1S &/ -

@ Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEI 13.9-3)

Title: A Distributed UNIX™ System Date: May 9, 1980
Other Keywords: Network T™: 80-3168-6
Datagram

Remote File System

Author(s) Location Extension Charging Case: 494(8-120
Alan L. Glasser HO 1E-335 6569 Filing Case: 40324-2
David M. Uagar HO 1E-335 3892

ABSTRACT

.~

This paper describes a distributed UNIX system that supports a community of several hundred
computer programmers. Individual UNIX systems are connected with network software and
vendor-supplied communications hardware to provide transparent read-only access to all files on
all processors, and a set of commands for explicit distributed data manipulation and resource
sharing (e.g., line printers and remote job entry connections).

The system can withstand a number of hardware failures by automatically routing data around
malfunctioning processors and links. Also, no more human intervention is required than wouid
be if the same number of processors were operated in a non-distributed mode.

Network file accesses take four times longer than local file accesses, providing adequate
performance. The system is compared to a Programmer’s Workbench provided on a large
computer. Experiences with the system and future work directions are also presented.

The attached paper has been submitted to COMPSAC 80 (IEEE Computer Society's Fourth
International Computer Software and Applications Conference, Chicago, October 27-31, 1980).

Pages Text: 1 Other: 13 Total: 14 .

No. Figures: 4 No. Tables: 0 No. Refs.: §

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

f \ bELL TELLSNCAE LABCHAICELILS, ldue TN=-80=3308°6
NIS16LILUTIVN
[HEFER GEL 1J.9=])
- ™~
COMPLETE EEMCRANDUX 1C CCXEFLETE MENCHEAMUR IC COMILES s MENCBANLUM TO CQVER SHEET CNLY TO CCVER SHELT CMLY TC
COSRESFONLENCE FILES KAEUER,JOSERD G YOS8K,a L AYLWARD,ELX2A88TH 2ITINER,.3 8
m EQ4AREK,d P ZIMMER,DAVID A BACCASH,JEANNE M BITTRICH,MARY &
QFRICIAL PILE CCEX LARLESS,ulLLIAK J 215L1S,040L M BALH,MAURICE J BLAKE,GABY O
PLUS CAE CCEFY ECE LAYICN.H J,38 143 MaMES sacxus,c r,sa BLAZIZE,S D
Z3CH ACDITICHAL F1IAMG KSEFLE,EVELIM C EAGLEY,JGLN L BLELEL ,JCSEF ~
CASE REPIRENCED JLESK MICHAEL E . EAJLEY,CATHEBINE T BLANCER,.S
LUDERER,GCITFGIXL & 2 CCVER SHEEL ONuY TO EAKER,8RENDA S BLINN,d C
J41 FILIE CCXY RaC3I,2 ¥ BaRB3,0CHN BIUM,MARICHN
(rcaM E~1326) MACCR.8 P EAKER,ML1CLELL 3 8CCKUSG, SCBERT J
MALIIK,JCSERH X COEaESPUSUENCE FILES BALCUIN,GLORGE L BCCX,NANCY 2
10 SEFZEENCE CCSIES NABIONE,JCHN © SALENSCN,CHRISTINE M 3CODIE,JAFES B
MABRSCH, SCHELT S 8 CCPlES FLUD CNk SALLANCE, LCERAT A 8CTIN, I J
JISCEESCN, £ J MABZRLLOTIC,) CCEY LCR BACH riLING 3ANG, SUNG Y ANG 3CONES.d)
ABNAB,THCMAS D >MASHEL,J 3 Casz 2ARBATC,509BAT 1 8CGARTI,Z J
BARICH N E NASs,C A EABNHEASDT,ZARL B 3CGART,IHCMAS G
dAUER.H C MAURSELL,8 L LAGESEN ,,JOnd EAHQFSRY ALLEN BC1VIL,SICHARD H
fll\ BAV1HE,5ICHARD 4 NC CABB,.§F S ALFCNSCM,S1BVE M ba80ON,SCOERT V BCLINSX1,NANCY V OEVLIN
BZAUNCX1,LILAND B NC DCNALD.J ¢ AUATEMARCC ,ZZRESA M 2ARAESE.A L BCRACHEA,: N
BECXEIL,3 1 8C INTIRE,d C AEATE,JCIELY S8ud.CAVID L BCNANNLI.L 3 -
BLCEEEE,PAlbLLK) PCCULLOCH,JULN W ACKEUMAN,A FHANK BARR W J 2CNO, ¢ €
30BHN,EAGL ¥ MILLER(SC ANME N ACRLUMAN,J ¢ ' BATISTONL,F J BCXD, UCLICK C.JA
SRBITHAURT A H MITCHRLL,J C ARG, ALPUED ¥ EATTAGLIA,F RARCES BCBU, XEVID =
CINPBBLL,JERBY B MIZZZ2,RCHIBT W ARHENS, dINEE B EAUEL,5ARBARS T BCSI30K,BLLER 4
CAMALSZ,500D H NIXDFELDZ,8 G AHQJ A, SUONIL 3 EAURB,HELEN 3 BCBKAR,SUSESH 1
CHEN,GCEEET NORATZ,D 4 ALEAGLI,V 4 BAUERLUCLFGANG F 8CS8,020251sh
CICQK.d § CNCHUNDEC,WAYRE 2 ALEERTS,BaRDANA) EaUGHE,C 2 BCSICH,iCRALD T
CRISIOFCR,ZIUGESE QicHAAD,5 A ALCALAY,D EAXTER,LESLIE) BCSWELL,2A0L1 S
DR GRAAE,3). PASTERNACK,G ALEXIS,a D,dR Ed3ZR,5 L BCIEGB.8 B
O00CK.e 4 PE2ZRSOM,2ALEB W MLXCNS, ESRDERTICX ELCXER,JACOB I 3CUBNB,STZPHEN 3
>L0LRTT3,T eILLA M A ALLIN,JAKES R EECXZR,2ICHARD) ECRYES,L dax
COMPIZAER,d A PRIBYE,B4BIC) G ALLES,H G BSEDNAE,JOSERPB 4,JR BCICE,i N
CONCHGE 5 §,JB8 4LXIGH,T ¥ ALLISCN.C beda BEIGHLEY XEIT8 A ACIER,2BILLIS J
CQUGBERTY,5 J 3ZPERAX,D L AMABILE (GECEGE & EENCOQ,LAVIC S BCILE,GESALL C
DUBMAN .2 B 880,48 3 AMITAIN YENISCH,JEAK 8CYSEN,d F,JR
DRO3AK.F S >RIZTCHIE,D M AMNIRALA,R T BENNBZT,3AYNOND W 3BADPCRO,ECEASL &
ELDAEIGE,.GAAY P 30LRIGUEZ ,ERXESIC J AMCSS,JCHN J EENNRTT,AICEA2D L 85ADLEY,X HELZIX
FISENAB,LABLEL & 3CVEGHO,HELEN © ANCESSCH,C 2 2ENNEIT,HILLIAM C 2SAKCAUES.C ¥
EREENAS R G 2CRLAND,BAUCE 3 ANZEBSON,KATULYN 3 2ENCHI1TZ, P BEARCT (SICHALE 3
Gaas2, ELAInE.J8 2CY,SUMIT ANCERSChes G BENSING,JAMES ECNARD BBAUN,L B
f-\ GIBSCH,B 1,48 BUDINSTEIN,PETIES ANDEESOM AILTON N 3ERENEAUM,ALAN BSAON,LAVID i
GILLCK,ALEX C >S48S2VITZ.A L ANCEESON,a 2 EERGEECN.A F,JR 35AUN,Z 3 e
GIMMELIZ,BALZH T SILONCN,FR20 4 ANCEBSCM, 5 2 BERGLAND.G D BREILAND,JCHE & N
GLASSZB LN L SCHMITZ,s») ANCAESS,¥ J SERKEY,X) BAENSKILELWIN F -
GUIDI,F1858 7 SCHVARZZ,d C ANICLICA,LAVID A S8ESKCHIIZ,2A0L B BSESLERLBENEE)
JHAIGHI & ¢ SHAER.N 2 ANTONELLL,CHAGLES J 5LAK,DCNALD) BSITI, WAEAREN C
HALSCH,.H F,d8 SLiNA M ¥ ARCHER,AU3SELL L,JB SEANHARDT, 3ICBARD C BRCAD,MAGTHA ¥
HALLER,S ¥ SHYDER, BEBMAKL £ LANSTECNG.L 8 SEaNCSKE,BEVEELY G SECNSTZIN,.N
HALL,AKDBER C.JdB SICSEY, THCMAS 7 A5MSIBCNG,Z Q.d8 JEENSTEIN,CARIELIE 3 35CCKS,CATHESINE AN
BANSES.E € SUBBBIZR.LINN) AENCLD,,GEGHGE ¥ BESNSTEIN,L BBCSS,Jd3FZ5EY T
HARKBESS,CIACL J STUBOLBYIILD,E » , ABNCLD,JAMBS 4 SEGNSTZIN,PAOLA 3 3FCTMAL,INNA
HABSIS,85L5DA L SON,IIB-SHICDG AGKCLD, FEYLLIS A BERAIMAN.R O 8sCIN,.C ¥
BAYCEN,CCHALL F,J8 1A8LCSKI, 152CLCEE E,J8 ABNCLD,TLECNAS F BEkZINS,ALRXIAKDER B EBCEN, ILLINGICE L
BEATER,SCEEHT J TAGUE 3¢ SXLEY) AAR1N,LEE 3 EhATIA, BRIV BECHN,JANES N
HBEYFBON .8 GCEDCN,JF >THCXESQN .4 A5THOES, 2 blANCEL.M d BRCWN, LAUBENCE MC 7EZ
B2IDEALEBVCE H TING,DBRNIS WAY ABIIS.H 2 SICX2CRC,NEIL 3 BECIK,NABK S
HBRGZNHAN,C 3 QNGAR,DAVID ¥ ARYICSCN,d ¥ 81LASH,IIMOTLY D 8BCIN,S1024T G
JAASXA.E G VEEMA,SHIV 2 ASELTINE,EO0WARD G 3ILOWOS 8 M BRCUN,¥ R
JONES,Z £ WELI N J ASMUTH,a4CHASL L ElAEN,I5hA 2 BACWN, W STANLEY
KANZ,J RICHARD 12502, TINCTIHY i ASTHANA . \5lsAXA B8ISCHCFE,3d cABAY BBCZ.3 ¢
SARPLAN,FEANE ICNSIZNICZ,3 C ATAL,BLSHNO S BISHOEF,J DANIEL BFUECESZR, 0CUGLAS 2
ZA0ZELE,3 C.u8 ¢ACQBBLLIS,qC228T E AXELSCN, A L 81SHCP,IHOMAS P AETANT,ZA¥ID J
f‘..\ + RAMAD EY JOTHCE > CITED 18 BEFEISENCE < BBQUBSTED E! AZADER (NAMLS V.IbCOT 2REF1X 1a4d 1€
VBBL SILECIED 3SING TEZ AUTHOB’S SUBECI C3 CAGAKIZATICNAL 5#2ZCIPICATION 48 GIVEN 3BLOW)
MBECOBY SEECILIICATICN e cocrcocecocecocrosnsots Moocessees tosseestetoeceeeretotioeeecesetnsesioescesotosnosssesrencosannsrtecsssssianesse
CCrPL2IZ MEXC TGS
316=8C8 364-5UF 31168-T) 3633-308 3121-cu8 3122-8Up
COVER SBEET IC:
l1;§-50? 323-s5u2 324-509 3a51-3U8 932~5U9 933-5U¢ 37-C24 313-Czd 127-M28 13$3-8473
135-058
COGSSI = CCMFUTING SYSIZM IKTIZBCCNNECTICN, NEIWCAKS: SCETWAAGA ASPECIS
/‘.\ UNOS® = UMX CEEBATING SYSTEM: SENEBAL C3 3UAVEY JOCUMENTS
dC COLULSICNLENCE FILzS . ¢ TM=d0-1168-9
aC 1al4? . TCTAL FAGES "
f-\ TG GET 3 CCNPLEIE CC2Y: 2LEASE SEND A CowPL2TE
1. 32 SURZ tOUR CCHBECT ADDBESS IS GIVEN ON PLZ CTHES Silk. {) MICGOFLCHE CC2Y () PAPEB CC2Y

ce FGLD THIS SUBXT IN HALY #LTH THIS SIUE CUT AND &TARLE.
de CI8CLE THE ACDEEsS AT dludl. USE NC EdVelCab.
4¢ INCICILIE WHETUZS MICHGPLCHE CB 2AFBH IS UESIRED.

TC THE ADDEESS SHCWN CF IHE CTHER SIDE.

Bell Laboratories

subject: A Distributed UNIX™ System date: May 9, 1980
Charge Case 49408-120
File Case 40324-2 from: Alan L. Glasser
HO 3168
1E-335 x6569

David M. Ungar
HO 3168
1E-335 x3892

T™ 80-3168-6
MEMORANDUM FOR FILE

The attached paper has been submitted to COMPSAC 80 (IEEE Computer Society’s Fourth
International Computer Software and Applications Conference, Chicago, October 27-31, 1980).

' o, $. Dntaez

Alan L. Glasser

HO-3168-ALG/DMU-alg David M. Ungar

Att.

One memo
References
Appendix
4 Figures

A Distributed UNIX™ System

Alan L. Glasser
David M. Ungar

Bell Laboratories
Hoimdel, New Jersey 07733

1. INTRODUCTION
1.1 The Need for A Distributed UNIX System

The Programmer’s Workbench UNIX system [1, 2] is a specialized computing facility dedicated
to supporting large software development projects. The system is usually run on a DEC PDP-
11/70 minicomputer. Unfortunately, the number of users that a single PDP-11/70 UNIX
system can support! is not sufficient for most sites, and multiple system configurations are quite
common. FEach system usually supports an independent user community. Inter-system file
transfer facilities are used extensively. These facilities typically rely on dial-up telephone ports
with automatic call units [3] or remote job entry facilities to a common host [4]. When each
system’s users form an independent community such facilities suffice. However, when a single
user community must span multiple systems, transparent access to all files is far superior to file
transfer commands.

The authors have been members of such a single, spanning community for the past few years.
Originally, it was small enough to reside comfortably on a single system. As the number of
users grew, it became necessary to add a second system, connected to thie first one by a high
speed file transfer facility. More systems were added, and the difficulties that were caused by
the fragmentation of the community prompted an investigation of techniques to unify the
systems. This investigation led to a definition and a read-only implementation of a remote file
system.

A remote file system possesses the Tollowing characteristics: .

Location independence The user does not have to know where a file resides; a command
produces the same results if a given disk pack is mounted on
system A or system B.

Homogeneity of file names Remote file names have the same syntax as local file names.
Furthermore, the name of a file is independent of the system the
user resides on and independent of the system the file resides on.

Homogeneity of access A user process can ‘‘open’, ‘‘read”, “‘write", “close”, etc. a
remote file in exactly the same way as it a local file.

Additionally, it is important that all existing programs be able to access remote files without
modification. In summary, 4 remote file system is transparent; one neither needs to know, nor
does know, on which system a given file resides.

1.2 The Users’ View

We have implemented a read-only remote file system. Each user has read/write access to files
on the local processor and read-only access to files on every other processor. The greatest
benefit that has accrued from this system is the ability to share data without duplicating files.
Project source code is maintained in one place, and the remote file system provides access to it
for ail users. An ability to execute remote commands provides the basis for source update
facilities. These faciiities are built on the underlying network software and the remote file
svstem. Other facilities. that actually predated this work, such as file transfer service, line
primter or remote job entry service (where the printer/CPU or RJE/CPU hardware connections

I. The maximum is 45. but a total of 32 simultancous users is more typical.

are hidden from the user), and inter-system mail service are still provided. The syntax of the
commands to use these services, which is independent of the hardware connections, has been
maintained. The Appendix gives some examples of usage.

We have attempted to partition our community in a way that minimizes remote file system
traffic. Similar partitioning is often done for a single system community to balance disk traffic
or to ease the sharing of disk files. The resuit of our efforts is that we have constructed a
viable, large-community, distributed UNIX system out of smaller, single computer systems.

1.3 The Underlying Network

The facilities described above need to send data from one system to another and to perform
actions on remote systems. A datagram-based network has been developed to fill these needs
and to realize such transport functions as routing, network recovery, and link multipiexing.

The design of the network has concentrated on three issues: recovery, maintainability, and
performance.

Recovery No human intervention is required to inform or reconfigure the network
when systems crash or are bootstrapped. Each node monitors its
neighbors and configures itself accordingly. In addition, the daemon
processes possess encugh intelligence to automatically recover from most
errors. Finally, each datagram contains a checksum that facilitates the
rejection of noise.

Maintainability No constraints are placed on the interconnection topology, with the
exception that communications links must be bidirectional. The routing
algorithm automaticaily chooses the shortest path.

The network can be supported on a wide variety of bidirectional
communications devices. We currently use the DEC Parailel
Communications Link (PCL-11) interprocessor, time division
muitipiexed bus. In the past we have ailso used the DEC DMC-11
synchronous, point-to-point network link. Device dependent software is
confined to the device's driver and a simple listener process.

The operating system kernel (PWB/UNIX 2.0) has not been changed,
although device drivers have been added.

Performance Rapid transport is attained with off-the-shelf hardware. A remote
transaction takes about 60 ms. of real time. This results in remote file
accesses that are raughly four times slower than local file accesses.

The functoanality of the netwerk has been limited to the bare essentials. Ouly capabilities
needed for ihe remote file system are implemented. No attempt has been made to provide
virtual circuits, datagram sequencing, or end-to-end assurance.

2. THE REMOTE FILE SYSTEM
2.1 The UNIX File System

To appreciate many of the problems of implementing a remote ile system, a basic
understanding of the UNIX die system {3] is necessary. The overail structure of the file system
is that of a rooted tres compused of directory files, regular files, and special files. Directories
provide the mapping between the names of files and the iiles themseives. Special files are like
ordinary disk fles, but requests to read or write resulit in the activaton of an associated device.

The file system is device independent. and portions may ceside on several different types of
devices. The device conuining the root of the file system tree is typically specified in the
system configuration data, but this is usually a small portion of the entire hierarchy. Each

device contains its own, independent file system tree. The UNIX mount command replaces a
leaf of the hierarchy tree by the tree on the designated device. All requests for blocks within
this sub-tree are given to the device driver specified in the command.

At the lowest level of the file system software is a buffer cache. Higher level routines either
request blocks of data from the buffer cache, or return data to the buffer cache. Blocks are
addressed with a device number—block number pair. The buffer cache routines invoke the
appropriate device driver routines to fill or empty cache blocks as appropriate. These routines
have no knowledge of the file system structure. In particular, they cannot distinguish file
system control blocks (such as free list blocks) from data blocks. The relationship between a
process, the file system software (including the buffer cache), and a disk device driver is
illustrated in figure la.

It is very difficult to implement a remote file system with full read/write capabilities. The
locking and mutual exclusion mechanisms in the UNIX time-sharing system operate at a higher

level of abstraction, and thus become ineffective if copies of any particular control block are

cached on multiple processors. Operations that modify the file system rely heavily on the
buffer cache to allow the efficient modification of control blocks.

Implementing a read-only remote file system at this level is straightforward. A mechanism is
needed to translate a request for a remote file system block into a request to the remote
machine. This mechanism can be realized in a simple pseudo-device driver, and the datagram
network software. This interposition is illustrated in figure 1b.

2.2 The Remote File System Pseudo-device Driver

The driver consists of a block driver and a character driver.2 The novelty of this implementation
is that, unlike traditional combined block and character devices (such as a disk driver), this
driver assigns very different semantics to a block read versus a character read. Also, a character
write is supported (with unusual semantics), while a block write is explicitly prohibited.

The block interface simply queues requests for remote blocks. The queueing discipline is
strictly first-come-first-served.

The character read interface allows a server process to retrieve an entry from the request queue
and forward it to a remote machine. That is, the character read interface returns a request, not
a block of data as does the block interface. The character write interface allows a server pracess
to satisfy a request by returning a block from a remote machine to the original requester.
Thus, the write interface does nor write remote files, but provides a mechanism for returning
data from a remote machine 1o the kernel of the local machine.

A request consists of a device number and a block number. This tag is returned with the data
via the write interface ta match the returned data with the original request. The data are then
passed to the process that initiated the request, which may then resume execution (the read has
completed). The buffer cache mechanism must be disabled for the remote file system driver
because a block fetched from another system and cached locally can become obsolete when it is
subsequently changed by the remote processor (see section 4, below).

2.3 Error Recovery

The driver has been designed to be robust aad not require perfect underlying network software
and hardware. Datagrams are used for both requests and respanses. Some important aspects of

2. In the UNIX time-sharing system. a block device consists of randomly addressabie. secondary memary blocks of
$12 bytes each. A character device is any device that does not fall into the block device model. Disk drivers
usuaily support both a block device and a character device interface (the character interface allows 1/O to be done
in arbitrary block sizes). However. the buffer cache interfaces to block devicas onliy.

the driver’s error recovery strategy are:

— Each request for a block is an independent atomic transaction. Thus, the driver can perform
errar recovery on one request at a time, without concern for other pending requests. The
network need not preserve the ordering of datagrams.

— Pending requests are timed out after fifteen seconds. Thus, the driver provides for the
possible loss of a datagram. The nerwork need not ensure the delivery of a datagram.

— An unavailable file system can be locally disabled in order to abort all pending and
subsequent requests for the its data. This mechanism provides immediate feedback to a
user who attempts to access files on a system that has crashed. The remote file system
network software discovers which remote file systems are available by inspecting the routing
table.

"3. NETWORK SOFTWARE

3.1 Terminology

All network traffic is in the form of datagrams, where a datagram is an indivisible and complete
request for the destination to perform a specific action with a given set of data. The destination
of a datagram is defined to be a virtual endpoint, or VEP. Each processor hosts at least two
VEPs: its name. and here, a pseudonym for its name. A module that actually consumes a
datagram and performs some useful work is cailed a server.

3.2 Software Architectore

The architecture of the network software was influenced by the desire to keep each process
simple. Each process reads some input data, performs the appropriate action, and writes out a
response if necessary.

The architecture was constrained by the need to multiplex traffic arriving from other processors.
the remote file system, and user programs into one datagram stream for the switch.
Additionaily, datagrams must be broken up for transmission via communications devices and -
reassembied at the destination.

After considering the design goals and constraints, an architecture was adopted that consists of
separate processes to assemble and switch the datagrams, and a pseudo-device driver in the
vernel to multiplex them. Incoming datagrams are reassembled by listener processes,
muitiplexed into one stream by the daragram muitiplexor device driver, and switched out or
serviced by the switch grocess. (See figure 2.)

3.2.] The Lisener Processes. Each incoming line has a communications link listener process
that reassembles the datagrams and writes them onto the datagram multiplexor port dedicated
1o ihe datagram switch.

An additional listener process reads remote file system requests and encapsulates them into
datagrams. The destination of these datagrams is here, and the action requested is to map the
remote file system device number to a file system name.

3.2.2 The Datagram Multipiexor. The datagram muitipiexor is a pseudo-device driver that
supports a number of ports. Each port is a chanoet—group pair. Datagrams are written on a
channel. and read from the correspoading group. No limit is placed on the number of
srocesses :hat may have a channel open. Groups, however, are exclusive-use.

The muitipiexor is designed specifically for datagrams. and is therefore not stream oriented. No
more than 1024 bvtes can be written at 2 time. One read returns the data from exactly one
write.

Datagrams are queued first-come-first-served in the UNIX buffer cache. Stale datagrams
migrate out (0 disk until they are needed.

Disk space is allocated from the swap area in one big chunk when the multiplexor is invoked
for the first time. This prevents the datagram multiplexor from fragmenting the swap area.

3.2.3 The Switch Process. Each processor on the network has a switch process that reads.
datagrams from the multiplexor and either switches them out to another processor or services
them. Each function performed by this process is realized in a separate module.

The switch module is responsibie for transponing a datagram to the proper server on the desired
processor. Thus it performs two functions: switching and local server dispatching. It includes
the main loop of the switch process, which reads in a datagram and switches it.

The switch subroutine looks up the datagram’s destination in the routing table. If the
destination is not in the routing table, or if the datagram has been switched too many times, it
is serviced as a routing failure. Otherwise, if the routing table indicates that the distance to the
destination is nonzero, the datagram is written out on the outgoing link named in that entry. If
the distance is zero, the datagram has arrived at its destination and the server dispatcher
subroutine is called to invoke the appropriate server.

The server dispatcher subroutine employs a server table to map a datagram’s request fype to a
server. Each entry in the table has a request type and the server’s four entry points:
initialization, periodic poke, service successful datagram, and service a datagram with a routing
failure. If the request type starts with a slash, the remainder of the request type is taken as the
name of a multiplexor port (channel) on which to write the datagram. This convention permits
datagrams to be sent to servers in other processes.

Finally, the switch module includes the subroutines that invoke the initialization and poke
portions of the servers. The remainder of the modules in the switch process are servers.

The routing server maintains the routing table. (See section 3.3 below.) This module also
provides a subroutine to the other modules in the switch process that adds a local VEP to the
routing table.

The remote file system pseudo-device server supports the remote file system on the node that
originates disk requests. This module possesses the knowledge of the correspondence between
pseudo-device numbers and file system names. There are several tasks that require these data.

— Pseudo-device numbers are translated to file system names for outgoing requests.

— A remote file system pseudo-device is enabled if and only if it appears as a VEP in the
routing table.

— A mount process is spawned for every pseudo-device that is in the routing table but not
already mounted.

This modufe also passes data blocks in incoming responses to the remote file system driver.

The remote file system disk request server reads the data blocks on the processor that actually
possesses the specified disk. This is a three step process.

— The file system name in the request is translated to a disk device number via the mount
table.

— The desired data block is then obtained by doing a seek and read on the appropriate disk
block device.

— The data block is encapsulated in a response datagram which is switched out by recursively
calling the switch subroutine. :

Disk errors and routing failures are handled by manufacturing a response datagram with the
appropriate error indication. This server also adds local file systems to the routing table as local
VEPs. Non-unique file system names arc prefixed with the name of the processor.

The remote command server permits users to run commands in remote processors. Commands
are executed by invoking an instance of the command interpreter and passing it the contents of
the datagram. The switch process does not wait for the command to terminate. For instance, if
it is desired to copy a file t0-another processor, a datagram can be sent to it that will cause this
server to execute a copy command (remember that all files are readable). Any command that
confines its writing to a single file system can be run remotely if simply addressed to that file
system’s VEP. Most UNIX commands fit this model.

The switch maintenance server implements the following functions:
Debug Mode Toggle All significant events are logged when the switch is in debug mode.
Log a Message The contents of the datagram are logged.

Profile Toggie The number of invocations and the percentage of CPU time spent for
each subroutine can be measured with the UNIX profiling facility.

Dump The data space of the switch is written out to a file that can be examined
with the debugger. The switch process is not destroyed.

Log Measurements Counts of various types of datagrams are logged.

Restart This is used when a new version of the switch process is installed on a
remote processor. The switch shuts down gracefully and reexecutes
itself.

3.2.4 The Poke Process. The routing software must be directed to initiate a polling cycle every

fifteen seconds. The poke process writes a datagram with destination here and request type poke
on the multiplexor every fifteen seconds. These datagrams cause the switch to take the
appropriate actions.

3.2.5 Remote File Request Scenario (The following discussion refers to figure 3.) Suppose a
user process residing on processor “‘a”’ needs to read a file (e.g. **/bl/stuff”") in file system
“/b1” on processor ‘*b’’. The user process makes an open-system call which causes the UNIX
file system software to search the root directory for **/bl**. Upon locating the tabie entry for
*/b1™, the kernel discovers that a file system residing on pseudo-device n of the remote file
system device is mounted there. The file system software then requests the first block of the
mounted file systein’s root directory from the remote file system device driver. The following
operations are the same for every remote file system request.

The device number and block number are inserted in a buffer header which is passed to the
remote file system device driver. (The file svstem treats the remote file system device driver
exactly as it would a disk driver.) The remote file system driver passes the request to the
remote file system device listener process which encapsulates it into a datagram. The
datagram’s destination is set to ‘*here’, and the request type indicates that it is an unmapped
remote file system request. The listener process sends the completed datagram to the switch
process via the datagram muitiplexor. The switch process and passes it to the remote file
svstem request server, which looks up the device number in a table to discover the name of the
file system (**/bl™*). It then constructs a datagram whose destination is the {ile system name.
The request type of the datagram indicates that it is 2 remote file system disk request. The
datagram also contains the block number of the biock to be read and the name of the
originating processor.

The remote ile system request server recursively calls the switch module to switch this new
datagram. It iooks up **/b1"" in its routing wble and determines that the datagram must de sent
out on '‘/dev/comx/b". The switch passes the datagram to the appropriate communications
device driver which sends it to processor **b’"".

On processor **b’*, the communications device driver passes the datagram to a communications
listener process. This process ensures that the whole datagram is received and then sends it to

the switch via the datagram muitiplexor. The switch reads the datagram, looks up **/bl’" in its
routing table, discovers that */bl’ is local, and passes the datagram to the remote file system
disk server module. This server looks up */bl1’" in a table to determine which physical disk
volume contains the file system, and then reads the desired block of data from that disk.
Finally, it constructs a new datagram whose destination is the name of the processor that
originated the request (*‘a’’), and whose request type directs the datagram to the remote file
system device server. The datagram also contains the block number and the data.

Once again. the switch is recursively called to switch the datagram. It looks up *‘a” in its
routing table and writes the datagram out on the appropriate link. However, this datagram
includes a block of data and therefore exceeds the maximum size that may be transferred by
the communications driver in one system call, The datagram must be sent in two pieces.

The communications link listener on processor **a’’ reassembles the datagram before sending it
on to the switch through the datagram multiplexor. The switch reads it, discovers that “a’ is
local, and passes the datagram to the remote file system device server. The server passes the
data back to the remote file system driver, along with the volume and block numbers. The
remote file system device driver software fills the appropriate kernel buffer with the data and
returns it to the file system software.

3.3 Routing

Our current configuration utilizes one time-division-multiplexed bus to interconnect all the
processors. Although this fully-connected topology is optimal for our network, length
limitations of the interprocessor bus have forced us to use other configurations in the past. The
routing software is designed to send datagrams to their destinations via the shortest availabie
path. The only topological constraint is that links be bidirectional.

Recall that the destination of a datagram is defined to be a virtual endpoint (VEP). The routing
software treats the network as a set of nodes (processors), each node hosting one or more
VEPs, and a set of undirected links between the nodes. VEPs are represented as sixteen byte
character strings.

Each switch process has a routing table that contains an eatry for each accessible VEP. An entry
consists of three fields: the name of the VEP, the number of hops to the VEP (zero for a local
VEP), and, for nonlocal VEPs, the name of the link used to send a datagram to the VEP.

Network applications use the routing software to disseminate knowledge about resources. The
application software defines a local VEP for each resource it possesses on its own system. The
routing software thep enters the [ocal VEP in the routing table and distributes the VEP to other
nodes. Eventually each processor’s routing table contains all the VEPs in the network. The
application software reads the routing table to discover which resources are available on other
systems.

For example, consider how the routing software is employed by the remote file system to
distribute the names of the available file systems. The remote file system disk request server
defines a local VEP for each locally mounted file system. The remote file system pseudo-device
server then searches the routing table for non-local VEPs that are file system names. The
resultant list of availabie file systems is used to enable, disable or mount the remote file system
pseudo-devices as needed.

There are currently three classes of VEPs in use:
“here” a special VEP which always refers to the local node,
processor names, which are enumerated in a configuration file (¢.g. **a’"), and

file svstem names, which start with a slash (e.g. /al’, **/a’’, “/a/usr’).

The strategy employed to maintain the routing table as VEPs are added, lost, or moved is the
heart of the datagram network. Because a dead system is silent?, the switch can not be
explicitly informed of a VEP's disappearance. Instead, the switch assumes that any VEP that
does not appear in the routing table is inaccessible.

Each node periodicaily rebuilds its routing table by polling its neighbors. Every fifteen seconds,
each node sends a request for routing information to its neighbors. The routing table is used to
avoid the expense of sending a request to a nonfunctioning system.® However, all neighbors
should be polled; the state of each system changes, and dead systems eventually return to life.
As a compromise, the routing software selects one of the nonfunctioning nodes for each polling
cycle.

The routing table entries returned in the neighbors’ responses are accumulated in a fresh copy
of the routing table. At the start of a polling cycle, this copy is cleared and reinitialized with
the local VEPs. At the end of the cycle, the routing table is discarded and replaced by this
copy. An entry is added only if it would shorten the distance to the VEP (always true if the
VEP is not aiready in the table), and if the distance would be less than or equal to the number
of nodes in the network. The entry is incorporated by copying the VEPs name, setting the
distance to the VEP to one more than the distance from the neighbor to the VEP, and setting
the name of the outgoing link to the name of the link for the neighbor.

4, PERFORMANCE

Performance measurement is an ongoing effort. Execution time profiling has been instrumental
in decreasing the CPU overhead of the switch process. Real time measurements suggest that
remote file accesses are four times slower than local file accesses. The real time to send a
datagram and get a response back has been measured at about 60 ms. The amount of CPU
time used by the switch to process a datagram is about 12 ms., of which 3 ms. is spent in
yser-modé and!9 'fis. in’ system-mode. We note that for a single 512 byte remote block to be
retrieved, odr implementation causes it to be copied six times. The amount of time spent
copying the data, however, is not significant: about 860 us. per copy for a total of 5.2 ms., or
8% of the best case retrieval time.

Utilization of the UNIX buffer cache would yield a significant improvement in remote file
access performance. We are measuring cache characteristics in order to develop an algorithm
that provides real-time invalidation of stale remote data blocks. Other potential performance
improvements are: moving the switch or listener processes into the kernel, implementing a
more sophisticated flow control policy {or the communicaiion device drivers (recail that UNIX
device drivers typically deal with 512 byte blocks of data, and that datagrams can be up to 1024
bytes long), and providing more sophisticated routing (e.g., speed-dependent or congestion-
dependent routing).

5. SOFTWARE DIMENSIONS

The remote file system driver consists of 400 lines of source code. and compiies to a 2K byvie
object module. The datagram muitiptexor driver consists of 300 lines of source code, and
compiles 1o a 1K byte object module. The user processes consist of 2100 lines of source code,
and compile 10 200K bvtes of load modaules.

-

3. Dead men teil no tales.
3. Caruain communications device drivers may take up to two seconds o retura an 2rror.

6. CONCLUSIONS

A transparent remote file system can solve the problem of supporting a large user community
on a2 UNIX time-sharing system. Also, such a system whén run on a configuration with several
processors (especially when a spare processor is available as a cold standby) can offer higher
availability than a system that provides a UNIX Programmer’s Workbench on ‘a large
mainframe. Of course, such a system could allocate its resources more flexibly, devoting the
full power of a large mainframe to a single process if necessary. However, this flexibility is not
as critical for a large software development project as a high level of availability, and this is
achieved by our implementation of a transparent file system.

One disadvantage of using multiple processors is the lack of a single, system-wide clock. Our
source-code database software can only tolerate a discrepancy of about one minute among all
the processors’ clocks. We currently use manual means (i.e. the system operators) to achieve
synchronization.

Our implementation of a remote file system has sacrificed functionality for simplicity and ease
of maintenance. The read-only nature of remote files has created a need for special-purpose
tools to update them. But, the same limitation made it possible to implement the remaote file
system without any changes to kernel software and greatly simplified the task of porting the
software from the DEC PDP-11/70 to the DEC VAX-11/780.

The simplicity of the software also helped us to get it up and running quickly. We have been
providing remote file system service on a four processor configuration since October of 1979.
The fail-soft nature of the system has proven itself over a few hardware failures and many
software failures.

In the future, we will expand the system to 200 users on seven computers, make optimizations
to improve its performance, and implement functional enhancements.
ACKNOWLEDGEMENTS

The first implementation of our remote file system was due, in part, to the efforts of
D. Way Ting. Support, suggestions, and encouragement, all of which proved to be essential,
came from K. G. Freeman: Special recognition is due C.B. Hergenhan, for the resource-
sharing and file copying facilities for both this system and its predecessor. Finally, we gratetully
acknowledge the technical contributions of G. L. Chesson, who persuaded us to separate the
transport function from the remote file system and construct an underlying network.

REFERENCES

1] D. M. Ritchie and K. Thompson. ‘The UNIX Time-Sharing System,’ Bell Sys. Tech. J.,
57, 6, 1905-1929 (1978).

2] T. A. Dolouta, R. C. Haight, and J. R. Mashey. ‘The Programmer’s Workbench,’ Bell
Sys. Tech. J., 87, 6, 2177-2200 (1978).

(3] D. A. Nowitz and M. E. Lesk. A Dial-Up Network of UNIX Systems. Bell
Laboratories, January, 1979.

[4] A. L. Sabsevitz. Guide to IBM Remote Job Entry for PWB/UNIX Users. Bell
Labaratories, October, 1977.

(5] K. Thompson. ‘UNIX Implementation,’ Bell Sys. Tech. J., 57, 6, 2177-2200 (1978).

APPENDIX

Our users have found many ways to utilize this system. We describe some of them in this
appendix.

-10 -

Each user is assigned a home file system for permanent files. Each file system is normally
mounted (locaily) on a particular processor; thus a user customarily logs in on the processor
with his/her home file system. Our system permits a user to position his/her working directory
in any file system on any processor. Thus, our users can log in on any processor, and read their
files. In fact, users have inadvertently logged on to the wrong processor only to discover that

. their files were unwritable.

For example, one of our processors lacks a tape drive. A user who wishes to copy his/her files
to taps can log on to a processor with a tape drive, and access his/her files transparently.

One of our processors has a high speed connection to a high resolution graphics terminal. With
this terminal, one can examine typeset text, graphs and figures before producing hard copy. As
any user can log on to any processor, ail users can take advantage of this unique terminal.

Without the remote file system, a user who needs to reference libraries must execute file
transfer commands to copy them to his/her own machine. The actual copying is performed
asynchronously, so some form of completion notice is required (typically, inter-system mail
service). As the copying is time consuming, the user often tries to use previously copied
versions (hoping that they are correct). The tramsparent access provided by the remote file
system allows library sharing across many processors as if there were only a single processor.

SOME
USER PROCESS

KERNEL
FIGURE 1a
MAGCHINE A
SOME

PROCESS TRANSPORT | | USER

REMOTE

F.S. KERNEL
\ DRIVER
MACHINE B
USER

TRANSPORT

DISK

KERNEL DRIVER

FIGURE 41b

APPLICATIONS
LISTENERS

) DATAGRAM
' T MUX

n COMM

APPLICATION LINK
SERVERS |
_COMM e I
LISTENER |
SWITCH |
' 1
COMM COMM

LN

r
4
¥
w

FIGURE 2

KERNEL LEVEL

PROCESS

USER LEVEL

SWITCH

RFS

DEVICE
SERVER

DEVICE
LISTENER

RFS

[COe

FILE SYSTEM

BISK
ORIVER

REMOTE

DEVICE
DRIVER

PROCESSOR A

COMM
DRIVER

KERNEL LEVEL

coMMm
DRIVER

USER LEVEL

SWITCH

DiSK
SERVER

COMM..
DRIVER

PROCESSOR B

DISK
DRIVER

FIGURE 3

