Hay

(=

{”~

"'—""3

- UNDS 1556 -
@ Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not Jor publication (see GEI 13.9-3)

Title: Source Control + Tools = Stable Systems Date: May 15, 1980
Other Keywords: UNIX T™: 80-3168-7

Software Management

Software Tools
-Author(s) Location Extension Charging Case: 49408-121
Eugene Cristofor HO 1E-301 7891 Filing Case: 40324-2
T. A. Wendt HO 1G-322A 7568
B. C. Wonsiewicz HO 1E-32§ an

ABSTRACT

This paper describes our experience in administering the software for a large system.
This task was accomplished with the help of a Software Manufacturing System, that
we designed and implemented.

The manufacturing system is based on strictly controlled and identified source files,
whose identification is preserved in compiled and loaded products. The
identification can be automatically extracted from the product, and forms a complete
specification for product manufacture. A hierarchy of products can be specified in
this way so that an entire system can be specified by a single label.

The requirements for the manufacturing system were:

The system must be reproducible in any version by a third party.

All changes to the software must occur at the source level.

The building process must be initiated by a single command, and use a
minimum of machine resources.

The techniques described here are based on simple tools applicable to other develop-
ment environments.

Pages Text: 1 Other: 11 Totak 12

No. Figures: § No. Tables: 0 No. Refs.: 9

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

DELL TELEPHCNE LADCEATUMIES, INC,

COMPLRZE MEMORANDUM 70

CUOSZESPORDENCE FILIS 50 NAMES BITTINEA, B b ClEN, PING C D°ANDAEA,LOUISE B
.- ’ OLAKE,GARY D ClULN, ROBERT DUDICK ,ANTHONT
OrfICIAL PILE CCPY OLAZIZs.S D CHLN, STEPIEN DUGGER, DONALD D
PLUS ONE COPT roa COvER SHEET OKLY IC BLECHMAMN,HCNALD I CHERRY, LORINDA L DUMALS,vVALERIE /A\
EACH ACCITIONAL FILING . BLEIER,JCSES CHIEN, FU-LI BETIY DUNCANSGN,ROB2ST L
CASE REFEBENCELD BLINN,J C Clll LDS, CA2QLYN DUNKIN, PATRICIA
CORRESPONDENCE RILES BLISS,B08ZRT H CHIN, AUGUSTIN ¥ DURAND,JANIS €
DATE PILB COPY BLUM,MARLICH CHIN, KATHLEEN 2 DuYZR,T J
(rome E=-1328) 8 COPIES PLUS CNE B80DEN,PF J ALl .M C DIEZR ,MART B
COPY FCR EACH FILING BCGA BT, THUOMAS G CUODAOHW M N DZIK,STEVEN C
10 RZPERENCE COPRIES case BOIVIE,RICHARD H CIIONG, PHEES EDMUNDS,T ¥

BAUER,H C
BEAUMONT,LELAND 2

COvER SHEZT ONLT 70

AMGESEN,JCHN
ACKEAMAN,J T

DISTLIBUTION
(BEZFEB GBI 13.9=))

COVER SHELT ONLY TO

BOLSKY,MCRRIS I
BOFR,J RCBERT
BORDELON,EUGLRE P

COVER SHEET ONLY T0

CHRIST,C 4,J8
CILMINSRI,DEBRA P
CLA&K,DAVID L

TN-80-3160-7

COVER SHEET CXLY T0

EICHOBN,XURT B
EISELE,R0NALD €
E1TEL3ACH,ZAVID L

>BLQSSES,PAIRICEK A ACKBOZY ,JCHN N BCRISCd, ELLEN A GLAITON,D ? EKSTROM,SUSAN
+BOEZHM, 2281 ¥ AHO,ALPKED ¥ BO¥YIZA, L 3AX CLEWELL,JAMES L ELDBIDGE,JOHN
>BOUANE,STZPHEI B AHBENS,BAINER B8 BOICE,i M CLINE,LAUREL M I BLLIS,DAVID J
BREITHAUPT,A B ALBERALLA,3ICHIRD J BOYEZR,PHILLIS 3 COHEN,HARYEY LY, €

ClCON,J ?
DOMPIERSE,J &
DONQHUER,D P,38D
DOUGHERTY ¥ J
*DOWDEN,DOUGLAS €
>FELDMAN,STICART 2 .
FREEMAN,X G
GILLCOR,ALEX C
>GLASSEAALAR L
HBAISCH,H r,JR
HAYDEN,DCHALD 2,3k
HEZIDER,BROCE B
HERGENEANR,C B

ALCALAY,D
ANDERSON, KATHREYN J
ANDEZRSON,MLLICN M
ANTOLICK,DAVID 8
APPULINGAN,SURAAMARIAM
ARNDT,DENNIS L
ABNOLD,GEC3GE ¥
ARNOLD,JAMES Q
ABNOLD, PHYLLIS 3
ARNQLD, THCMAS 7
ASTHANA, ABHATA
AULL,DENIS @
DABECKI,GLENR B

BOYLE,GELALD C
DBADLEY ,M NELEN
BRADLEY,R B
SRADY,RAUL 2
BAAUR,JAVID A
BRIGGS,GLORIA &
BRCAD,MABTHA M
BBCNSTZIN,N
BRONZO,JOSEPH A
BRCCKS,CATHERINE ANR
BACSS ,JEXPREI D
BACVMAN, INNA
BACWN,ZLLINGTON L

COUEN,KAREN L
COUEN,NEIL B
CONEN, RICHARD L
<COLE, LCUIS M
COLLICOTT,2 B
COLUELL,ELLEN MARIE
CONKLIN,DANIBL L
CONNERS,RONALD B
CONK,JOEL M
COOK,T J

COOPER, ARTHUR B
COSCHIGANG,d J,JdR
COSTON,¥ P

ENMZESON, DCMNINIQOE B \

ENGLAR, BRUCE WYATT
EPLEY,ROBERT V
ESCOLAR,CARLOS
ESSEAMAN,ALAN B
EVERMAN, THCMAS L,JR
ZABISCH,» P
PABRICIOS,VUAINE B
FAIRCHILD,NAVID L
FALLON,J M
PAULKNER,ROGESR A
PEAY MARE 1
ZEDER,3

JAASMALE G BADU,BAJESH RATIIAL BRCWN,LAULRENCE MC FPEE COTTARELL,JERNIE L FELTON,WILLIAN 3
JONES,Z B BALENSON, CHRISTINE M BRCYR,¥§ STANLEY COVINGTON, RALPH L FERRER,RANCY L
KAPLAN,PBANK BALLANCE,ROBERT 4 BROBCENEA,DOUGLAS T CRAGUN, JOAN PRUSTER,I RERD
>KERNIGHAN,BRIAN ¥ BARBATO, BOSERT 2 BUBG,? N CRA1G,JOEH 8 PISCHEZA,HERBERT B
MACEL.P? P BABCLAY,DAVID K BOBKE,THERESA M CRLSTOYOR, EUGENE FISHMAN,DAUIEL B

MALIK,JOSEES M
MARICNE,JCuR P
MAONSZELL,B I

MC DCNALD,J ¥

BABOFSKY, ALLEN
BARON, BOBERT V
BAURR,BARBARA T
BAOER,HELZR 4

BUENS,GARY J
BUBOFF,STEVER J
BUACK,DILINA
BUSCH,KENNETH J

CRUPX,JOSZPH A
DAVEY,DOUGLAS A
DAVISON,JOSERPH W
DAVIS,R DBEY

PLANDRENA,1
FLEISCHER,d I
FLEMIRG,JAMES B
FCRSON,HENRY M

)

'

MCCULLCCH,JOHN § BAUMAN, STZVEN M BOTLETT, DARAELL L DANSON,JOHN 3 PCRATNEX,V J f \
MITCHELL,d € BAVIZRE,RICHARD J BYZRLEE,R § Dar,r % PCOGHT,B T i
CMOHUNDSEC, RAYNE £ BEACHY, MILTON BYORICK,RO822T S DE FA21I0,N J PCUNTCUKRIDIS, :
PASTERNACK,,G BEBIQ,WILLIAM BYBNE,ECWABE 3 DE G3AAF,D 2 FCWLER, BRUCE 1
PILLA,M & BECKER,CUOBRIIS 3 CAMPBELL,JBB3T B DE TBEVILLE,JOEN D PCWLER,GLENY D
RZ2Z3RY,D L BECKZR,RICHARD 2 CANADAY,RUDD B DEAR,JEPFREY S 20X, PHYLLIS)
¢REZESE,RANDALL D BECK, #ANDA CAKDBZA, BONALD D DENNY ,MICHAZL S CY.3
>BRITCHIE,C M BEZDNAR,JCSEPH A,3B CAREY,F L1,J3 DENSMORE, SUSAN FRANKLIN,JAMES W
>ROCHRIND ,MABC J BEEXMAN, 8ZRNASD CARTER,DCNALD B DESMOND ,JOHN PATRICK PRANK, AMALIZE 3
RCDAIGUEZ, EENRSTC J BENCO,DAYID. § CASPZRS,BARBARL E DEVLIN,SUSAN J PRASER,A G
*¢ROSENTBAL,CHARLES W BERISCH,J2aM CASTELLANRO,MARY ANM DI PIEZTHO,R S8 raasea,Dd L,J8
SHAZA,N B BENNETT, RATMOND # CATO,H B . DIb,GILAERY FREEMAN,MARTIN
SNIDE3,BEZANARD B BENNBTT,1CHARD L CAVINE3S,JOUN D DIMMICK,JAMES O TREMON.BR C
STOREY ,THOMAS P BENNZTT,WILLIAMM C CERMAK,1 A DINEEN, THOMAS J FRENCH,A 7,J2
STREETER, LYNN A BEAGLAND,G D CHAI,D T DOCK,G A PRIED, LAVBENCE K
STUBBLEFLELD,R ¥ HERNHARDT,RICHAREL C CHAMBERS,8 € DQEDLINE,BAEBARL ANN FRCST,H BONNELL
>THCMESCH, K BEBRNSTEIN.L CHAMB28S,d M DOLATOVSKI, VIRGINIA M FPRUCHTMAN, BARRY
>UNGAR,DAYID N BERRIMAN,2 D CHANEL,Z ¥ DOLOTTA,T & GABBZ,JOER D
VELZ .M 3 BERZINS,ALZXANDER B CHANG,CHUNG ¥ DOMANSKI, DZRNARD GALE,ALAN ©
WONSIEWICZ,B € BILOWOS,R M CHANG,JO-MEZ DOUDER,IRIS S GANA,JCBGE L
YORK,B L BIREN,ISMA B CHAPPELY,S G DRAKE, LILLIMN GARRISON,GARY)
ZISLIS,PAOL N BISHOP, THCNAS ? CHING,X DREIZLER.B K GARST, BLAINE,JR
s0 0 7 \
¢ RAMEC BY A\UTHOR) > CITED AS REFERENCE < BEQUESTED BY BEADER {NAMES WITHOUT PREFIX 754 TOTAL - "\
WERE SELECTED UBING THE AUTHOR’S SUBJECT C2 CRGANIZATIONAL SPECIFICATION AS GIVEN BELON) b
mm‘r s’!cnclr:@. o *oe ’....-.....O‘..-.......O....l.......-.l.'.-."........IIQI...I‘..I.....
CCMPLETE MENO TO!
316-309
COVER SHEET 20:
316-13
COPREM = COMPUTEZR PRCGRAMMING MAMAGEMEN? ﬁ
)
30 CORBESPONDENCE FILES TH=80-3160-7
HO 3A147 TOTAL PAGES ?
TC GZI A COMPLETE COPY: PLEALE SEND & COMPLEZTE ﬁ

1, 82 SUSZ YOUR CCEBECT ADDRESS IS GLVEN ON THE CTHER GIDE.
2. POLD THIS SHEET IN HALP WITH THIS SIDZ OUT AND STAPLZ.
3. CIXCLE THE ADDRESS AT RIGHT. . USk NO ENVELOSE.

8. INDICATE VHETHER MICBOPICHE OR PAPEZR 1S DESIRED.

{) MICACFICHE ccpY () Pap2an Copx
TO THE ADDRESS SHOWN ON THZ OTHER SIDEB.

-’

.
]

{ -

Bell Laboratories

subject: Source Control + Tools = Stable Systems date: May 15, 1980
Case: 49408-121
File: 40324-2 from: Eugene Cristofor
HO 3168

1E-301 x7891

T. A. Wendt *
HO 3167
1G-322A x7568

B. C. Wonsiewicz
.HO 3168
1E-325 x3272

™: 80-3168-7

MEMORANDUM FOR FILE

The attached paper will be presented at the Fourth International Conference on Computer
Software and Applications - COMPSAC '80. The Conference will be held in Chicago, on
October 29-31, 1980. . \

gene Cristofor

\Z«;dﬁx 7

T. A. Wendt *

HO-3168-EC/TAW/BCW-nroff

B. C. Wonsiewicz

Atts:
*Source Control + Tools = Stable Systems"

® Mr. Wendt was in Dept. 3168 during the time covered in this paper.

’l

.

Source Control + Tools = Stable Systems

Eugene Cristofor
T. A. Wend:
B. C. Wonsiewicz

Beli Laboratories
Holmdel, New Jersey 07733

ABSTRACT

This paper describes our experience in administering the software for a large system.

- This task was accomplished with the help of a Software Manufacturing System, that

we designed and implemented.

The manufacturing system is based on strictly controlled and identified source files,
whose identification is preserved in compiled and loaded products. The
identification can be automatically extracted from the product, and forms a complete
specification for product manufacture. A hierarchy of products can be specified in

this way so that an entire system can be specified by a single label.

The requirements for the manufacturing system were:

The system must be reproducible in any version by a third party.
All changes to the software must occur at the source level.
The building process must be initiated by a single command, and use a

minimum of machine resources.

The techniques described here are based on simple tools applicable to other develop-

ment environments.

1. INTRODUCTION

This paper discusses software administration
for a large software project. By large, we
mean hundreds of developers, thousands of
source files, and millions of bytes of execut-
able code. The problem addressed is how to
efficiently and automatically manage the
software, so that any given version of the
system can be manufactured and, if neces-
sary, changed.

Control of the system is based on control of
the source code. Each source file contains a
unique label, which is reproduced in objects
constructed from the file. A product
(object, library, or executable file) contains
the labels of all the source needed to con-
struct it. Tools have been built to extract

_ the labels to form a complete and exact

specification for the manufacture of the pro-
duct. The basic technique supports the
manufacture of a hierarchy of products:
library, process, subsystem, and system. A
single label is sufficient to specify any of the
above.

The manufacturing system described is based
on the use of the UNIX' time-sharing sys-
tem [DMR], and uses the Source Code Con-
trol System (SCCS) [MJR] [ALG].

For the sake of simplicity, the case of all
developers residing on a single machine is
discussed first. The multimachine environ-
ment poses special problems that are dis-
cussed separately.

2. BASIC ELEMENTS

The system to be manufactured consists of
several hundred processes, or executable enti-
ties. The processes may be grouped into
subsystems characterized by a large number
of common interfaces. The processes are
built by compiling source files into object files
and then loading them together with
libraries, which are collections of object files.

The discussion begins with the source file.

1. UNIX is a Trademark of Bell Laboratories.

o

2.1 File Names

Every source file necessary to manufacture
the system is given a unique name. The
source files are administered by SCCS which
assigns a unique number to each version
stored. The name and version number
(SCCS id) constitute the label, which is
represented as an ASCII string. The label is
all that is needed to retrieve that version of
the file from the system archives.

Every file extracted from the archives con-
tains the Jabel concatenated with a key string
of characters which can be recognized
automatically. The labe!l is compiled into
every object file produced from the source
file. Figure 1 depicts the transforms of
source files into processes, and the presence
of the label at every stage.

For example, if a C language [BWK] source
file named copy.c at version 1.7 were com-
piled, placed in a library, and subsequently
loaded into a process, the source file, the
object file, the library, and the process would
all contain the label, "copy.c 1.7".

Further, if during compilation, the source
file copy.c included? two other files x.k and
y.h, their labels would be included in all the
previous objects. Since all dependencies are
tracked in this way, the typical process will
contain hundreds of /abels.

The SCCS what command extracts the labels
from an object, be it a source file, an object
file, or a process. Figure 2 shows how the
what command works.

For example, the output of the what com-

If the slists for products a and b are a.s! and
b.sl, the subsystem containing them could be
described by another slist ab.sl:

a.sl 71.21
b.sl 1.1

The subsystem slist has its own label (name
and version), and could be an element in
another slist in the next level of the hierar-
chy. Ultimately, the entire system
specification can be captured in a single slist,

_referred to as the master slist’. The

mand on the object file copy.o will look like -

this:
copy.c 1.7
xh 21
zh 5d

2.2 SLISTS - Product Table of Contents
The output of what can be captured as the

full description of the source files required -

for the process. We call it an slisz, for SCCS
id list. The slist is the complete and precise
specification of the source files needed to
make an object. Since it is a file, it may
itself bec an SCCS filc with its own lahel
[ALG1].

2. The C language supports a file inclusion mechanism.
(

specification may be hierarchical, by
referencing a hierarchy of slistss. The hierar-
chy can be changed by changing the content
of the slists. The hierarchy of slists for the
example given in this Section appears in Fig-
ure 3.

It is possible to check the consistency of files
referenced in the slist. If the same file is
referenced with different versions, the slist is
inconsistent. This might arise if a program
were compiled with a new version of a
shared data file, but loaded with a library
compiled with an older version. The incon-
sistency may be either malignant or benign,
we usually assume the worst.

The systematic description of the files in a
system has other benefits. A similar check
can be made to the slist hierarchy to verify
the consistency of the entire system. The
impact of a proposed change in a single
source file can be estimated by counting the
number of references to the respective file in
the slists. Finally, the objects built from the
slist specification can be checked by compar-
ing the output from the what command with
the slist.

2.3 MAKE - Minimal Work Facility

Make is a tool for building programs [SIF].
Information on the inter-file dependencies
and the commands necessary to build a pro-
cess are stored in a makefile, and executed
repeatedly and reliably. In addition to the
information contained in the makefile, and
transparent to the user, make also uses the
time of last modification of every file refer-
enced in the makefile. This attribute is
maintained by the UNIX file system, and is
updated every time a file is modified. Figure

3. The hierarchy of slists is a natural organization,
since the UNIX file system is a rooted tree with an
arbitrary number of levels.

4 shows the function of make.

Make builds a product by assuring that its
components are up to date and rebuilding
only what is necessary. It avoids wasteful
recompilation, and inclusion of out of date
components.

Make allows a third party to manufacture
software in a conmsistent manner, by repeat-
ing the building commands stored in the
makefile.

The use of make has been generalized to:

build the directory structure for con-
structing a product. .
extract the source files from the SCCS
archives. '

perform checks on the source files.
build the product.

perform the unit tests on the product.
install the product in an appropriate
place. .
produce documentation or listings.
generate slists, verify consistency, and
stamp products.

Further, makefiles can be arranged in a
hierarchy paralleling the slist hierarchy. The
makefiles themselves become SCCS files, and
every slis must reference at least one
makefile. The lowest level makefiles build a
single process; the master makefile builds an
entire system.

Since make constructs a graph of dependen-
cies, and tests each to see if anything needs
to be rebuilt, it requires time to determine
that nothing needs to be done. For a com-
plex system with relatively short component
build times, the overhead has been meas-
ured at approx. 20% of the time to rebuild
from scratch. In more typical cases the
overhead is much less.

In any case, the machine time is well spent,
since using make a large class of incon-
sistency errors can not possibly occur.

3. SOFTWARE MANUFACTURING

The Manufacturing System is based on all
the concepts described so far. The manufac-
turing process can be subdivided into three °
major parts: software turnover, consistency
checks, and the building proper.

Software turnover from development to
manufacturing occurs when the developers

install all source files in the SCCS archives,
and deliver to manufacturing the labels of
the slists for the process, subsystem, or sys-
tem. Next, a series of automatic and manual
checks are performed on the source files and
the slists. Finally, the process is built,
tested, and installed.

Figure 5 shows how the manufacturing sys-
tem interfaces with the development and
manufacturing environments. .

3.1 Software Turaover

" To build a system, the following inputs are

required:

8. A schedule with the dates at which the
various parts of the system will be avail-

able. A system is built in layers, as fol- -

lows:

the shared data, e.g. common files,
libraries, etc. .

the basic tools: operating systems,
compilers, loaders, and the system
building tools themselves.

several layers of application
processes. :

As soon as one layer is successfully
built, the system is released to the user
community, to serve as a base for build-
ing and testing the next layer.

b. Process information, i.e. the label of
the process slists. Besides the skis infor-
mation, the developers also submit a
copy of the process, which is checked
for consistency with the skis, and if con-
sistent, added to the system as is.

¢. In the majority of cases the label of the
master slist of the previous system is also
required, to identify the processes that
changed since it was released.

The turnover itself takes place when the
developers submit the labels of the respec-
tive slists according to the schedule. This

information and the compliance with the

schedules are checked by the manufacturing
system, and the approved slists labels are
used to update the hierarchy of indirect skists
all the way to the master slis. When the
required set is complete, the consistency
checks are started.

Y

3.2 Consistency Checks

A system is defined to be a collection of con-
sistent processes. For processes to be con-
sistent, they must pass all the tests described
below.

The software manufacturing system per-
forms various consistency checks omr the
software, prior to, and during the building
phase. These checks are:

a. Hierarchy check: the entire collection of
slists and the makefiles required for the
system must be present, i.e. there may
be no missing slists.

b. Global consistency check: all files refer-
enced more than once (in one or more
slists), must be referenced with the
same label.

c. Shared files check: files referenced in

more than one slists must reside in a.

common area. It is illegal to have two
(or more) copies of the same file in the
system.

d. Processes must be stamped with the
SCCS id of the respective slist, and their
constituent parts must agree with the
slist.

All the checks described are automatically

performed by the manufacturing system. If

any fail, the slist is returned to the
developer, and it must be resubmitted after
correction.

3.3 Building a System

The software manufacturing system consists
of several Shell procedures [SRB], that
invoke SCCS and make.

The system is built by issuing a single com-
mand, regardless of how much of the system
has to be built. The underlying tools will
perform the minimum amount of work
required to build, or change the system.
Specifically, the following command is exe-
cuted to start the manufacturing process:

mksys release3.0 3.17

The above example directs the manufactur-
ing system to build the system version 3.0,
at the version 3.17 of the masier slist.

The manufacturing process will perform the
following steps, in addition to the con-
sistency checks that were previously

described:

a. Will get the master slist from the SCCS
archives at the version required, e.g.
3.17.

b. Will get the master makefile from the
SCCS archives, at the version specified
in the master slist.

¢. Will invoke the make command, using
the master makefile as input. Beginning
at this point, the entire building process
consists of walking the hierarchy of slists
and makefiles, until the system is built.
Every makefile executes the following
steps:

1. Create the directory structure that
the respective process will require.

2. Get all the source files required for
the process from the SCCS
archives. Each file is extracted at
the version specified in the associ-
ated slist.

3. Check the files to insure compliance
with project standards.

4. Build the process.

5. Perform the unit test on the pro-
cess.

6. Check the source file needed for
documentation.

7. Build the documentation for the
process, e.g. running instructions,
specifications, etc.

8. Verify that the process and the slist
are consistent.

9. Stamp thé process with the label of
the slist.

10. Install the process and the associ-
ated documentation in the appropri-
ate directories.

The hierarchy of makefiles will insure
that work already performed is not
repeated, thus providing an incremental
building capability.

The contents of a system are controlled by
the contents of the slist and makefile hierar-
chy, i.e. only the processes whose slists
appear in the master will be built, and only
the commands appearing in the makefiles will
be executed.

-s.

4. CRITIQUE AND FUTURE WORK

The Software Manufacturing System based
on a hierarchy of slists and makefiles has per-
formed well. Our experience has indicated
that improvements can be made in several
areas.

4.1 Shared Data

The shared data, i.c. global header files®,
libraries, etc., introduced the problem of dis-
tributed ownership on a system resource.

{

Since there were numerous owners for the
shared files, the shared data started showing
a scattering tendency, as well as duplication
of global data.

The solution for this problem was to imple-
ment the following:

a. The shared data (among other things)
are stored in a project database called
the System Glossary [PAB]. :

The Glossary helps identify redundant

or inconsistent data, and contributes to

the organization of the shared data. The

contents of the Glossary can also be -
used to generate the shared files in a

given programming language.

b. Shared files reside in relatively few, well
known directories, e.g.:

shared header files
shared libraries -
shared data files

As a fringe benefit of this organization, the
makefiles can now be generated consistently,
since all references to shared data are to the
places mentioned above. In fact, a substan-
tial part of a makefile can now be produced
by a specialized tool.

4.2 Structure of SCCS Archives

In the first version of the Software Manufac-
turing System, the directory structure of the
manufactured system mirrored that of the
SCCS archives. The knowledge of the struc-
ture was embedded in the makefiles. As a
result of this tight structural coupling, nei-
ther structure could evolve, except by addi-
tion. -

We first considered a scheme permitting
multiple logical views of a single physical

4. A header file is a source file containing global data;
it is induded by other source files.

structure (the SCCS structure), after which,
we settled on:

a. The structure of the SCCS archives is
no longer publicly known. The files are
moved to and from the SCCS structure
entirely based on the name of the file
(which are unique).

b. A makefile no longer knows about the
SCCS structure, the only structural
knowledge allowed in a makefile is:

current directory®, .and possibly a
tree whose root is -the current
directory (this structure will be
built by the makefile %tselt')

" the well known directories for the
shared data =~ -~ -

The decoupling of the SCCS and system
structures allows the SCCS structure to
evolve without creating havoc with system-
wide effects. '

This also implies that a makefile will build a
process the same way, regardless of its loca-
tion. Therefore, the same makefile serves
the developer - in a private work space, and
the manufacturing system - in the official
system space. .

4.3 Differential Building Tools

The building of a large software system
always poses the problem of sheer size. It
takes a long time and considerable machine
resources to build it. In addition, during
system test, there is the need to make "quick
fixes" as the testing progresses.

Since no patching of the object is allowed
(i.c. all the changes must be made at the
source code level), it is necessary to rebuild

. only the affected part of the system.

The solution entails differential building
tools, e.g. tools that rebuild only the subsys-
tems that have changed, while still maintain-
ing a consistent system. The differential
building tools do the following:

a. Impact assessment: using the skisz hierar-
chy as a Table of Contents for the entire
system, all the objects affected by a pro-
posed change can be identified.

5. The UNIX system supports the notion of a current

directory: the directory from which it begins the
search for file names. .

“icre’

(=~

=

=~

b. Change propagation: a change in a
source file will typically trigger changes
in the slist referencing the file, as well as
in all the indirect slists all the way to the
master slist.

c. Change confirmation: a change in a
shared file may not affect a source file
that includes it, if the source file does
not use all the symbols in the shared
file.

The differential building tools minimize the
work to be done even further than the pri-
mary software manufacturing tools. The
differential manufacturing method has the
potential to reduce the time and resources
required to build a system by approximately
one order of magnitude.

4.4 Multimachine Environmesnt

The problem of distributed computing, in all
its aspects, is something yet to be solved.
As far as software manufacturing is con-
cerned, several problems are introduced by
having a multimachine environment, even
with all the machines under the same operat-
ing system. The problems we found were:

Parts of the SCCS archives had to
reside simulianeously on several
machines, triggering a need for a distri-
bution system to insure consistency
and integrity of the files.

The name uniqueness requirement
became harder to enforce, since each
SCCS structure needed to produce a
list of names to be shipped to, and
merged on one machine, where the
enforcement checks were performed.

It was necessary to designate for each
source file the machine on which the
changes are allowed, thus increasing
the complexity of the SCCS tools.

The ideal solution would be to have an
operating system supporting the ‘“virtual
machine” concept, e.g. the user does not
know or care what the distributed environ-
ment looks like.

The actual solution was to permit read-only
access to other UNIX machines [ALG2),
and to develop a higher level of SCCS com-
mands that will execute on a remote
machine the same way they execute on a
local machine. This arrangemcnt requires

only one copy of the SCCS archives (on oné
machine), thus climinating the consistency
and intcgrity problems.

5. ACKNOWLEDGEMENT

The authors wish to acknowledge the contri-
butions of C. B. Hergengan, G. B. Garst, A.
L. Glasser, and D. W. Ting who built many
of the tools the manufacturing system
depends on. They also wish to thank K. G.
Freeman for his direction, support, and help-
ful criticism.

REFERENCES

[ALG] Glasser, A. L., "The Evolution of a
Source Code Control System”, Proc.
Software Quality and Assurance
Workshop, Software Eng. Notes,
Vol. 3, No. 5, November 1978, pp
122-125.

[ALG1] Glasser, A. L., "A Simple Source
Control System", unpublished work,
1980.

[ALG2)] Glasser, A. L. and D. M. Ungar,
"A Distributed UNIX System®,
paper submitted io COMPSAC-80.

[BWK] Kernighan, B. W. and D. M.
Ritchie, "The C Programming
Language®, Prentice-Hall, 1978.

[DMR] Ritchie, D. M. and K. Thompson,
*The UNIX Time-Sharing System®,
The Bell System Technical Journal,
July-August 1978, Vol. 57, No. 6,
Part 2, pp 1905-1930.

[MJR] Rochkind, M. J., "The Source Code
Control System", IEEE Trans. on
Software Engineering, Vol. SE-1,
December 1975, pp 364-370.

[PAB] Blosser, P. A. and B. C. Won-
siewicz, "The System Glossary: A
PSA Based Process And Data Dic-
tionary", unpublished work, 1980.

[SIF] Feldman, S. 1., "Make - A Program
for Maintaining Computer Pro-
grams", Bell Laboratories Computer
Science Technical Report MNo. 57,
1977.

{[SRB} Bourne, S. R., "The UNIX Shell",
The Bell System Technical Journal,
July-August 1978, Vol. 57, No. 6,
Part 2, pp. 1971-1990.

08/0€/% 2J9

IYYML40S IHL NI ION3IS3Hd 138V °+ 3UN9ld

'S Y k(#)©
1’2 Y'X(#)©
L'V 9°Adod (#) ©®

$S300¥d %

b'2 Y'X(#)@®

i y'hk (#) ©

FS Yk (#)D
2 YU'X(#)D[e
L't 9°Adod(#) @)
3714 193r80

s3d
32¥N0S

43TIdWO0D

L'} 9°Adod (#) ©)

SLIST

PROCESS COPY.C 1.7

OR x.h 2.4

OBJECT voh .

OR cee -
SOURCE

FIGURE 2. THE "WHAT" COMMAND

GC 4/30/80

-

@ (#) ab.si 4.3
a.sl 7.24

b.sl 1.1

—

@(#)b.si 1.4
@(#) a.sl 7.21

copy.c 1.7
x.h 2.1
y. h 5,4

L N 2 4

—

FIGURE 3. HIERARCHY OF SLISTS

GC 4/30/80

Ml
~
TIME INFO.
PROCESS
-~ .
MAKEFILE
DEPENDENCY INFO.
% BUILDING COMMANDS
r‘"‘\\)
FIGURE 4, THE "MAKE" COMMAND
GC 4/30/80 -

MAKEFILE

PN
(=
FILE 1
PROCESS
MAKE
PN
FILE 2 SLIST
) DEVELOPMENT
== =— — TURNOVER — — — e e e e e — — — — —_—— —
MANUFACTURING
{
SLIST SCCs
ARCHIVES SOURCE
INFO FILES SCHEDULES
MASTER SOF TWARE
SLIST MANUFACTURING
. SYSTEM
o
SYSTEM REPORTS

“~ FIGURE 5. THE SOFTWARE MAMUFACTURING SYSTEM

= GC 4/730/80

