#ifndef lint static char *sccsid = "@(#)spline.c 4.3 (Berkeley) 9/21/85"; #endif #include <stdio.h> #include <math.h> #define NP 1000 #define INF HUGE struct proj { int lbf,ubf; float a,b,lb,ub,quant,mult,val[NP]; } x,y; float *diag, *r; float dx = 1.; float ni = 100.; int n; int auta; int periodic; float konst = 0.0; float zero = 0.; /* Spline fit technique let x,y be vectors of abscissas and ordinates h be vector of differences hi=xi-xi-1 y" be vector of 2nd derivs of approx function If the points are numbered 0,1,2,...,n+1 then y" satisfies (R W Hamming, Numerical Methods for Engineers and Scientists, 2nd Ed, p349ff) hiy"i-1+2(hi+hi+1)y"i+hi+1y"i+1 = 6[(yi+1-yi)/hi+1-(yi-yi-1)/hi] i=1,2,...,n where y"0 = y"n+1 = 0 This is a symmetric tridiagonal system of the form | a1 h2 | |y"1| |b1| | h2 a2 h3 | |y"2| |b2| | h3 a3 h4 | |y"3| = |b3| | . | | .| | .| | . | | .| | .| It can be triangularized into | d1 h2 | |y"1| |r1| | d2 h3 | |y"2| |r2| | d3 h4 | |y"3| = |r3| | . | | .| | .| | . | | .| | .| where d1 = a1 r0 = 0 di = ai - hi2/di-1 1<i<_n ri = bi - hiri-1/di-1i 1<_i<_n the back solution is y"n = rn/dn y"i = (ri-hi+1y"i+1)/di 1<_i<n superficially, di and ri don't have to be stored for they can be recalculated backward by the formulas di-1 = hi2/(ai-di) 1<i<_n ri-1 = (bi-ri)di-1/hi 1<i<_n unhappily it turns out that the recursion forward for d is quite strongly geometrically convergent--and is wildly unstable going backward. There's similar trouble with r, so the intermediate results must be kept. Note that n-1 in the program below plays the role of n+1 in the theory Other boundary conditions_________________________ The boundary conditions are easily generalized to handle y0" = ky1", yn+1" = kyn" for some constant k. The above analysis was for k = 0; k = 1 fits parabolas perfectly as well as stright lines; k = 1/2 has been recommended as somehow pleasant. All that is necessary is to add h1 to a1 and hn+1 to an. Periodic case_____________ To do this, add 1 more row and column thus | a1 h2 h1 | |y1"| |b1| | h2 a2 h3 | |y2"| |b2| | h3 a4 h4 | |y3"| |b3| | | | .| = | .| | . | | .| | .| | h1 h0 a0 | | .| | .| where h0=_ hn+1 The same diagonalization procedure works, except for the effect of the 2 corner elements. Let si be the part of the last element in the ith "diagonalized" row that arises from the extra top corner element. s1 = h1 si = -si-1hi/di-1 2<_i<_n+1 After "diagonalizing", the lower corner element remains. Call ti the bottom element that appears in the ith colomn as the bottom element to its left is eliminated t1 = h1 ti = -ti-1hi/di-1 Evidently ti = si. Elimination along the bottom row introduces further corrections to the bottom right element and to the last element of the right hand side. Call these corrections u and v. u1 = v1 = 0 ui = ui-1-si-1*ti-1/di-1 vi = vi-1-ri-1*ti-1/di-1 2<_i<_n+1 The back solution is now obtained as follows y"n+1 = (rn+1+vn+1)/(dn+1+sn+1+tn+1+un+1) y"i = (ri-hi+1*yi+1-si*yn+1)/di 1<_i<_n Interpolation in the interval xi<_x<_xi+1 is by the formula y = yix+ + yi+1x- -(h2i+1/6)[y"i(x+-x+3)+y"i+1(x--x-3)] where x+ = xi+1-x x- = x-xi */ float rhs(i){ int i_; double zz; i_ = i==n-1?0:i; zz = (y.val[i]-y.val[i-1])/(x.val[i]-x.val[i-1]); return(6*((y.val[i_+1]-y.val[i_])/(x.val[i+1]-x.val[i]) - zz)); } spline(){ float d,s,u,v,hi,hi1; float h; float D2yi,D2yi1,D2yn1,x0,x1,yy,a; int end; float corr; int i,j,m; if(n<3) return(0); if(periodic) konst = 0; d = 1; r[0] = 0; s = periodic?-1:0; for(i=0;++i<n-!periodic;){ /* triangularize */ hi = x.val[i]-x.val[i-1]; hi1 = i==n-1?x.val[1]-x.val[0]: x.val[i+1]-x.val[i]; if(hi1*hi<=0) return(0); u = i==1?zero:u-s*s/d; v = i==1?zero:v-s*r[i-1]/d; r[i] = rhs(i)-hi*r[i-1]/d; s = -hi*s/d; a = 2*(hi+hi1); if(i==1) a += konst*hi; if(i==n-2) a += konst*hi1; diag[i] = d = i==1? a: a - hi*hi/d; } D2yi = D2yn1 = 0; for(i=n-!periodic;--i>=0;){ /* back substitute */ end = i==n-1; hi1 = end?x.val[1]-x.val[0]: x.val[i+1]-x.val[i]; D2yi1 = D2yi; if(i>0){ hi = x.val[i]-x.val[i-1]; corr = end?2*s+u:zero; D2yi = (end*v+r[i]-hi1*D2yi1-s*D2yn1)/ (diag[i]+corr); if(end) D2yn1 = D2yi; if(i>1){ a = 2*(hi+hi1); if(i==1) a += konst*hi; if(i==n-2) a += konst*hi1; d = diag[i-1]; s = -s*d/hi; }} else D2yi = D2yn1; if(!periodic) { if(i==0) D2yi = konst*D2yi1; if(i==n-2) D2yi1 = konst*D2yi; } if(end) continue; m = hi1>0?ni:-ni; m = 1.001*m*hi1/(x.ub-x.lb); if(m<=0) m = 1; h = hi1/m; for(j=m;j>0||i==0&&j==0;j--){ /* interpolate */ x0 = (m-j)*h/hi1; x1 = j*h/hi1; yy = D2yi*(x0-x0*x0*x0)+D2yi1*(x1-x1*x1*x1); yy = y.val[i]*x0+y.val[i+1]*x1 -hi1*hi1*yy/6; printf("%f ",x.val[i]+j*h); printf("%f\n",yy); } } return(1); } readin() { for(n=0;n<NP;n++){ if(auta) x.val[n] = n*dx+x.lb; else if(!getfloat(&x.val[n])) break; if(!getfloat(&y.val[n])) break; } } getfloat(p) float *p;{ char buf[30]; register c; int i; extern double atof(); for(;;){ c = getchar(); if (c==EOF) { *buf = '\0'; return(0); } *buf = c; switch(*buf){ case ' ': case '\t': case '\n': continue;} break;} for(i=1;i<30;i++){ c = getchar(); if (c==EOF) { buf[i] = '\0'; break; } buf[i] = c; if('0'<=c && c<='9') continue; switch(c) { case '.': case '+': case '-': case 'E': case 'e': continue;} break; } buf[i] = ' '; *p = atof(buf); return(1); } getlim(p) struct proj *p; { int i; for(i=0;i<n;i++) { if(!p->lbf && p->lb>(p->val[i])) p->lb = p->val[i]; if(!p->ubf && p->ub<(p->val[i])) p->ub = p->val[i]; } } main(argc,argv) char *argv[];{ extern char *malloc(); int i; x.lbf = x.ubf = y.lbf = y.ubf = 0; x.lb = INF; x.ub = -INF; y.lb = INF; y.ub = -INF; while(--argc > 0) { argv++; again: switch(argv[0][0]) { case '-': argv[0]++; goto again; case 'a': auta = 1; numb(&dx,&argc,&argv); break; case 'k': numb(&konst,&argc,&argv); break; case 'n': numb(&ni,&argc,&argv); break; case 'p': periodic = 1; break; case 'x': if(!numb(&x.lb,&argc,&argv)) break; x.lbf = 1; if(!numb(&x.ub,&argc,&argv)) break; x.ubf = 1; break; default: fprintf(stderr, "Bad agrument\n"); exit(1); } } if(auta&&!x.lbf) x.lb = 0; readin(); getlim(&x); getlim(&y); i = (n+1)*sizeof(dx); diag = (float *)malloc((unsigned)i); r = (float *)malloc((unsigned)i); if(r==NULL||!spline()) for(i=0;i<n;i++){ printf("%f ",x.val[i]); printf("%f\n",y.val[i]); } } numb(np,argcp,argvp) int *argcp; float *np; char ***argvp;{ double atof(); char c; if(*argcp<=1) return(0); c = (*argvp)[1][0]; if(!('0'<=c&&c<='9' || c=='-' || c== '.' )) return(0); *np = atof((*argvp)[1]); (*argcp)--; (*argvp)++; return(1); }