Ny - | /]SS 9

- Bell Laboratories Cover Sheet for Technical Memorandum

/™™ The information contained herein is for the use of empiovees of Bell Laboratories and is not for publication (see GEI 13.9-3)

Title: The printf Family Date: April 25, 1980
~ Other Keywords: ’ ™: 80-3644-2
Author(s) Location Extension Charging Case: 49579-980
Andrew Koenig MH 7D-301 5570 Filing Case: 40125-3
~ ABSTRACT
This memorandum is a description of the prinf, fprintf, and springf functions in the C
Standard Library. It consists of an informal tutorial, a formal definition, and a listing of
C implementations of the functions. The tutorial should be useful for people with some
knowledge of the C language who want to be able to use prinyf effectively; the balance
supplies more detailed information of a sort that is most useful for implementors.
~
-~
This Document Contains Proprietary
Information of Bell Telephone Laboratories
And Is Not To Be Reproduced Or Published
Without Bell Laboratories Approval,
~
= Pages Text: 23 Other: () Total: 23

WORKING COPY

E-1932-U (3-70) SEE REVERSE SIDE FOR DISTRIBUTION LIST

No. Figures: 0 No. Tables: 0 Nn. Refs.: 2

~~

-~

TELL TELRPHCN? TADCKFATAFTES, 1NC,

CQIMPIZTZ MEMCARAKDHM 10
CAREESTONCENCE FILES

OFPTCIAL FLLF COPY
PLUS CNF CPPY VOK

EACH ADDTTIONAL FILING
CA3T REFFRENCRR

CATY® FILF cCiY
(FORM 2-1328)

10 RPFEFENCF COPIES

NITCHUSCHL,E 3
REMILM,THCMRS T
APTHURS, P
PARTIN,™ F
RFCKETT, 1
ROEHN, FANL W
CRIPP LL,IFT LY)
CANNATE, PHILIP =
CHRLLIS,ALICTA L
CHRFSTEESCK~BFCKER, MARY
CLARE, DAVIT .
CORTN, AAVCH 8

L GRAMF,L A

#LT JpATR,T §
CFAL,IEFEPEY S
DOLOTTA,T A
DUPFAN, N R
DWCRAKE,P S
SISON,STIVEN R
ELCHETGR,SPRY P
PARRELL,JANES W
PFORR,V

FIORE, UHOTA J
FRITR,THCYAS £
GIPSCYN,E T,IR
GEA™PP,F T
C'1INI, PIFD W
HAIGHT,® C
BFALLIR,N ¥

PALL ,A%TPYW [,aR
BANSEM, R €
HARKNESS,CARCT J
ROPKE¥,GRORKGE G
IBAGNA,C P
JIMENTZ,LELVA t
INUNSICNT, 1
KANE,J R1CHARD
KINDY, SURNARAY
IAYTCH,H J,0R
LOTKITS,L P
icng,® F
MALTELLOTTC, K A
MAST,C A

HC Cah¥,p S

MC PHERSON, L P
MPE,C,IIT7
BILLER,IC AKNE H
AYTZR,POREFT W

¢ HNAMFD PY AUTHON

> CITEL AS RYFFKRENCP

CCMELNTY MEACRANCUN TG

NIFDFELLT,R €
C1ESCN,S PFRI
PAC,T W

PERFY, CATHERING P
PRTERSON, RALPH W

<FRILLIDG, S O

PRIFVE,PLFTOR G
FUTT
RALL
RFPE, b A
RCSFTHAI,VICKI H
ROVEGNO, FFLFH D
FCWIANE,FPUCE R
BOY,SUMIT
BUGABIK,JCN S
SALSIVITE, A L
SAJCHIN, PRED R
SCHMI™T, I A
SCPWASTY % ¢
SHNLVAN, FPRYL
SLANA, I}

<SMITHU, M T, IR

STOXFS, PLEARD R

STULK,P W

TAGUL, FETXLFY A

VCGEI,GTFRAID €

WAGNER, MARY &

WEHE, LARPY A

WFLSCH,HICHARD J

TACODELLIS,PORERT It
78 NAFFS

CCVER SHFET CNLY 1C

CORFFESFCKRTENCL FIIES

8 COPIES PLUS (NP
COPY FOR PACH FILING
CASE

AAGFSEN, 3NN
ARECNSCN, STEVE N
ABATEMATCC,TERESA ¥
ABATE, JOSEPH
ACYEFNMAL, A FEANV
ACELTMAR,J T
ACKUCFP, JCHY M
SHC,ALESFE V
MIHENS,HAIFFR B
ALBAGI1,V ¥R
ALBERAILL ,EICKAED J
ALCALAY,T

ALFXIS,A D,J%

ALKCRY Y RLIEFICK
ALL1SCN,C E,JR
AMITAY 2
MPEIFATA,DP T
AMRCN, IRVING

ad

< DECLESTED PY BRADRP

DISTRIPUTTION
(RRFER CBL 1),9-3)

COVIR 5N2ET ONLY TO

ANCFRSCN, FREPFRICK 1
KNEFREON, ¥ 2t Y
ANDEHSUN, "ILYCN M
AUDERSON, N B
ANCERSON, R |
ANTPEWS, W J
PWTCLICK, FAVID R
MTCHELLI,ClAFLFS 3
APFELTAIP MN™TRFW A
ARCHEK, RUZSELL E,JK
ABMSTRCRG,D B
ARMSTRCNG,P 0 ,JR
ARNET,DENNTS 8
ARNQLD,GSOHGE W
ARNCLD,JPES O
APNCLD,PHYLLLS A
ARNCLD,THOLIAS P
AMVICSON,. P
ASFLTINF,RCWARD G
ASMUTH,RICHN U L
ASTHALA,ARHAYL
ATAL,8ISE"U §
AULL,DENIS W
AXELSON,A L

PAPU, 2AJESH FATILAL
EAGGA, YUCHVESF §
BAILPY,CATHERINE T
PAKER,DC*"
BAKFS,MITCHELL B
EALDWSN,GEORGE L
EALENSON, CHRISTINE A
BALLANCS, FOBFRET A
BARBATIC, RGRELT ¥
BARCLAY,DAVID X
EAKNHARDT, KARL R
PAEES,R L
BAPOFSFY,ALLEN
BABCN, ROBFRT V
BACR,DAVID L
PATTAGLIA,PRANCES
EAUER,BAPBARA T
BAUZR,P C
BAURR,HPLPN A
PAUGH,C R
BAYXTER,LESLIE A
PAYFR,D L
BRACHY,MILTON
EIELO,WILLTAM
BBCERRA,PRDRO D
BECKEE,CURTIS A
BFCKER,JACOR 1
BECKER, RICHARD &
BELNAKR,JOSEPH A,JP
BRIGHLRY,XPITH A
BENCO,DAVID S

BENTSCE,J2AN
DENNETT,RAY.ICHD W
BENNETI,RICHARD L
RENMETT,WYLLIAY C
LENOWITZ, P

COVEY Su 2% OMLY TO

BENSTING, JTANES EDWARD
PTRENE " 1"M,ALAN
RYRGH,A &
FPKGLAND,G D
BFREFY,M A
BERK,DONALD A
ARFPEHAGLT,HICHARD C
RERNOSKE,BEVEBLY ©
PFPNSTEIN,CANIFLLE R
PEPNSTEINM,L
RPRNSTRIN,PAULA R
BPRZINS, ALEXANIDER M
BEYER,JEAN-DAVID
EEYLYR,ERIC
BHATIA,RAIIV
BIANCII, M H
BICKFORD,MFIL B
BILASH, TIMOTHY D
BIL) INGTON,NARJORIE J
PILOWOS,R M
PINXEN,IRMA R
BISHOP,J DANIFL
BISHOP, THOMAS P
BISHOP,VERONICA L
BITTMEP,b B
BRITTREICH,MAFY E
ELAKF,GrPY D
PLAZIFR,S D
BYECHMAN, FONALD I
8LEIVK,JOSPF
BLINN,J C
PLOSSER,PATRICK A
BLUM ,MAR TON
BOCHULA, EDWARD 3
BOCKUS, HOBBRT J
BOCY,MANCY B
EOCL 1T, JRAYES R
BCDEN,F J

BOES2,J O

BCGABRT, P J

BCGART, THOMAS G
BCIVIE,PICHARD B
PCLSKY,MORRIS I
EONENNI,LI E

BCUD,F C

BORDELOM, PUGPNP P
BORG,KEVIN B
ECRISOM,FLLEN A
ECR¥AK, SURESH P
BOSE, DEDASTISH
BOSTON, ROLALD B
BOSWELL, PAULA S
BOULIN,D M

ECCMA, HEPMAN O
BOURNE,STEPHEN R

BCWYER, " PAY
ECYCE,X J
BOYCE,W M
BOYER,PHYLLIS g
EOYL2,GERALD C

(HAMES WITHOUT PRIFIX

WELE SFLECTPD USING THE AUTHOL®S SUBJECT Ch CRGANIZATICNAL SPECIPICATION AS GIVEN BELOW)

TH-80<3608=2

COVEB SHEFT OFNLY TO

BRACPORD, EDWARD G
BRADLEY,M HELEN
BRADLEY,R N
BRANDT,RICHARD B
BRAUNEZ, PAVID P
BRAUN,DAVID &
BRBILAND,JOHN R
BREUSRI,ROWIN P
PRESLER,RENPE A .
BRIGGS,GLOXIA A
BRITT,WARFRN D
DROAD,MARTHA M
BRONSTEIN, N
PRCOYS,CATHERINE ANN
BROSS ,JEFFREY D
BROVMAN, INNA
BROWN %G, JASON DAVID
RACWH, PLLTHGTCN .
BROWN ,L.AURINCE2 AC P2B
BROWY ,NARK S
BRCWN,STUART G
BRCWN,W B
BRCWN,W STANLEY
BRUECKFER,DOUGLAS 2
BRYANT,TAVID O
BUCK,I D
BULLEY,P M
PUBGESS,JCHN 1,JR
BURG,* ¥
BUBIC,MILCRAD R
BURKE,NICHAEL 7
POUFXE,R J
RUFNETIE, ¥ A
AURNETT,DAVID S
BURNPT, PCSE M
BUROPP,STEVEN J
BURPCWS, THOMAS A
RUTLETT,DARRELL L
BUTTON,PEVRRLY
BYPPLEE,P W
BYORICK,RORERT S
BYPNE ,ECWARD R
CALL,FETEZR F
CALVERT,XENNETH L
CAMPBELL, NICHAYL R
<CANADAY,RUDD &
CANDPEA,RONALD D
CAREY,J B
CAREY,J H
CARRAN,JOHN B
CARRIGAN,RATMCND J
CARR,CAVID C
CARTER,DONALD R
CASTERS,2ZAPBAPA
CASTELLANC, ¥ARY ANN

CATO,H B .
CAVINESS,JOEN D
CELLFR,GRORGZ X
CERMAK,1)
cHarrEE,N P

1387 tcrae

VENCURY SPEC!!IC\'ION.n...--....-....---........-..-..........---......‘..........,..

COMPLYTY MEMO TC:
3hG-500 3644

COVER SHEFRT TO:

CCPIGY = CCMFUTING/TROCPAMNMING LANGUAGES/GINERAL PURIOSE
COPRTY = CCHMPUTFR }IPUT=-CUTPUT AKD UTITITIFS [HZGHANMING

NRPICL * C LAt CUACFE

(

hinhdiahinhdih bt A AR R A L A L L L D e PR L D P L L DR T TR Y R R DR L LT POy s RO

10 GI'T A QOMILETE CCYY:

HO CORRESGPCHNTFMCE FILES

HO 1A127

PLEASY SYRD A COAPLEZTE

1. PR GNRA YOoN CWF%[CT AULRESS I6 TIVEN CR TIY GI1:IR 31T,

2, PCLD THIS SHRET 1K NALP HITH THIS
TIF ACTH&®S PT RIGHT,
G, INTICATE WIITLIR MICFCFICHE OF PIEEN IS LIS19AC.

3. catre

NC ERVEICE:.

[TDP 1T ANO STAPLE.

() MICKQF1CHE COPY

TM=80-3640-2
TOTAL PAGES 2l &

() FAPER COPY

TO TEE ACDKESS SHOWN ON TRE OTHER SIDR.

This Document Contains ®roprictary)
Jnformation of Bell Teicsone Laboratorics
and Is Not To Be Repreduced Or Published
Withe.' Eell Labomslowes Aporoval.

subject: The pringf Family

Bell Laboratories

date: April 25, 1980

Case: 49579-980

File: 40125-3 from: Andrew Koenig
MH 3644
7D-301 x5570
3644-800425.01MF
T™: 80-3644-2

MEMORANDUM FOR FILE

1. INTRODUCTION

Every useful program needs to produce output of some kind. and the usual way for a C programmer
to produce human-readable output from a program is to use the prinif function. As a result, prinif
is probably the most commonly used program in the C library.

Unlike the description in the reference manual. which is best used to jog the memory and resolve
arguments, this document is intended for use by people who do not have a detailed knowledge of
the mysteries of printf.
2. A SIMPLE EXAMPLE
Consider the following program:

main()

{
}

The outpat fram this program is:
Hello there

printf ("Hello there\n");

followed by a new-line character.

The first argument 10 pringf is always a formar. A format is a character string that describes the
form of the output that will result from a call to pringf. Printf works by copying characters from the
format to the standard output until either the end of the format is reached or a % character is
encountered. Instead of printing a % it finds in the format. printf looks at a few characters follow-
ing the % for instructions as to how to convert its next argument. The converted argument is
printed in place of the % and the next few characters. Since the format in this example does not
contain a %. the output from printf is exaculy those characters given in the format. Notice that if
you use prinif, you must explicitly specify every character you want to appear in the output, includ-
ing the new-line that ends each linc. It is @ common error for beginners to forget the \n that usually
terminates a format string. The \n is not supplied automatically because it is frequently useful to
produce a single line of output by multiple calls to pring’.

3. SIMPLE FORMAT TYPES
3.1 Integer Formats

3.1.1 Decimal integers. The most common non-trivial use of prinif is to print integer values in
decimal form. For example, the following call:

printf ("2 + 2 = %d\n", 2 + 2);
will print
2+2=4

followed by a new-line (in tuture examples. we will not explicitly state the presence of a new-line in
the output). Of course. most people can put two and two together without the aid of a computer;
the purpose of this example is to illustrate the most common form of the %d format item.

This example shows a form that will become increasingly familiar in future examples. Every format
item is introduced by a % sign. which is followed. not always immediately, by a character. called
the formar code, giving the type of conversion. Other characters may optionally appear between the
% and the format code; they serve to modify the conversion in ways that are detailed later.

Note that this example uses a second argument to pringf. Each format item will usually have a
corresponding argument.

The %d format item is a request to print an integer. There must be a corresponding int argument.
The decimal value of the integer. with no leading or trailing spaces. replaces the %d as the format
is copied 1o the output. If the integer is negative. the first character of the output value is a — sign.

3.1.2 Unsigned integers. You can print an integer as if it were of unsigned type by using the %u
format item instead of the %d format item.

3.1.3 Ocial and hex. It is frequently useful to be able to print integer values in base 8 or 16. This
is accomplished by the %o. %x. and %X format items. The %o item specifies octal output. and
the %x and %X items both specify hexadecimal output. The only diference between %x and %X
is that the %x item uses the letters a, b. ¢, d. e. and f for digit values from 10 through 15, and the
%X item uses A, B. C. D, E, and F. Octal and hex values are always unsigned.

An example:
printf ("%d decimal = %o octal = %x hex\n", 108, 108, 108):
will print

108 decimal = 154 octal = 6c hex
If %X were used instead of %x. the output would be
108 decimal = 154 octal = 6C hex
3.2 Character Formats
3.2.1 Single charaviers. Another frequent use of prinif is to print character data.
printf ("%c", ¢);
is equivalent to
putchar (c);

but has the added flexibility of being able to insert the value of the character ¢ into the string being
printed. For example:

printf ("par %cty\n", ‘i’);
will print

parity

-3-

3.2.2 Character strings. Printing single characters is usually not as useful as printing entire strings
of characters. The %s format item is used for printing strings: the corresponding argument must be
a character pointer, and characters are printed starting at the location addressed by the argument

until a null character (\0°) is encountered. Here is an example of how the %s format item might
be used:

int n;
.char =s, *r;

.

r = "is";
s="
if(n!=1){

s ="s"

r = "are”;
}

printf ("There %s %d item%s in the list.\n", r, n, s);
This could, of course, be shortened:
printf ("“There %s %d item%s in the list.\n", n!=1? "are™ "is", n, n!=17 "s": ");

The idea is that either is or are will be substituted for the first %s. and that either s or the null
string will be substituted for the second %s.

When you use the %s format item. it is important that the strings you print be terminated by a null
character (\0°). That is the only way that prinif can find the end of the string. If a string that is
given to the %s item is not properly terminated. pringf will continue printing characters until it finds
a \0" somewhere in memory — the output may be very long indeed!

Since a NULL pointer does not point to a string of characters.
printf ("%s\n", NULL);
is illegal.
3.3 Floating-Point Formats
Three format items provide for printing floating-point values: %g. %f. and %e.

Perhaps the most useful floating-peint format item is %g. This item causes the corresponding ‘value
(which must be float or double) to be printed. with trailing zeroes removed. to a precision of six sig-
nificant figures. Thus

double atan();
printf ("Pi = %g\n", 4 * atan (1.0));

would print

Pi = 3.1415%
and

printf ("%g %g %g %g\n", 1.0/1.0, 1.6/2.0, 1.0/3.0, 1.0/4.0, 0.0);
would print

10.50.333333 0.25 ¢

Notice that nonzero values of magnitude less than 1 are printed with a single leading zero before the
decimal point.

If the magnitude is greater than 999999, printing the value in the format just described would
require either printing more than six significant digits or displaying an incorrect value. The %g for-
mat item resolves this problem by printing the value in “'scientific notation™:

printf ("%g\n", 123456789.0);
prints
1.23457e+ 08
This value should be interpreted as 1.23457 x 10°%.

A related problem occurs when printing values with a very small magnitude. When the magnitude
gets small enough, the number of characters required to represent the value gets uncomfortably
large. For example. 1t is ungainly to write 7 1070 as 6.060000000314159; it is both more compact
and easier to read if written as 3.14159e-18. The two forms have the same length when the
exponent is —4 (for example: 0.000314159 as opposed to 3.14159e~04): in this case the %g format
item selects the decimal form. because it is more familiar to most people.

There are some occasions where it may be useful to insist that floating-point values always be writ-
ten with an explicit exponent. This is the purpose of the %e format item. Thus. the value of «
written under %e format is 3.141593e~00. Notice that the %e format item prints six digits after
the decimal point, rather than printing six significant figures.

In a similar way, the %f format item forces the value to be printed withour an explicit exponent, so
7 appears as 3.141593. Again. the %f format item prints six digits after the decimal point.

Some computer systems require that if an exponent appears in input data. it must be introduced by
E rather than e. If you want to produce output that can be read by such a system. vou can use %E
or %G format. These format items behave the same as their lower-case counterparts. except that E
instead of e will introduce the exponent.

3.4 Printinga %

The % % format item is used to print a % character. It is unique in that it is used withour a
corresponding argument. Thus. the statement

printf ("% %d prints a decimal value\n”);
prints

% d prints a decimal value

4. MODIFIERS

Many applications require more flexibility than is provided by the format specifications described so
far. Prinif therefore accepts additional characters that modify the meaning of a format item. These
characters appear between the % and the following format code.

4.1 Length Modifier

Integers come in three lengths: short, long. and plain. If a short integer appears as an argument to
any function. including prinif. it is automatically expanded to a plain integer. but we still need a
way to tell printf when a long integer is to be printed. This is done by inserting an | immediately
before the format code, effectively creating id, lo. Ix. and lu as new format codes. These modified
codes behave exactly the same way as their unmodified counterparts. except that they demand a
long integer to correspond with them. Note that using the lu format item results in printing a long
integer as if it were long unsigned, even though that type does not exist in all C implementations.
The | modifier is meaningless for other than integer format codes.

4.2 Field Width

Programmers frequently like to print numbers in columns. This is difficult using only those features
of printf discussed so far, because the number of characters that represent a value depends on the
value.

Printing values in fixed-width fields is made easier by the width modifier. This takes the form of an
integer that appears between the % and the following format code, and specifies the minimum
number of characters that should be printed by the format item so modified. If the value being

-5-

printed does not fill the field, blanks will be added on the left to make the value wide enough (See
Flags, following. if you want the blanks to appear on the right). If the value printed is too big for
the field, the field is expanded appropriately. The width modifier never causes iruncation of a field.
If you are using the width modifier to line up columns of figures, and a value is too large for its
column, subsequent values on that row will be displaced to the right to make room for the one that
was too large. '

The width modifier is effective for all format codes.

4.3 Precision

Use the precision modifier if you want to control the number of digits that appear in the representa-
tion of a number, or limit the number of characters printed from a string. It consists of a decimal
point. followed by a string of digits. and must appear before the format code and length modifier (if

present), and after the % and width modifier (if present). The exact meaning of the precision
modifier varies with the format code:

o For the integer format items %d, %o, %x. and %u. it specifies the minimum number of digits
that should be printed. If the vale doesn’t need that many digits. leading zeroes will be sup-
plied. Thus, 24-bit values might reasonably be printed using %.6x or %.80 format items, and

printf ("%.2d/%.2d/% .4d\n", 3, 12, 1982):
would print
03/12/1982

e For %e. %E. and %f format items. the precision specifies the number of digits after the
decimal point. Unless the flags (q. v.) specify otherwise. the decimal point does not appear
unless the precision is greater than zero.

e For %g and %G format items. the precision specifies the number of significant digits to be
printed. Unless the flags (q. v.) specify otherwise. trailing zeroes are removed. and the decimal
point is deleted if no digits follow it.

e For %s format items, the precision specifies the maximum number of characters to be printed
from the corresponding string. If a null character is encountered before the requisite number of
characters have been printed, the string is considered to have ended. For example. path com-
ponent names are frequently stored as elements of a 14-character character array. If the com-
ponent name has fewer than 14 characters, the remainder of the array is filled with null charac-
ters, but if the name has its maximum length. no null character terminates the array. Such a
name might be printed as follows:

char dirname([14]:
printf ("... %.14s ...", ... , dirname, ...);

This ensures that the name is printed properly. regardless of its length. Using 2 format item of
%14.14s would guarantee that exactly 14 characters would be printed. regardless of the length of
the name (although the padding blanks would still appear on the left; see Flags to find out how
to put them on the right).

o The precision is ignored for ¢ and % format items.
4.4 Flags

Between the % and the field witch, characters may appear that modify the effect of the format item
slightly. These are called flag characters. The flag characters and their meanings are as follows:

~ ' This flag is meaningful only if a width is present. In that case. any padding blanks will appear
on the right rather than on the left.

+ This flag specifies that every numeric value printed should have a sign as its first character.
Thus non-negative values will appear with a + as the first character. It bears no relationship
to the — flag. :

-6 -

b When a blank (represented in this document as b) is used as a flag, it means that a single
blank is to appear before a numeric value if its first character is not a sign. This is most useful
for making left-justified columns of numbers line up without using + signs. If the + and b
flags appear with the same format item. the + flag takes precedence.

-# This flag alters the format of numeric values slightly, in a way that depends on the particular
formai item. Its effect on the %o format item is to increase the precision. if necessary, just
enough that the first digit that is printed is 0. The idea is to permit octal values to be printed
in the format in which most C programmers are used to seeing them. Note that %#o0 and
0%o are not the same, as the latter would cause 0 10 be printed as 00. Similarly, the %#x
and %#X format items cause the value to be preceded by Ox and 0X, respectively. for the
same reason. The effect of the # flag on floating-point formats is twofold: first. it causes the
decimal point always to be printed. even if there are no digits after it; second, it stops the %g
and %G formats from suppressing trailing zeroes. The % #c¢, % #d, % #s, %#u, and %#%
formats mean the same as %c. %d. %s, %u. and % %. respectively.

The flags are all independent of each other. except for b and +.

5. VARIABLE FIELD WIDTH AND PRECISION

It is frequently useful to be able to specify the field width and precision as an expression. rather
than as part of the format. This is accomplished by replacing the field width. the precision. or both
by an *. In this case. prinyf takes the actual value(s) to be used from its argument list before it
fetches the value to be printed. For example,

printf ("%=d-n", §, x):
has the same effect as
printf ("% 5d.n", x);

If the = convention is used for both field width and precision. the field width argument appears
first. followed by the precision argument, and finally by the value to be printed. Thus

printf ("%=*.»s", 12, §, str);
has the same effect as
printf ("%12.5s", str);

which prints the first five characters of str (or fewer, if sirlen(s)<5). preceded by enough blanks to
bring the total number of characters printed to twelve. As another example.

printf ("% *%", n):
prints n— 1 spaces followed by 2 %.
If an = is used for the field width, and the corresponding value is negative, the effect is as if the -
flag were also present. Thus, in the example above, if n is negative, the output will be a % fol-
lowed by 1—n spaces.
6. FPRINTF AND SPRINTF
Printf has two relatives, fprintf and sprinif, that are also very useful.

Where printf is restricted to writing on the standard output. fprintf can write on any output file.
The specific file to be used is given to fprinif as its first argument: it must be a FILE pointer. Thus.

printf (...);
and
fprintf (stdout, ...);

have the same meaning.

-7.

The third family member, sprintf, is used when the output is to go somewhere other than a file.
The first argument to sprintf is a character array in which spring’ will place its output. It is the
programmer’s responsibility to ensure that this array is large enough to contain the output that
sprintf will generate. The remaining arguments are identical to those of pringf. The output of
sprintf is always terminated by a null character, but note that there may be embedded null charac-
ters if the %c format item is used.

7. RETURN VALUE

All three functions return the number of characters transmitted. In the case of sprintf, the count
does not include the nuil character at the end of the output. If pringf or fprintf encounters an 'O
error while attempting to write, it will return some negative value. In this case, it will be impossible
to determine how many characters were written.

8. FORMAL SPECIFICATION

This section is recommended reading for masochists. It contains a complete description of the
behavior of pringf, in much more formal terms than the preceding sections. Read it only after you
are convinced you understand those sections thoroughly. :

8.1 Synopsis
#include <stdio.h>

int printf (format [,arg] ...)
char =format;

int fprintf (stream, format [,arg] ...)
FILE *stream;
char *format;

int sprintf (s, format [,arg]...)
char *s, *format;

8.2 Description

Printf places output on the standard output stream stdour. Fprinif places output on the named out-
put stream. Sprinif places ‘output’ in the character array pointed to by s, followed by the character
A\0°. The array must be large enough.

Each of these functions returns the number of characters transferred (spring does not count the ter-
minating \0°), or a negative value if the Operation was unsuccessful. If the number of characters
transferred is too large to fit in an int. the value returned is undefined.

Each function makes a single pass over the format. stopping when the end of the formar is reached.
That process is performed by repeating the following steps:

e Characters are copied from the formar to the output stream until a % is encountered in the for-
mat. The % is not copied. If the end of the formar is reached before a % is encountered, the
function terminates normally.

e A substring of the format is found, starting from the %, which is a <conversion specification>.
The_substring. if one exists. is unique by virtue of the definition given below of a <conversion
specification>. If such a substring cannot be found. the formar is in error and the results are
undefined.

e The conversion implied by the <conversion specification> is determined. This process fetches
an arg for each in the <conversion specification>, if any. If two *s are present. the first arg
fetched corresponds to the <field width>. Each arg fetched during this step must be an int.

e The next arg is fetched (unless the <conversion lctter> is %). converted to a character string
according to the <conversion specification>, and written to the output.

-8-

The syntax of 2 <conversion specification> is as follows:

<conversion specification> = % <modifiers> <conversion code>
<modifiers> ::= <flags> <field width> <precision>

<flags> ::= <empty> | <flags> <flag>

<ﬁag> U=+ | — | # { <blank>

<field width> ::= <empty> | <field width integer> | *
<precision> ::= <empty> | . <precision part>

<precision part> ::= <unsigned integer> | »

<unsigned integer> ::= <empty> | <unsigned integer> <digit>
<field width integer> ::= <nonzero digit> | <field width integer> <digit>
<conversion code> ::= <conversion modifier> <conversion letter>
<conversion letter> == cidielflgloisixIvlEIGIX! %
<conversion modifier> ::= <empty> 111 h

<digit> ::= 0 | <nonzero digit>

<nonzero digit> ::=112131415i6171819

<empty> ::=

<blank> == b (a space)

It is an error for there to be insufficient args to satisfy the formar. The result in this case is unde-
fined.

For each <conversion specification>, a field widrh and a precision are determined from the <field
width> and <precision>, as follows:

If the <field width> is <empty>, the field width is 0. If the <field width> is a <field width
integer>, the field width is the value of which that <field width integer> is a decimal represen-
tation. Otherwise, the <field width> is =, and the field width is the absolute value of the
corresponding arg.

If the <precision> is <empty>, the precision takes a defaulr value which depends on the
<conversion letter>. If the <precision> contains a <unsigned integer>, the precision is the
value of which that <unsigned integer> is a decimal representation. or 0 if the <unsigned
integer> is <empty>>. Otherwise, the <precision> is .*, and the precision is the value of the
corresponding arg. The result is undefined for negative values of the arg.

The <flags> are interpreted as follows:

If the <flags> contain a —, or the <field width> is a * with a corresponding negative arg, lefr
adjustment (right padding) is in effect. Otherwise, right adjustment (left padding) is in effect.

If the <flags> contain a +, the result of a d-, e-, f-, g-, E-, or G-conversion will always have a
sign (+ or =) as its first character. Otherwise, a sign will appear only if it is —.

If the <flags> contain a <blank>, the resul of a d-, e-, f-, g-, E-, or G-conversion will have a ,
blank prepended to it if its first character is not a sign.

The effect of a # in the <flags> depends on the conversion, and is described separately for
each conversion.

Note that if the <flags> contain a <blank> or a +, the width of the result of an e conversion of a
value whose exponent fits in two digits does not otherwise depend on the value.

-9.

The <conversion modifier> has effect only if the <conversion letter> is d. o. x. u. or X. In this
case. a <conversion modifier> of 1 indicates that the arg corresponding to the <conversion specifi-
cation> is a long. A <conversion modifier> of h may appear but has no effect.

The meanings of the <conversion letter>s are:

d,o,u,x,X The integer arg is converted to signed decimal (d). or unsigned decimal (u), octai (e), or

e,E

g.G

G

hexadecimal (x or X) notation. The letters abcdef are used for x-conversion, and the letters
ABCDEF for X-conversion. The arg is taken as an int of appropriate length for d-conversion,
and as an unsigned of appropriate length for the others. The precision specifies the minimum
number of digits that will appear in the result. If the arg is too small to be contained in that
number of digits, an appropriate number ot leading zeroes will appear. The default precision
for these format codes is one. Converting a zero arg with a precision of zero will give a result
with no digits. If the <flags> contain a #, the precision for an o-conversion will be increased
by the smallest amount necessary to ensure that the first digit of the result is 0, and the string
‘0x’ (*0X') will be prepended to the result of converting a non-zero value in x- (X-) conver-
sion.

The double arg is converted to decimal notation. The number of digits after the decimal
point is equal to the precision. A leading zero is inserted before the decimal point if no digits
would otherwise appear there. The default precision is 6. If the precision is 0 and the
<flags> do not contain a #. the result does not contain a decimal point.

The double arg is converted in the style ‘{%]d.dddexdd" where there is exactly one digit
before the decimal point and the number of digits after the decimal point and before the
exponent is equal to the precision. The digit before the decimal point is only zero if the arg is
zero. In that case. the exponent always appears as e+00 (or E+00). The default precision is
6. If the precision is 0 and the <flags> do not contain a #. the result does not contain a
decimal point. The number of digits in the exponent is the larger of 2 and the smallest
number of digits necessary to contain the exponent value. The E format code produces a
number with E instead of e introducing the exponent.

The double arg is converted in a style similar to f or e (or E in the case of a G format code).
The default precision is 6. Let n be the precision, let s be the result of converting the arg
according to %.(n—1je. and let e be the value of the exponent of s.

If e=n or e<=—35, then let r be 5. If r contains a decimal point, and the <flags> do not con-
tain a #. the longest possible string of zeroes in r ending immediately before the e (or E) is
deleted. and if the character before the e (or E) is now a decimal point. it too is deleted. The
result is r.

If e<n and e>—35, then let r be the result of converting the arg according to %.(n—e—1)f. 1f
r contains a decimal point. and the <flags> do not contain a #. then any trailing zeroes in r
are deleted, and it the last character in r is now a decimal point, it too is deleted. The result
is r.

The result is the character arg. The precision is ignored.

Arg is taken to be a string (character pointer). The result is an initial substring of the string.
whose length is the smaller of the precision and the length of the string. The default precision
is infinite. s

No arg is converted; the result is a %.

Once the conversion corresponding to a format specification has been accomplished. the result of
that conversion is padded with blanks. if necessary, to the field width. If left-justification is in
effect. the blanks appear on the right; otherwise, they appear on the left.

9. A SAMPLE IMPLEMENTATION

The following is a C program which is believed to be an accurate implementation of what has been
described in the previous sections.

-10 -

9.1 param.h

This is a sample param.h file with definitions appropriate for use with the VAX—11. The meanings
of the various definitions should be apparent from the comments.

/» Maximum number of digits in any integer representation */
#define MAXDIGS 11

/*= Largest (normal length) positive integer */
#define MAXINT 2147483647

/* A long with only the high—order bit turned on »/
#define HIBIT 0x80000000L

/+ Convert a digit character to the corresponding number */
#define tonumber(x) ((x)—0")

/+ Convert a number between 0 and 9 to the corresponding digit =/
#define todigit(x) ((x)+07)

i* Data type for flags *
tvpedef char bool:

+ Maximum total number of digits in E format =/
#define MAXECVT 17

/« Maximum number of digits after decimal point in F format =/
#define MAXFCVT 60

/* Maximum significant figures in a floating— point number *:
#define MAXFSIG 17

/+ Maximum number of characters in an exponent */
#define MAXESIZ 4

f* Maximum (positive) exponent */
#define MAXEXP 40
9.2 The prinyf, fprouf, andsprinef functions

These functions are what is actually called by the user program. They are essentially interfaces to
—print. which does the real work. The operation of the macros in varargs.h is described in MF78-
8234-64'.

1. Koenig: Variable Length Argument Lists in C; MF78-8234-64. June 12, 1978. This document is available from the
Computing Information Library as number UNPL-1268.

#include <stdio.h>
#include <varargs.h>

int _print():
extern FILE =_pfile;

int
printf (va_alist) va_dcl

register char *format:
register int 1u;
va_list ap;

va_start (ap);

format = va_arg (ap. char *):
_pfile = stdout:

rc = _print (format, &ap);
va_end (ap);

return rc;

}

#include <stdio.h>
#include <varargs.h>

int _print():
extern FILE =_pfile:

int
fprintf (va_alist) va_dcl

register char *format:
register int rc;
va_list ap;

va_start (ap);

_pfile = va_arg (ap, FILE *).
format = va_arg (ap, char *);
rc = _print (format. &ap);
va_end (ap):

return Ic;

-11-

-12-

#include <stdio.h>
#include <varargs.h>
#include "param.h”

int _print():
extern FILE =_pfile;
extern char *_pstring;

int

sprintf (va_alist) va_dcl

{
register char *format:
register iht rc:
va_list ap:

va_start (ap):

_pstring = va_arg (ap. char *);
format = va_arg (ap, char *);
_pfile = NULL.:

rc = _print (format. &ap):
va_end (ap):

*_pstring = \(0":

refurn rc:

}
9.3 _print

_print does all the difficult work except the actual conversion of floating-point values to their
decimal equivalents. It assumes that these conversions are done by routines named fcvr and ecvr as
described in any of the various editions of the user’s manual for the UNIX™ operating system.

Both fevr and ecvr take four arguments. The first is the actual value to be converted, in the form of
a double. The second is an i that contains the number of significant digits desired. for ecvt. or
the number of digits after the decimal point, for fevz. The third and fourth arguments are pointers
to ints. The int values thus addressed will be set to indicate the location of the decimal point and
the sign of the result. respectively. The result returned by either of these functions is assumed to be
a pointer t0 a character string which contains the decimal digits of the mantissa, with no further
adornment. The string is assumed to be terminated by a null character. The routines are permitted
to trim trailing zeroes from the string. For example

char *ecvt():

int decpt, sign:

char *p:

p = ecvt (123.45, 8, &decpt, &sign):

will set p to point to a storage area containing 12345. 123450, 1234500. or 12345000. decpr will be
set to 3 to indicate three digits before the decimal point, and sign will be set to 0 to indicate a posi-
tive result. If the value were negative, sign would be set to a non-zero value.

_print assumes that fovr and ecve will round their results appropriately: it does not change any of the
digits returned {though of course it adorns them with a decimal point, sign. and exponent).

_print also assumes a library routine names strlen. which when passed a pointer to a null-terminated
character siring. returns the number of characters in the string. excluding the null character.

-13-

I*
* _print: common code for printf, fprintf. sprintf
*/

#include <stdio.h>
#include <ctype.h>
#include <varargs.h>
#include "param.h”

#define max(a,b) ((a) > (b)? (a): (b))
#define min(a.b) ((a) < (b)? (a): (b))

/=

* The following two variables are set by our caller.

* and used in emitchar. The convention is that if _pfile
* is not NULL, it should be the recipient of our output.
* if _pfile is NULL. then the output will be placed in storage
* starting at »_pstring.

*/ :

FILE =_ptile;

char *_pstring;

/%

* System-supplied routines for floating conversion

*/

char *fevt();
char *ecvt();

/* This variable counts output characters. */
static int count;

int _print (format, args)
char *format;
va_list *args;

/+ Current position in format */
char *cp:

/* Starting and ending points for vaiue to be printed *’
char *bp. *p:

/+ Field width and precision *
int width, prec:

/+ Format code */
char fcode;

/* Number of padding zeroes required on the left */
int lzero:

/x Number of padding zeroes required on the right */
int rzero:

/= Flags — nonzero if corresponding character appears in format */
bool length; /%1 =/
bool fplus; [+ + */

-14 -

bool fminus; /% — %/
bool fblank: /= blank */
bool fsharp; [# =/

/* Values are developed in this buffer +/

_ char buf{max (MAXDIGS, max (MAXFCVT + MAXEXP, MAXECVT) + 1)]:
/= Pomter to sign. "0x", '
char =prefix:

0X", or empty #/
/+ Exponent or empty */
char *suffix:

/* Buffer to create exponent */
char expbuf{ MAXESIZ + 1];

/= The value being converted, if integer */
long val;

/* The value being converted, if real */
double dval:

/= Qutput values from fcvt and ecvt */
int decpt, sign:

/+ Set to point to a translate table for digits of whatever radix */
char *tab;

/* Work variables »/
int k. n, hradix. lowbit:

cp = format,

count = 0;

/%

* The main loop — this loop goes through one iteration
* for each ordinary character or format specification.

!
while (*cp)
if (*cp 1= %) {
J*« Ordinary (non-%) character */
emitchar (xcp+ +):

} else {
/*
* %o has been found.
* First. parse the format specification.

*

/* Scan the <flags> */
fplus = fminus = fblank = fsharp = 0;
scan: switch (*+ +¢cp) {
case "+
fplus = 1;
goto scan;
case ="
fminus = 1;

case *

-15-

goto scan;

fblank = 1;
goto scan;

case ‘#°:

}

fsharp = 1;
gOtO scan;

/= Scan the field wadth =/
if (xcp == "*"){

width = va_arg (*args. int);
if (width < 0) {
width = —width;

fminus = 1;
}
cp++,;
} else {
width = 0:

}

while (isdigit (*cp)) {
n = tonumber (*cp+ +):
width = width * 10 + n:

/* Scan the precision */
if (*cp == ".") {

} else

/* “»" instead of digits? */
if (+++cp == *) {
prec = va_arg (*args, int):
cp+ +,
} else {
prec = O
while (isdigit (*cp)) {
n = tonumber (*cp++):
prec = prec * 10 + n;

}

prec = —1;

/* Scan the length modifier */
length = 0;

switch (*cp) {

case 1"

length = 1;
/+ No break */

case h”™:

}

/%
*
*
*

cp+ -+

The character addressed by cp must be the
format letter — there is nothing left for
it to be.

-16 -

The status of the +, —, #. and blank
flags are reflected in the variables
“fplus”, “fminus”, "fsharp”, and “fblank".
"width" and "prec” contain numbers
corresponding to the digit strings
befare and after the decimal point,
respectively. If there was no decimal
point, "prec”is —1.

The following switch sets things up

for printing. What ultimately gets
printed will be padding blanks, a prefix.
left padding zeroes, a value, right padding
zeroes. a suffix. and more padding
blanks. Padding blanks will not appear
simultaneously on both the left and the
right. Each case in this switch will
compute the value, and leave in several
variables the information necessary to
construct what is to be printed.

The prefix is a sign. a blank. "0x", "0X".
or null. and is addressed by "prefix”.

The suffix is either null or an exponent,
and is addressed by "suffix".

The value to be printed starts at "bp”
and continues up to and not including "p”.

“lzero” and "rzero” will contain the number
of padding zeroes required on the left

and right. respectively. If either of

these variables is negative, it will be
treated as if it were zero.

The number of padding blanks. and whether
they go on the left or the right. will be
computed on exit from the switch.

X % % O ORE R K OE X O R ¥ K X K OE X X X X X ¥ E X X X X X R X X R ¥ ¥ F & X R £ »

*
-~

"

prefix = suffix = "
lzero = rzero = 0;

-17-

switch (fcode = »cp+ +) {

/%
* fixed point representations
*
* "hradix” is half the radix for the conversion.
* Conversion is unsigned unless fcode is ‘d”.
* HIBIT is 1600...000 binary. and is equal to
* the maximum negative number.
* We assume a 2's complement machine
*/
case ‘'d"
case u”
hradix = 5;
goto fixed:;
case 0"
hradix = 4;
goto fixed;
case ‘X"
case X"
hradix = 8:
fixed:

/+ Establish default precision */
if (prec < 0)
prec = It

/* Fetch the argument to be printed */
if (length)
val = va_arg (*args. long):
else if (fcode == 'd’)
val = va_arg (*args. int):
else
val = va_arg (*args. unsigned):

/+ It signed conversivn., establish sign */
if (fcode == "d"){
if (val < 0) {

prefix = "=";

/%

* Negate, checking in
* advance for possible
* overflow.

.
i {val '= HIBIT)
val = —val;
} else if (fplus)
prefix = "+
else if (fblank)
prefix = " ",

}

1~ Set transiate table for digits =

- 18 -

if (fcode == "X")

tab = "0123456789ABCDEF™;
else

tab = "012345678%abcdef™;

/= Develop the digits of the value */
p = bp = buf + MAXDIGS;
while (val) {
lowbit = val & 1;
val = (val >> 1) & "HIBIT;
*——bp = tab[val % hradix = 2 + lowbit};
val /= hradix:

}

/*= Calculate padding zero requirement */
lzero = bp — p + prec:

/* Handle the # flag »/
if (fsharp && bp != p)

switch (fcode) {
case 0"
if (lzero < 1)
lzero = 1:
break:
case ‘X’
prefix = "0x";
break;
case ‘X"
prefix = "0X™;
break:
}
break:
case ‘E":
case ‘e”:
/%
* E-format. The general strategy
* here is fairly easy: we take
* what ecvt gives us and re-format it.
*/

/= Establish default precision */
if (prec < 0)
prec = 6.

/* Fetch the value */
dval = va_arg (*args, double).

/= Develop the mantissa */

bp = ecvt (dval,
min (prec + 1, MAXECVT),
&decpt.
&sign);

/* Determine the prefix =/

-19-

e_merge:
if (sign)
prefix = "=",
else if (fplus)
prefix = "+
else if (fblank}
prefix = " ":

/* Place the first digit in the buffer */
p = &buf[0];
*p++ = *xbp != \0'? *bp++: 0

/= Put in a decimal point if needed »/
if (prec '= 011 fsharp)
*p+ + = .
/+ Create the rest of the mantissa */
rzero = prec;
while (rzero > 0 && *bp!= \0") {
— —rz€ro;
*pt++ = *bp+ + .

}
bp = &buf(U}:

/% Create the exponent */
suffix = &expbuf[MAXESIZ}:

*suffix = 0"
if (dval !'= 0) {
n = decpt — 1.
if(n<0)
n=-n

while (n != 0) {
»— —suffix = todigit (n % 10);
n/= 10;

}

1* Prepend teading serues to the exponent =
while (suffix > &expbuf{ MAXESIZ - 2})
»— —suffix = 07

/* Put in the exponent sign */
*— —suffix = (decpt > 0 1 dval == 0)? "+" =7

/= Put in the e */
«— —suffix = isupper(fcode)? 'E": ‘e’

break:
case "
/%
* F-format floating point. This is
* a good deal less simple than E-format.
* The overall strategy will be to call
* fevt, reformat its result into buf,

-20-

* and calculate how many trailing

* zeroes will be required. There will
* never be any leading zeroes needed.
*/

/» Establish default precision */
if (prec < 0)
prec = 6;

/= Fetch the value */
dval = va_arg (*args, double);

/= Do the conversion */

bp = fevt (dval,
min (prec, MAXFCVT).
&decpt.
&sign);

/* Determine the prefix */
f_merge:
if (sign && decpt > —prec &&
+bp != \0" && *bp != 0)

prefix = "=";
else if (fplus)
prefix = "+™
else if (fblank)
prefix = " "
/* Initialize buffer pointer */
p = &buf{V]:
/+ Emit the digits before the decimal point +/
n = decpt:
k=0
if(n<=0)
‘ xp+r+ = 07
else
do if (*bp == 0" 1l k >= MAXFSIG)
sp++ = 0]
else {
*p++ = *bp+ +;
+ +k:

)
while (= —n != 0);

-21-

/* Decide whether we need a decimal point */
if (fsharp 11 prec > 0)
*p++ =

/= Digits (if any) after the decimal point */
n = min (prec. MAXFCVT):
rzero = prec — n;
while (==n >= 0)
if (++decpt <=0

b oabp == M
Ik >= MAXFSIG)
*p++ = 0,
else {
*p++ = *bp+ +
++Kk:
}
bp = &buf{0];
break:
case ‘G"
case g
/%
* g-format. We play around a bit
* and then jump into e or f. as needed.
*/

/* Establish default precision */
if (prec < 0)
prec = 6.

/% Fetch the value */
dval = va_arg (*args. double);

/* Do the conversion */
bp = ecvt (dval.
min (prec, MAXECVT).

&decpt.
&siga)
if (dval == ()
decpt = 1.
k = prec:

if ('fsharp) {
n = strlen (bp):

if (n < K)
K= n
while (k = 1 && bplk—-1] == 0")
~=k:
}
if (decpt < —3 1l decpt > prec) {
prec = k = 15

goto e_merge:
} else {

-

-22.

prec = k — decpt;
goto f_merge:
}
case ¢
buf[0] = va_arg (»args. int);
bp = &buf]0]:
p="bp+ I
break ;
case s

bp = va_arg (=args. char *);
if (prec < 0)
prec = MAXINT:

for (n=0: *bp++ != \0" && n < prec; n++):

p=-——bp
bp —= n;
break;

case \0":

cp— -
break:

case "G */
default:
p = bp = &fcode:
p+ T

break;

}
if (fcode != \0") {
/= Calculate number of padding blanks */
int nblank;)
nblank = width
= (p - bp)
— (lzero < 0? 0: lzero)
— (rzero < (0?7 () rzero)
— strlen (prefix)
- strlen (suffix):

f* Blanks on left if required */
if (!fminus)
while (= —nblank >= ()
emitchar (* °);

/%= Prefix. if any */
while (=prefix '= \0°)
emitchar (sprefix+ +),

/* Zeroes on the left */
while (- —lzero >= 0)
emitchar ('0°);

/= The value itself */
while (bp < p)

-23.

emitchar (xbp+ +):

/= Zeroes on the right »/
while (— —rzero >= 0))
emitchar {0°);

/= The suffix =/
while (*suffix != \07)
emitchar (»suffix+ +);

/= Blanks on the right if required */
if (fminus)
while (= —nblank >=)
emitchar {* "):

}
}
return (_pfile '= NULL && ferror (_pfile))? EOF: count;
}
/* Send a character to the output */
static
emitchar (c)
char c;
if (_pfile != NULL)
putc (c. _pfile);
else
*_pstring++ = ¢;
+ +count;
}

10. ACKNOWLEDGEMENTS

The formal specification given in section 8 would not have been possible without the help of John
Reiser, Dennis Ritchie, and Larry Rosler. These people also produced implementations for the
VAX-11, PDP-11, and Honeywell 6000 computers.

/ «‘I/z 'U.(i&// i%&//)

G) T R TS 4 7 Andrew Koenig

