.TH EQNCHAR 7 "1 February 1983" .UC .EQ tdefine ciplus % "\o'\(pl\(ci'" % ndefine ciplus % O+ % tdefine citimes % "\o'\(mu\(ci'" % ndefine citimes % Ox % tdefine =wig % "\(eq\h'-\w'\(eq'u-\w'\s-2\(ap'u/2u'\v'-.4m'\s-2\z\(ap\(ap\s+2\v'.4m'\h'\w'\(eq'u-\w'\s-2\(ap'u/2u'" % ndefine =wig % ="~" % tdefine bigstar % "\o'\(pl\(mu'" % ndefine bigstar % X|- % tdefine =dot % "\z\(eq\v'-.6m'\h'.2m'\s+2.\s-2\v'.6m'\h'.1m'" % ndefine =dot % = dot % tdefine orsign % "\s-2\v'-.15m'\z\e\e\h'-.05m'\z\(sl\(sl\v'.15m'\s+2" % ndefine orsign % \e/ % tdefine andsign % "\s-2\v'-.15m'\z\(sl\(sl\h'-.05m'\z\e\e\v'.15m'\s+2" % ndefine andsign % /\e % tdefine =del % "\v'.3m'\z=\v'-.6m'\h'.3m'\s-1\(*D\s+1\v'.3m'" % ndefine =del % = to DELTA % tdefine oppA % "\s-2\v'-.15m'\z\e\e\h'-.05m'\z\(sl\(sl\v'-.15m'\h'-.75m'\z-\z-\h'.2m'\z-\z-\v'.3m'\h'.4m'\s+2" % ndefine oppA % V- % tdefine oppE %"\s-3\v'.2m'\z\(em\v'-.5m'\z\(em\v'-.5m'\z\(em\v'.55m'\h'.9m'\z\(br\z\(br\v'.25m'\s+3" % ndefine oppE % E/ % tdefine incl % "\s-1\z\(or\h'-.1m'\v'-.45m'\z\(em\v'.7m'\z\(em\v'.2m'\(em\v'-.45m'\s+1" % ndefine incl % C_ % tdefine nomem % "\o'\(mo\(sl'" % ndefine nomem % C-/ % tdefine angstrom % "\fR\zA\v'-.3m'\h'.2m'\(de\v'.3m'\fP\h'.2m'" % ndefine angstrom % A to o % tdefine star %{ roman "\v'.5m'\s+3*\s-3\v'-.5m'"}% ndefine star % * % tdefine || % \(or\(or % tdefine <wig % "\z<\v'.4m'\(ap\v'-.4m'" % ndefine <wig %{ < from "~" }% tdefine >wig % "\z>\v'.4m'\(ap\v'-.4m'" % ndefine >wig %{ > from "~" }% tdefine langle % "\s-3\b'\(sl\e'\s0" % ndefine langle %<% tdefine rangle % "\s-3\b'\e\(sl'\s0" % ndefine rangle %>% tdefine hbar % "\zh\v'-.6m'\h'.05m'\(ru\v'.6m'" % ndefine hbar % h\u-\d % ndefine ppd % _| % tdefine ppd % "\o'\(ru\s-2\(or\s+2'" % tdefine <-> % "\o'\(<-\(->'" % ndefine <-> % "<-->" % tdefine <=> % "\s-2\z<\v'.05m'\h'.2m'\z=\h'.55m'=\h'-.6m'\v'-.05m'>\s+2" % ndefine <=> % "<=>" % tdefine |< % "\o'<\(or'" % ndefine |< % <| % tdefine |> % "\o'>\(or'" % ndefine |> % |> % tdefine ang % "\v'-.15m'\z\s-2\(sl\s+2\v'.15m'\(ru" % ndefine ang % /_ % tdefine rang % "\z\(or\h'.15m'\(ru" % ndefine rang % L % tdefine 3dot % "\v'-.8m'\z.\v'.5m'\z.\v'.5m'.\v'-.2m'" % ndefine 3dot % .\u.\u.\d\d % tdefine thf % ".\v'-.5m'.\v'.5m'." % ndefine thf % ..\u.\d % tdefine quarter % roman \(14 % ndefine quarter % 1/4 % tdefine 3quarter % roman \(34 % ndefine 3quarter % 3/4 % tdefine degree % \(de % ndefine degree % nothing sup o % tdefine square % \(sq % ndefine square % [] % tdefine circle % \(ci % ndefine circle % O % tdefine blot % "\fB\(sq\fP" % ndefine blot % HIX % tdefine bullet % \(bu % ndefine bullet % oxe % tdefine -wig % "\(~=" % ndefine -wig % - to "~" % tdefine wig % \(ap % ndefine wig % "~" % tdefine prop % \(pt % ndefine prop % oc % tdefine empty % \(es % ndefine empty % O/ % tdefine member % \(mo % ndefine member % C- % tdefine cup % \(cu % ndefine cup % U % define cap % \(ca % define subset % \(sb % define supset % \(sp % define !subset % \(ib % define !supset % \(ip % .EN .SH NAME eqnchar \- special character definitions for eqn .SH SYNOPSIS .B eqn /usr/pub/eqnchar [ files ] .B \(bv troff [ options ] .PP .B neqn /usr/pub/eqnchar [ files ] .B \(bv nroff [ options ] .SH DESCRIPTION .I Eqnchar contains .I troff and .I nroff character definitions for constructing characters that are not available on the Graphic Systems typesetter. These definitions are primarily intended for use with .I eqn and .IR neqn . It contains definitions for the following characters .PP .nf .ta \w'angstrom 'u \n(.lu/3u +\w'angstrom 'u \n(.lu*2u/3u +\w'angstrom 'u .EQ "ciplus" ciplus "|\||" || "square" square .EN .EQ "citimes" citimes "langle" langle "circle" circle .EN .EQ "wig" wig "rangle" rangle "blot" blot .EN .EQ "-wig" -wig "hbar" hbar "bullet" bullet .EN .EQ ">wig" >wig "ppd" ppd "prop" prop .EN .EQ "<wig" <wig "<->" <-> "empty" empty .EN .EQ "=wig" =wig "<=>" <=> "member" member .EN .EQ "star" star "|\|<" |< "nomem" nomem .EN .EQ "bigstar" bigstar "|\|>" |> "cup" cup .EN .EQ "=dot" =dot "ang" ang "cap" cap .EN .EQ "orsign" orsign "rang" rang "incl" incl .EN .EQ "andsign" andsign "3dot" 3dot "subset" subset .EN .EQ "=del" =del "thf" thf "supset" supset .EN .EQ "oppA" oppA "quarter" quarter "!subset" !subset .EN .EQ "oppE" oppE "3quarter" 3quarter "!supset" !supset .EN .EQ "angstrom" angstrom "degree" degree .EN .SH FILES /usr/pub/eqnchar .SH SEE ALSO troff(1), eqn(1)