R
Bell Laboratories Cover Sheet for Technical Memorandum
e
The information contained herein is for the use of employees of Bell Laboratories arnd is not for publication (see GEI 13.9-3)
-~ Title: Cycles to Burn: The Challenge of Abundance Date: July 3, 1980
Other Keywords: UNIX T™M: 80-3633-5
Author(s) Location Extension Charging Case: 49343-12
Alan R. Feuer MH 2C-273 3136 Filing Case: 49343-12
3633-800703.01TM
-~
ABSTRACT
The computing power available per person continues to grow rapidly. This paper
looks at some ways that the increased power will change what we expect a compu-
ting system to do for us. Some deficiencies of UNIX M are used as a vehicle for
exploring these new expectations.
Vi
~~
e
~ Pages Text: + Other: | Total: 5

No. Figures: 0 No. Tabies: 0 No. Refs.: 3

E-1932-U (3-76) SEE REVERSE SIDE FOR DISTRIBUTION Lid1

t4

3ELL TRLZFECNE La3QBRATOAIZS,

COMRLETE MIMORANDUM IQ
CORBESPCNLENCZ 7IL3S

OFEFICIAL YILZ CC3Y
2LUS CNE CC2Y 2ca

ixc.

COMPLZTE MEMOIMNLIUM 0
GALLABE23,, 3

+GRHANEK, HABAIN 3

GIC3IG2N,MICHAZL 2
SEYLNG,T T

ZACH ALDITICNAL SILING 5133, XKENNETH 3

CasZ 3@ iaamczy

JAIS 2IL2 QJVPY
(FCIN 2-1323)

10 32FR2RINCZ JC2IBS

AlSESCL, aNGELL L
AND2ESCK ,ILICH ¥
ANSZLMC,0NALD 2
A3NCLD, T30MAS 7
SABOFSKY,ALIZN
3a123,0 L
32CX2R.,9
32CR23T.4 2
328GLAND,S D
3I3EN,2aMA 2
3L480T,D 2
3LIM, MR 310N
3CZHM,2ABL ¥
J0HENING.d &
309YZ3,L 3aY
CLS2, 9 u
309N, 2LLINGION L
330%W,7 sSTaNL2Y
3YBMETTI,A A
30TLIIT, 2433
<CiNADAY, 3000 3
c2aMix,2 }
CHANG, 5283287 1

[0 A 54 PP § Sdetrd W)

a2 v
C3I2EAY,LC2INDA L
S4Z,328~007F
C3ICNG, 2BEZ
CHOW,w ¥

SCOX,2 J
ICRP,oAVID ¥

S G3laF,C 4

cZ2 LIGIsH,3 G
JICKXMIN,322N23D N
SOLSTTALI A

plel }-h 0555 PRV §
2aIsceil.2
JNO2UK,F 5
2133ICIUS,sATINZ N
FAULANZZ,2CG22 2
>FZIONMAK,STUAGT 2
FIU23,aLMN 3
TISAMAR,SANIZZ &
J0UGHT,E o
23A823,4 S
732p222C%s,4 2
FITZMANLX S
FREZTMAN,NAITIN
7308T,3 ONN2LL

v WAMEL 3¢ 1UTEC3

“E32 SELACTID ISING

MEECUSY

-,
-C:

686-509

SCMPLITT MEMO
3&3-572

LCsy =

SOvER

£3g£37 IS¢

> 22720 48 3TFSIINCT
oue 3

ACTHO2°S 3T3J2CT

3534 -309

ICMPOTING STSIENS,

523sow.3 1,9
GIL&ZY, THCMAS 3
330851M,3 o
33AVIMAN,3 2
G32EN#QQD,2 S
33IJ0r.,2122 7
32662277, 68229 ?
3328387,3 <
3aLL,080327 J,43
ZAMILICON, FA221CI4 4
SANSIN, TN
JINIG,FIANCES 3
JE2MAN, SENNETE M
ICPMANN,L M
BOLIMAN,JANES 2
SOLIIMAN,SACK M
40,TI3N-LIN
Z37INE, M N
JaCo8s2N, 30832237 <
TANCDI, 32322 X
X2Z52,4 M

KT DNIGAY,3ATIN 1
%$33SLls, 72723 4
XOSMAN, 3C323T 1
£327SCH, L<24N278 2,33
ZANG23,922Y
LAUTENBACH, ,O2ECAAd A
LAT2CN,d 4,53
32,408 H
L372N323G.3 2
SINDZEMAN JOHN 2
LJIIRITS,Z
LJD2328,3CTTPAI2T ¥ 3
MACTASI2K,JQHN 2
MARICNB,JCHN ¢
MABSHALL ,AILLI4M T
M1STZLILTITC, N |
MA3723872C2X,K 2
AATHICT MA3TIN 2
MC FOMEGAL,Si3CL 2
4C LQUGALIN.JS
438NING23,3 2
MIC3AZLS, 4NN §

NC¥ITZ.0 1
28,3IC2a30 098G
F2LL3GAIN,J ?

<FUILLIRS 3 J

2LUSON, Z22LI3T N
#3E30T20Q,24AVIC L
23I272,333ICN S
FOEILING,330CZ 1
JICINN,MA3GA22T 2
3ALZIGE,. T o
2ZI0,a)

aIdoLsS, S8t S

36-0%8
FANCIANMIC 23

. (32223 G3Z

< IZQUISTIC 2Y¥ 3:Ia0E2
G2 CIGANLZATICNAL 32XCI?ICAIICN 43 3273 3ZL0F)

JIST3I3GTION
134 3=3)

CCMPLETE MENQIANCTM TO

I0BRR1S, CIABLES §
2053IGU2%,23N2STI0 J
20CMR,d 2
+30SIN,3Q82AT ?I5428
20S1L23,lAWaZCT
2C72GNC,32L3N
SA382VI2C.1 &
S$A1T,L4422NC2 3
+SCANLON,J M
SCEMIZZ,C A
3C30ST23,740L A
523204, 3CHDAN
+S81aMA,C X
3ECRI28,s ¥
SINCNR,Z 7
5I8G3,3 2
SINOWITZ NQAMAN
STINA .M 7
<SMITH.o 2,43
3¢,3 C
5pI1388,3 4
ST3I082CK23,l23Y 4
T13L0SXI,TH32C3033 7,48
J1G3B,323%L3T 1
THCMAS,L3E <
THCM2SON,Z
TCY,d i
<3Liaicq,ax28 ¢
733MNAC,3 M
¥1L323,213%432T8 L
FANDIILAK, 2HIZIZ 2
#ING, ALY
FATSCH, ¢ 5 .
7ATT2BS, i2C32a3D J
¥2TIBRELL,CHARL2S 5
WILSCN,J 2
CACC3ELLLS, 30823T 2
T3,JCHN &

150 NiMES

CCVER SJEET ONLY 70

CCREESICNDENCE 2152

4§ CC2I2S 2LUS GCnN2
CCPY 2C3 2aC3 2ILING
cise

LAGONSON,33272 o
18a12,JcCs273
ACK23AMAN,s T3ANX
ACKZ8MAN. 2
A3C,A1233D 7
AERENS,30.0E2 3
1LCILAX.D

ALLZN ,JAM2S 3
ALLISCM,S 3,53
ALMQUIST,.d 2
4MQ3Y,30BEET #
AMOSS o CHN J

36-0I12 3833

ZCOINTIIC SCCUMENTS ONRY

COVER SHEST ONLY O

ANDERSCH, ZATHRIN J
43ANOLD ,S208G2
ASELIINE, 20VizD S
ASTH ANA ,434AY)
ATAL, 3ISENT 3
3AZL2Y,CA7H23INE T

34£23,4I2C32LL 3
2ALOWIN, 320362 L
34834%0,308237 2

34508,3C328T ¥
30832s52,2 &
33,4 J
3A023,2428432 T
322,48 <
32CX23,33C31RD0)
3DNCO, 7T S
JENISCE,J2AN
IENNETT,RAYMCND «
SENNZTT,32C3430 L
3DNSING, JAMES 20¥4RD
3282NBAGM, LLAN
22RNH1207,32C3420 C
3EANSTAIN,. L
33128,5288-3471D
3ICXZORD,N2IL 2
STLSW0S,3 8
31SE0R,THCMAS ¢
3I27NE2,3 3
2LAK2,G4BT o
3L45328,3 2
3iLzicsza, 2
3L=1=3,J0827
3LIW,S ©
31CSS28,2408ICX A
3COBN,? J
3CGaaT,lICMAS 3
304YIZ2,3ICHAA0 3
302KA3,S503ssS8 2
308z,228452s8
3GU3NE,STERE2N 3
30Y28,2HI2L3s J
3C¥L3,383420 <
3ADLZ3T,y 3ELZN
32al07,32C3239 3
32)08,247I3)
33EZT3AC2T,A 2
3300D0,MA3740 ¥
330S8s,J2P2228Y)
32CVMAN, 2NN
32CWN, JAJASWCI MC FEZ
33C%,5 <
330zCXN23,2CIGLAS 2
3J3GZS3,0I4NS Ma522
338G,2 4
3gaIl,MILO33dD 2
3UEQZP,3TEVEN O
3CZINSKI, N 5
307TTCON, 32723LY
3Y3N2, 207233 3
<d8L2,50400% 5,43
CiMP9ELI,JEa3Y 3
CA3TZT3,2CNALL &

INAMES WITNCUT 73SXIX

IM=30~-3633-3

SgvER SEZET QXY TO

C1S2235,3433451 2
<110,3 3
SATINZSS ,J0BN 2
cadap222,N 2
CiMl.5 T
S24M5235,3 <
C3AMB23S,J ¥
C3ANDRA,3121538
S3ANG, S0 o223
C3ANG, 5-J
CEDNG,

C32N,2IMG <
SIINNG,2 <

CEIZN, INTECNY 3
C3IL38,CA50L1IN
CEIN,AUGISTIN T
C300307.4 N
<3arsT.c 4,53
ic{i ST ¥:34-3 SN
C30,2a0L 3 ¥
SIIMINSKI,J23E1 ?
SIETLIC,S
CIAYTCN,d 2
ciogTIas, s
CCAT2S,Xa32N 2
COBEN, 3a372Y
SCLI,LCUIS Mo

CSLE, MA3ILYN C
CSlLIcCIT.3 3
SILICA,GCEN 13
CONKLIN,JANIZL L
SCNNERS, 30N 2
CCIRER MICIAZL §
CCTINGTICON, 34278 L
CIAGUN,SCNALD ¥
C3ISTCPCA, 20G2K2
CIWME,S L
C20PI.J08228 4
SALIIMPLE,FRE0E3ICK L
SATISSCN,CHAELRS L3dI.
2A7IS.3 oR29

32 7A220.8 J
SEAN,JESFFIEY S
SINNT,MIC2AZL S

23 ?I27s5C.3 S
JINEIN, T50MAS 7
ZI7ARA30NI,2 3
SCLATCHSXI, 7T3GINII o
SCWIEN, SCUGLAS C
SCWoEN, 2415 3
23£L22=22.a X
J3DICX, ANTECNY
50GG28,3CNAL))
SUNCINSCN, 308230 &
IIMONDS,T ¥
33LING23,5AM8S8 C
Z2SE28,3TIVEN 3
IT2L34CE, 04710 L
212312G2,4CEN
2%%.7 ¢

INGLAZ, 3BLCE WYAT?
I212Y,308ZaT 9

361 ToTal

T8 32T 1 IOMRL=ETZ I3Y:

!, 38 3022 Q.3 20332CT AJ0AESS IS SA7IN O (33

<. 2CL0 THI3 s8E2T ¥ iAL2 vI33 THIS 3332 23T N
3. SS3833I T3E A0DE2sSS 47 3IGET. IST N0 INVELCED.
4, INDICATI WHEZT933 MITIOPICSEI o2 F1E23 I8 23s81a2D.

i€ SCEASSZCNLENCE

3C 1127
2Lz382

{
0 luz

3ZIND

adDalss :gcwd

FIlzs

SCMPLITZ

Mi30FICaz

o5 4 {d

14-30-3833-3
CTAL FiG2s

[

FAE23 SS&Y

SN T332 07323 sils3.

m

F3-3 {5 o3 {0 S e D T R R e R R L R R Y PR PR)

~~

cemecns cvnwa

~

' Bl Laboratories

subject: Cycles to Burn: The Challenge of Abundance date: July 3, 1980

Case: 49343-12

File: 49343-12 from: Alan R, Feuer
MH 3633
2C-273 x3136
3633-300703.01TM

™: 80-3633-5
MEMORANDUM FOR FILE

1. INTRODUCTION

We are entering an era in which computing power will become a plentiful resource. Some
predict that within-four years the computing power of a VAX 11/780, or even an IBM 370/ 158
[2], will commonly be available per terminal (and perhaps inside the terminal). This abun-
dance challenges conventional views of what a computing system is.

Most existing computing systems were designed for environments where computing power is
scarce. UNIX™, for example, was designed to share a quite small computer among several
users. As the power available per person grows we will come to expect services from our com-
puting systems that are not possible in today’s environments.

Whar are these new expectations likely 1o be? To answer this question [have taken a critical look

“at the UNIX system. UNIX has deservedly enjoyed great success. There is much within its

design philosophy that should be inherited by future systems. But there are areas where UNIX
has problems. It is from such problems that new expectations arise.

To most users, the system is the computing model prescnted by the outermost layer of pro-
grams. In UNIX this is the model presented by the ideas in Section 1 of the User Manual (3],
principally the Shell and the file system. I chose to examine the UNIX system because it meets
so many of our current expectations so well. It is a good example of what can be achieved
given the computing power available today. Most systems suffer from the deficiencies of UNIX
plus a host of others.

This paper is mostly a discussion of problems. No real solutions are preseated. My intent is to
encourage thinking about what comes next, even at this early stage when traditional timeshar-
ing still serves us well. Read on, critically.

2. THE NAMING PROBLEM

A typical thing one does on a general purpose computing system is to create objects, such as
memos, letters, pictures, and programs. In order to save an object for later access UNIX
requires that the object be stored in a file. In order for the file to be unambiguously accessible,
the file must be given a unique (full) name. This has two unfortunate effects.

First, one is forced to invent (and remember) symbolic names for objects that do not reaily
have names. Temporary files are sometimes in this group. Letters, pictures, and memos are
almost always in this group. Thus one accesses ‘“‘the letter last year to the Berkeley Computer
Science Division” with something like “‘letters/berkeley79.csd2,”” and ‘‘last week’s plot of log

.2-

response time versus the naumber of active processes” with something like
*‘perf/response/procs.6-23"" (or was it *‘perf/6-23/response.procs'’). .

Second, one is forced to invent uncommon names for common entities. As an example con-
sider some of names given to the generic command priat in PWB/UNIX (3]

e prs, prt: print an SCCS file

e man;: print a manual page

e pib: print 2 programmer information bulletin
e cat: print text unpaginated and unformatted

e Dr: print text paginated and uniformatted

e aroi, mm: print text paginated and {ormasted

Or consider the names that must be given to the logical parts of an object, for example a pro-
gram. The source code resides in a dle of one name, the object code lies in another file of
apother name, the executable in still another file with a different name, and the documentation
in yet another file with yet a different name. (You may argue that if one knows the conven-
tions these various names are aot troublesome. Ckay, then where is the source for that most
common of commands cd? And once vou've found it how dces it help vou fnd its documenta-
tion?)

The symptom of the naming problem is that we are forced to create too maay names. Cur
directories are full of files with names whose meaning we have {orgotten 2nd we il upon gen-
eric commands with an array of less than teiling aliases.

3. THE ACCESS PROBLEM

The access problem is related to the naming problem. All objects are stored in files and
accessed by the file name. While it is true that a logical dle system, such as on UNIX, frees
users from having to know which disk drive a fle is stored on, or even whether or not it is
stored on a disk, these systems stll rely on {ile names which are reaily just symbolic addresses.
That is, objects are accessed by knowing where they are stored.

To illustrate the problem of access by location counsider the sk of Gnding the source code fora
particular system {unction. Suppose someone suggests that you look at the standard library
routine fwrire.

You might begin by looking in your programmer’s manual' for a writeup on jwrite. You thumb
immediately to Section 3 without zoing to the index because you know that standard library
routines are located there. To your befuddlement there is no page for fwrite. '‘Aba,” you say,
it must be out of order.”” But looking a couple of pages sach way doesn't bring much success.
You decide to check the index after all and discover that the writeup for firite is stored under
fread,

After reading about fwrite, you decide o look at the sourcs code. Never having looked at sys-

tem code before you begin your search from /. A few false siarts looking under sys and unix
lead you to the unlikely candidate usr. Usr has three reasonable choices. After vou've searched
through i and pud (and ruled them out) vou look into src. Src looks good as it has the sub-
directory 6. But within 45 nothing looks good. Recalling the classification of libraries from
Section 3 of the manual you decide to rule out the directories that you know: i6F77 is the for-
tran library, 4bPW is the PWB library, dbc is the C library, :ibm is the math library, libelor must
be the piot library. It must be in 44/ or iiby. Quick inspection shows that it is in neither. Your
next guess was doe, which looks very good as it has a subdirectory stdio. You descend into srdio
and car jwrite.c. But jwrire.c is not to e found. Taen it strikes vou. "*Of course, since the wri-
teup Tor fwrite was stored uander fFead. :he source Tor Swrite must Te sicred under fegd.c.”

. Tae Programmer’s Vorkbenca manual {3} aed svstem ire used Sor :his sxampie.

.

-3-

Again you are wrong. So you Is the directory to look for something close. But none of the file
names are close, though there are a lot of fnames: fget, fopen, fseek, etc. Tired and weary, you
decide to grep for fiwrite hoping not to be overwhelmed with usages. And at last, you find it in
rdwt.c.

Amazed at how long it took to find fiwrite by manual searching (and realizing that not even an
exhaustive search using find would have helped) you muse that someone has certainly written a
command to do just what you’ve done. In fact you can recall mention of such a command, it
was called findCfunc. But you don’t remember where findCfunc was located. So you decide to
look for it.

You might begin by looking in your programmer’s manual for a writeup on findCfunc. ...

The heart of the problem is that we usually are interested in what an object is rather than in
what an object is called. Calling a rose Rosa odorata or *‘that flower”” subtracts nothing from its
fragrance. Many of the characteristics desirable for accessing the records of a data base, such as
multiple access paths and access by contents, are desirable for accessing the objects of a compu-
ting system.

4, THE UPDATE PROBLEM

A difficult problem in maintaining a collection of interrelated parts is to know which part
depends upon which others, that is, which parts are affected by a change in some other part.
An example of this in programming would be to determine which in a collection of modules
must be recompiled as a result of a change in one of the modules. The make [1] program
addresses the update problem.

Knowing how the parts of a whole are related is a problem on UNIX because the files in which
the parts are stored are related only casually. In the best case the files are related by naming
conventions, but often they are related only by knowledge of their contents. For this reason
make requires explicit instructions as to how the parts fit together. Even with the knowledge of
how the files depend upon one another, make at best is too conservative. It has no way to
know if a change in one file requires rebuilding another. For example, prog.c may depend only
upon some of the definitions in head.h. Nevertheless, make will cause prog.c to be recompiled
whenever any change is made to head.h.

Basically the problem is that dependencies are based on files and files are too coarse. We tend
to collect many structuraily complete objects within a single file. We do so partly for efficiency,
to reduce the number of file accesses. We also pack many objects into one file because if we
tried to store objects one per file our directories and our minds would soon be swamped with
names.

S. THE COMPLEXITY PROBLEM

One likely scenario of a future computing environment is that within each terminal will be an
operating system running a collection of cooperating concurrent processes. For example, while
entering English text at a terminal, perhaps a formarter, a spelling checker, and a style enforcer
might all be examining the input. An important question for such a scenario is how to manage
the complexity, both internally (within each process) and externally (to the system user).

The Shell makes it. easy to specify simple parallelism using pipelines. But pipelines are not
sufficiently general given the abundant computing resource at hand. Also, they require too
much information from the user, namely, in what order the data is to pass from process to pro-
cess (should the speiling checker get a word after the formatter and before the style enforcer or
after the style enforcer and before the formatter, or do I care?) One way to relieve the user of
these decisions and still preserve the independence of the processes that pipes so nicely permit
is to create sheil procedures that set up the pipeiines. as is done by commands such as mmt.
The disadvantage to this approach is that such procedures must have prodigious option lists to
allow some control over the internal commands, and the procedure names add to the naming
problem by further cluttering the name space for commands.

-

[t seems that two devices are needed. The first allows the comstruction of networks of pro-
grams with the same ease one constructs pipelines. The second allows the request of services
without having to specify how the underlying programs interact. One should be able to ask for
‘“‘this text to be formatted as a technical memo, output on the typesetter, with referencs, table,
picture, 'and equation processing as needed.”

6. THE LANGUAGE PROBLEM

The evolution of UNIX facilities is evident in the variety and quantity of languages a user must
learn. This has been praised in that one only needs to learn the languages for the facilities one
wishes to use. Also, this allows the languages to match the application better than some gen-
eral language to be used in all domains. The unfortunate consequence is that the different
languages often have different and sometimes conilicting conveations.

For example, consider ihe variety of command line formats. Options are usually introduced by
a leading minus, but some commands rsquire them :0 be specified separately and some reguire
them to be specified together. Sometimes the options can go anywhere on the command line
and sometimes they must follow the command name. A scle minus as an argument sometimes
references the standard input and sometimes it is itseif a command option.

Or consider :he construction of regular expressions for matching text. A good deal of effort has
been spent to unify the syntax acrcss commands. Nevertheless, ed 2ad sh, two of the most
used commands. have different conventions. Or consider the variety of forms {or the IF-
construct found in commonly used programs. C has one {orm, the C preprocessor has another,
the Shell another, and nroff/troff sull another.

What is missing is a model for common constructs. Thus far, no form of the >asic constructs
has managed to hold the attention of system program designers. The forms in C bave come
closest, reappearing in be and in awk. Still, most programs remain individualistic, including the
recently rewritten Sheil.

7. CONCLUSION

This has not been an 2asy paper for me 0 write. [owe much to UNIX for raising my standards
of what to expect from a computing environment. But the world is not statonary, not the
hardware. not the software, and not our imaginadons. UNIX is aot getting poorer, we are get-
ting richer.

The problems [have discussed wiil aot go away with more cieaning and fne tuning of UNIX.
A simple change. like maiing regular expressions in the Sheil more like those in he aditor Dy
decreeing **."" shall repiace **?"" to match any singie character, wouid surely cause paranocia at
UNIX terminals. Though strictly such a problem does not beiong to the operating system, it
and many like it are 2 consequence of decisions spread throughout the system.

The chailenge of abundance is to conceive of a computing modei that has the elegance of
UNIX plus the powerful interface we will come to expect when one has cycles to burn.

3. ACKENOWLEDGEMENTS

I am grateful to Rudd Canaday, Dan Fishman. Narin Gehani. john Linderman, and 3ill
Roome for their comments on an sariier draft of :his memorandum, and to Charles Wethereil

for his incessant insight.
A

MH-3633-ARF-unix Alan R. Feuer

Att.
Refersnces

n .
PSR

9. REFERENCES

{1
(2]

(3]

Feldman, S. L; “Make—A Program for Maintaining Computer Programs’’, Bell Labora-
tories.

Hnatek, E. R.; “Semiconductor Memory Update—Part 1: ROMS"’, Computer Design, vo.
18, no. 12, December 1979,

PWB/UNIX User's Manual—Release 2.0, Bell Laboratories, June 1979.

