation
C"Something is "[((1-2)%(4+5)/2)]

to produce

per-

- 10 =
Something is 4.500000

The 'H' command has no effect invstand-alone computation.

3. Alternate Output/Input Files

Sometimes the results of a set of interactive queries can be
useful, as inputs to another program, or, with some minor re-
formatting as a small report. Hi provides a command 'pipe!' which
is similar in function to the UNIX 'tee' command. The form of
this command is: |

pipe < filename >
where <filename> can either be the name of a file, a path name
(/usr/x/y/file), or another device (ttyxx). When in use the
‘pipe' command routes all output from Hi to the specified fiie as
well as the user terminal. If the file specified does not exist
it will be created; if the file does exist, all current output
will be appended at_.the end of the file. The 'pipe' command
remains in effect until the end of the terminal session or until

@ 'depipe' command is issued. For example
pipe junk

all output from Hi will be copied to

file junk. .
depipe

stops output from being copied to file junk.

- 11 =

It is also sometimes useful to be able to accept input from
a source other than the user terminal. Hi also provides the
ability to specify a file from which input should be accepted.
The form of this command is

use < filename >

The 'use' command can be especially useful if a specified set of
Hi commands 1is to be executed repeatedly (e.g. canned queries),
'use' is recursive in that up to ten alternate input files can be
open simultaneously. When a 'use' statement is encountered, Hi
accepts input from the filé specified until an end-of-file or
another use command is found. When an end-of-file is encountered
Hi checks to see if any other alternate files had been specified,
if so input is accepted from the most recently specified file.
This process continues until all alternate files have been used

and control is returned to the user terminal.

4, Extracting Fields from Records

At times it is useful to be able to view a collection of
data items which are stored at different levels of a hierarchy as
though they were contained in a single record. Hi provides this
capability with the command 'x!'. The general form of this com-
mand is

x < $i1, i2, i3, «.., in >
where i1, 12, ..., in are the fields which are to be extracted
from the current record. Referring once again to the presiden-

tial data base shown in Figure 1, suppose we wanted to create a

- 12 =~

new record contaiﬁing the presidents' name, his party affilia-
tion, his administrations and the names of his vice<presidents.
The data items of interest are stored at two different levels in
this hierarchy, presidents' name &nd parﬁy are at the "presh
node, administrations and vice-presidents are at the "admin"
node. To create the recotds as we want to see then we could exea

cute:

g/ .%/x$1,4 c{admin} g/ .*/x$1,3 p
to produce

Eisenhower Rep 49 vp=Nixon

Eisenhower Rep 50 vp=Nixon
Kennedy Dem 51 vp=Johnson
Johnson Dem 52 vp=NULL
Johnson Dem 53 vp=Humphrey
Nixon Rep 54 vpz=Agnew

Nixon Rep 55 vpz=Agnew

Nixon Rep 55 vp=Ford |

Ford. Rep 56 vp=Rockefeller

When used in conjunction with the 'pipe' command these records

could be copied to a file and used in some later processing.

- 13 =

5. Some Other Useful Commands

5.1 Preorder Traversal

When dealing with a tree structure it 1is sometimes c¢on-
venient to be able to traverse the tree in some orderly fashion.
Hi provides the user with the ability to traverse the entire data
base, or some subset of the data base in a preorder fashion. The
command 'G' -allows the user to start at any node of the tree and
traverse the remainder of the tree in a preorder fashion. Figure
1 of this paper was obtained by positioning the cursor at the
root node of the presidential data base and executing the 'G*
coﬁmand. If an interrupt is detected before 'G' reaches the bot-
tom of the tree the cursor is positioned back to the node from
which the command was issued. This allows the user to get a
local view of the data base for reference purposes. For example,
referring to Figure 1, suppose the cursor was on the node 'pres:
Kennedy...' and the user issued the 'G' command, if when the node
‘pres: Johnson...' printed, the user issued an interrupt (shift-
del), output would cease and the cursor would be re-positioned at

node 'pres: Kennedy...'.

pres: Kennedy 05-29-1917 11-22-1963 Dem

pres: Kennedy 05-29-1917 11-22-1963 Dem
elect: 1960 votes=303 lsr=Nixon Rep

- 1Y -

admin: 51 inaugdate=01-20-1961 vps=Johnson

cong: 87 SBep%=36 SDem%=64 HRep%=40 HDem%=60

cong: 88 SRep%=33 . SDem%=67 HRep%=41 HDem%=59
pres: Johnson 08-27-1908 01-22-1973 Dem

(interrupt issued)

The cursor is now positioned back at the node ‘'pres: Kennedy..'

which can be verified by the command

pres: Kennedy 05-29-1917 11-22-1963 Dem

Another command which allows the user the traverse the data
base in a preorder fashion is 'N', Unlike 'G' which keeps
retrieving nodes until the end of the tree 'N' only retrieves one
record and leaves the cursor pointing to the current record. For
example, to sequence through the neit seven records in preorder

fashion the statement:

NNNNNNN
would produce

elect: 1960 votesz303 lsr=Nixon Rep

admin: 51 inaugdate=01-20-1961 vp=Johnson

cong: 87 SRep%=36 SDem%=64 HRepZzU40 HDem%=60

cong: 88 SRep%#=33 SDem%=67 HRep%=41 HDem%=59
pres: Johnson 08-27-1908 01-22-1973 Dem

-

- 15 -

elect: 1964 votes=486 lsr=Goldwater Rep
admin: 52 inaugdate=11-22-1963 vp=NULL

5.1.1 More on Traversal

Procedural query languages, like the one implemented in Hi,
require the user to specify what is wanted as well as how to
obtain it. Consider the following general tree structure.

ROOT

b

O---—---0

If the user were positioned at the ROOT node and wanted to
obtain information stored at node D, he would have to manually
navigate down the tree until reaching node D and then retrieve
the 'desired information. Using this simple example three naviga-

tion commands would be needed before retrieval could take place.

(1) c{A}l. change to node A
(2) c{C} change to node C
(3) c{D} change to node D

(4) retrieve information.

Hi provides the ability to proceed downward in the tree directly

to the desired node with one command. The command

- 16 =
j{node name}

will position the cursor at the first otcufrerce of the node
named inh the command. The named hode must be at a level in the

tree lower than the current node. Considér the foéllowing - exain<.

‘ple.
"ROOT
7 \
7 \
4 \
* A9 Ag
7\ A
B1 C1 B2 C2

*® indicates the cursor position before the "j" command was given

*# jindicates the cursor position after the "j" command is complete

If the cursor were positioned at node A1, and the command
3ID) were executed, the cufsof would be repoBitioned &t node Di.
Note that the current position of the_cursor is in a different
sub-tree than when the command was issued { A2 as opposed to A1
). As the "j" command positions the vcursor to the Ffirst

occurrence of the reguested node, this may fequire a Jjump to a

different sub=tree.

5.2 1 vs. .p

s previously shown, the print commands 'p' and P cause
the record to be printed prefixed by the node name. The 'l' com-
mand acts the same as 'p' except that the node name is not-

included. For exampile,

The command

O

C’\

- 17 -

would produce
pres: Eisenhower 10-14-1890 03-28-1969 Rep

while the command

would produce

Eisenhower 10-14-1890 03-28-1969 Rep

6. More on Qualified Sequencing

In previous examples we have seen how to retrieve informa-
tion based on the data content of a record. Hi provides another
level of qualified retrieval. Referring to the presidential data
base in Figure 1, suppose we wanted to know if there were any
presidents who had never been elected. Since in the correct case
there will be no 'elect' records, qualification based on record
content will be of no use. We want to print 'pres' records only
if they meet the condition that they had no 'elect' children.
The general form for this type of qualified search is:

g < condition >/< qualifier >/
where < condition > is one of: zn, >n, <n and n is the number of
successful retrievals which must be made before the entire query

is considered successful. For instance the command:

T - 18 -

r g/.%/ cl{elect} g=0 /.%/ < p
would produce |

pres: Ford 07-14=-1913 NULL
alternatively

r g/.%/ c{elect} g<1 /.%/ < p
would also produce

pres: Ford © 07=-14-1913 ‘NULL
These commands have the structure

(1) go to the root

Rep

Rep

k2) for each record at this level change to it's 'elect'

children

(3) if there are no 'elect' children

(a) go back to the parent record

(b) print the parent record

If the query were to find all presidents who were associated with

more than three congresses during their terms in office, the com-

mand
r g/.*%/ c{congl g>3 /.*%/ < p

would produce

- 19 -

pres: Eisenhower 10-14-1890 03-28-1969 Rep

SUMMARY

Although Hi has had limited exposure to a real user environ-
ment, the exposure it has had can be considered successful. It is
currently being used successfully to manage a 32k record data

base containing about 500k bytes of data.

While the query language of Hi may at first 1look somewhat
forbidding, experience has shown that even the naive user quickly
becomes comfortable using it. This is partly due to the fact that
it so closely resembles the UNIX text editor language. Users have

found the overall system easy to understand and use.

As mentioned above, the structure of the system is expected
to continue to evolve. Current and future work includes the
implementation of secondary indices, an english 1like query
language and some 1initial form of data distribution with the

ultimate goal being a fully distributed system.

MH=-9544=-RJY=~-jer R. J. Yanofchick

Atts.
Appendix

Appendix: The Language

The language for the system is a sequence of one line

statements in the basic format

<cmd> | <cmd><stat>

The commands are (where z stands for a cursor):

R

pk

Set the cursor z to the first occurrence
of‘the root.

Set the cursor to the root node of the
current sub-tree.

Print the record z points to.

Print the record z points to but now

with k leading blanks (this overrides the
usual number of leading blanks that occur
corresponding to the level of the record in
the original schema. This is convenient for
use in restructuring the hierarchy.

Print the record with its internal identifier.
List the record at z, i.e., give such

detail as names and identifiers of

parent and children.

Move z to the next record of

("return")

c{name}

/reg/

g/ reg/

*n

*/reg/
g*/reg/

-2 -

the current type without changing

parent record and print it.

Move z back to the previous record of the
current type without changing parent record

and print it.

If "name" is either "<" or the parent's actual

name change to the current record's parent
else change z to the first occurrence

of the child called “name".

If "name" is ">", then change to the

first occurence of the first child.

If "name" is "}", change to the

first occurence of the next sibling.

Seek to the next record of the current type
under the same parent that satisfies the
regular expression "reg".

Seek to each record pf the current type
under the same parent that satisfies the
regular expression "reg".

Regard the node as a table

"independent of its hierarchy and

go to its first record.

Seek to the next record in ‘the current
node regarded as a table

independent of its hierarchy.

Just as in *n but qualify the record

Seek to each record of the current type

7~
(-

g(/reg/<stat>)

g(*/reg/<stat>)

del?
delim
c{<expression>]

C "label" [<expression>]

H"<titles>"

pipe <filename>
depipe
use <filename>

x<$‘i’j’k,too>

-3 -

across the entire data base regardless of
parent that satisfies the regular expression
"reg".

Do statement <stat> for every record
satisfying "g/reg/" before continuing
with the rest of the statement in which
this command is imbedded.

The appropriate combination of

previous commands.

Display the current field delimiter.
Change the current delimiter.

Compute expression and display the result.
Same as above except the result

is prefixed by "label".

Set up column titles to be used in

future summations

Copy results of subsequent queries to <filename>.
Stop copying results to <filename>.

Accept further commands from <filename>.
Extract the numbered fields from

the current record.

Produce listing of data base in

preorder fashion.

Get next record from data basé

in preorder fashion.

Same as above. |

Print current record without node name prefix.

schema?

g<condition>/reg/

-4 -

Display the schema for the
current data base.

Seek records of the current type

which satisfy the regular expression "reg"

and then test if “"condition" is sﬁfisfied.

Note that each "g/reg/" command ende with g pointing to the

last record satisfying "reg".

To update the data base, one can use

a

<input>

i
<input>

s/stri/str2/

i(a)
*recordid
or
/text to identify

rec/

Append <input> after the record pointed to by z.

Insert <input> before z.

Substitute "str2" for "stri"

in the current record.

Inéért (append) a record that

already exists in the data base

at this point in the hierarchy.

Delete current record and all descendants.

D)

-5 -

~~ .
a/reg/ Delete all records of the current type under
the current parent that satisfy the regular
— expression "reg".
jlname} change to the first occurrence of
node "name"; this may require a change
to a different sub-tree
~
Finally,
1<shell_cmd> will escape and do the shell
) command <shell cmd>, and
q will quit.
‘o)
-~

