4.4BSD/usr/src/contrib/gcc-2.3.3/gcc.info-16
This is Info file gcc.info, produced by Makeinfo-1.49 from the input
file gcc.texi.
This file documents the use and the internals of the GNU compiler.
Copyright (C) 1988, 1989, 1992 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided also
that the sections entitled "GNU General Public License" and "Protect
Your Freedom--Fight `Look And Feel'" are included exactly as in the
original, and provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this
one.
Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that the sections entitled "GNU General Public
License" and "Protect Your Freedom--Fight `Look And Feel'", and this
permission notice, may be included in translations approved by the Free
Software Foundation instead of in the original English.
File: gcc.info, Node: Function Entry, Next: Profiling, Prev: Caller Saves, Up: Stack and Calling
Function Entry and Exit
-----------------------
This section describes the macros that output function entry
("prologue") and exit ("epilogue") code.
`FUNCTION_PROLOGUE (FILE, SIZE)'
A C compound statement that outputs the assembler code for entry
to a function. The prologue is responsible for setting up the
stack frame, initializing the frame pointer register, saving
registers that must be saved, and allocating SIZE additional bytes
of storage for the local variables. SIZE is an integer. FILE is
a stdio stream to which the assembler code should be output.
The label for the beginning of the function need not be output by
this macro. That has already been done when the macro is run.
To determine which registers to save, the macro can refer to the
array `regs_ever_live': element R is nonzero if hard register R is
used anywhere within the function. This implies the function
prologue should save register R, provided it is not one of the
call-used registers. (`FUNCTION_EPILOGUE' must likewise use
`regs_ever_live'.)
On machines that have "register windows", the function entry code
does not save on the stack the registers that are in the windows,
even if they are supposed to be preserved by function calls;
instead it takes appropriate steps to "push" the register stack,
if any non-call-used registers are used in the function.
On machines where functions may or may not have frame-pointers, the
function entry code must vary accordingly; it must set up the frame
pointer if one is wanted, and not otherwise. To determine whether
a frame pointer is in wanted, the macro can refer to the variable
`frame_pointer_needed'. The variable's value will be 1 at run
time in a function that needs a frame pointer. *Note
Elimination::.
The function entry code is responsible for allocating any stack
space required for the function. This stack space consists of the
regions listed below. In most cases, these regions are allocated
in the order listed, with the last listed region closest to the
top of the stack (the lowest address if `STACK_GROWS_DOWNWARD' is
defined, and the highest address if it is not defined). You can
use a different order for a machine if doing so is more convenient
or required for compatibility reasons. Except in cases where
required by standard or by a debugger, there is no reason why the
stack layout used by GCC need agree with that used by other
compilers for a machine.
* A region of `current_function_pretend_args_size' bytes of
uninitialized space just underneath the first argument
arriving on the stack. (This may not be at the very start of
the allocated stack region if the calling sequence has pushed
anything else since pushing the stack arguments. But
usually, on such machines, nothing else has been pushed yet,
because the function prologue itself does all the pushing.)
This region is used on machines where an argument may be
passed partly in registers and partly in memory, and, in some
cases to support the features in `varargs.h' and `stdargs.h'.
* An area of memory used to save certain registers used by the
function. The size of this area, which may also include space
for such things as the return address and pointers to
previous stack frames, is machine-specific and usually
depends on which registers have been used in the function.
Machines with register windows often do not require a save
area.
* A region of at least SIZE bytes, possibly rounded up to an
allocation boundary, to contain the local variables of the
function. On some machines, this region and the save area
may occur in the opposite order, with the save area closer to
the top of the stack.
* Optionally, in the case that `ACCUMULATE_OUTGOING_ARGS' is
defined, a region of `current_function_outgoing_args_size'
bytes to be used for outgoing argument lists of the function.
*Note Stack Arguments::.
Normally, it is necessary for `FUNCTION_PROLOGUE' and
`FUNCTION_EPILOGUE' to treat leaf functions specially. The C
variable `leaf_function' is nonzero for such a function.
`EXIT_IGNORE_STACK'
Define this macro as a C expression that is nonzero if the return
instruction or the function epilogue ignores the value of the stack
pointer; in other words, if it is safe to delete an instruction to
adjust the stack pointer before a return from the function.
Note that this macro's value is relevant only for functions for
which frame pointers are maintained. It is never safe to delete a
final stack adjustment in a function that has no frame pointer,
and the compiler knows this regardless of `EXIT_IGNORE_STACK'.
`FUNCTION_EPILOGUE (FILE, SIZE)'
A C compound statement that outputs the assembler code for exit
from a function. The epilogue is responsible for restoring the
saved registers and stack pointer to their values when the
function was called, and returning control to the caller. This
macro takes the same arguments as the macro `FUNCTION_PROLOGUE',
and the registers to restore are determined from `regs_ever_live'
and `CALL_USED_REGISTERS' in the same way.
On some machines, there is a single instruction that does all the
work of returning from the function. On these machines, give that
instruction the name `return' and do not define the macro
`FUNCTION_EPILOGUE' at all.
Do not define a pattern named `return' if you want the
`FUNCTION_EPILOGUE' to be used. If you want the target switches
to control whether return instructions or epilogues are used,
define a `return' pattern with a validity condition that tests the
target switches appropriately. If the `return' pattern's validity
condition is false, epilogues will be used.
On machines where functions may or may not have frame-pointers, the
function exit code must vary accordingly. Sometimes the code for
these two cases is completely different. To determine whether a
frame pointer is wanted, the macro can refer to the variable
`frame_pointer_needed'. The variable's value will be 1 at run time
in a function that needs a frame pointer.
Normally, it is necessary for `FUNCTION_PROLOGUE' and
`FUNCTION_EPILOGUE' to treat leaf functions specially. The C
variable `leaf_function' is nonzero for such a function. *Note
Leaf Functions::.
On some machines, some functions pop their arguments on exit while
others leave that for the caller to do. For example, the 68020
when given `-mrtd' pops arguments in functions that take a fixed
number of arguments.
Your definition of the macro `RETURN_POPS_ARGS' decides which
functions pop their own arguments. `FUNCTION_EPILOGUE' needs to
know what was decided. The variable `current_function_pops_args'
is the number of bytes of its arguments that a function should pop.
*Note Scalar Return::.
`DELAY_SLOTS_FOR_EPILOGUE'
Define this macro if the function epilogue contains delay slots to
which instructions from the rest of the function can be "moved".
The definition should be a C expression whose value is an integer
representing the number of delay slots there.
`ELIGIBLE_FOR_EPILOGUE_DELAY (INSN, N)'
A C expression that returns 1 if INSN can be placed in delay slot
number N of the epilogue.
The argument N is an integer which identifies the delay slot now
being considered (since different slots may have different rules of
eligibility). It is never negative and is always less than the
number of epilogue delay slots (what `DELAY_SLOTS_FOR_EPILOGUE'
returns). If you reject a particular insn for a given delay slot,
in principle, it may be reconsidered for a subsequent delay slot.
Also, other insns may (at least in principle) be considered for
the so far unfilled delay slot.
The insns accepted to fill the epilogue delay slots are put in an
RTL list made with `insn_list' objects, stored in the variable
`current_function_epilogue_delay_list'. The insn for the first
delay slot comes first in the list. Your definition of the macro
`FUNCTION_EPILOGUE' should fill the delay slots by outputting the
insns in this list, usually by calling `final_scan_insn'.
You need not define this macro if you did not define
`DELAY_SLOTS_FOR_EPILOGUE'.
File: gcc.info, Node: Profiling, Prev: Function Entry, Up: Stack and Calling
Generating Code for Profiling
-----------------------------
`FUNCTION_PROFILER (FILE, LABELNO)'
A C statement or compound statement to output to FILE some
assembler code to call the profiling subroutine `mcount'. Before
calling, the assembler code must load the address of a counter
variable into a register where `mcount' expects to find the
address. The name of this variable is `LP' followed by the number
LABELNO, so you would generate the name using `LP%d' in a
`fprintf'.
The details of how the address should be passed to `mcount' are
determined by your operating system environment, not by GNU CC. To
figure them out, compile a small program for profiling using the
system's installed C compiler and look at the assembler code that
results.
`PROFILE_BEFORE_PROLOGUE'
Define this macro if the code for function profiling should come
before the function prologue. Normally, the profiling code comes
after.
`FUNCTION_BLOCK_PROFILER (FILE, LABELNO)'
A C statement or compound statement to output to FILE some
assembler code to initialize basic-block profiling for the current
object module. This code should call the subroutine
`__bb_init_func' once per object module, passing it as its sole
argument the address of a block allocated in the object module.
The name of the block is a local symbol made with this statement:
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 0);
Of course, since you are writing the definition of
`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
can take a short cut in the definition of this macro and use the
name that you know will result.
The first word of this block is a flag which will be nonzero if the
object module has already been initialized. So test this word
first, and do not call `__bb_init_func' if the flag is nonzero.
`BLOCK_PROFILER (FILE, BLOCKNO)'
A C statement or compound statement to increment the count
associated with the basic block number BLOCKNO. Basic blocks are
numbered separately from zero within each compilation. The count
associated with block number BLOCKNO is at index BLOCKNO in a
vector of words; the name of this array is a local symbol made
with this statement:
ASM_GENERATE_INTERNAL_LABEL (BUFFER, "LPBX", 2);
Of course, since you are writing the definition of
`ASM_GENERATE_INTERNAL_LABEL' as well as that of this macro, you
can take a short cut in the definition of this macro and use the
name that you know will result.
File: gcc.info, Node: Varargs, Next: Trampolines, Prev: Stack and Calling, Up: Target Macros
Implementing the Varargs Macros
===============================
GNU CC comes with an implementation of `varargs.h' and `stdarg.h'
that work without change on machines that pass arguments on the stack.
Other machines require their own implementations of varargs, and the
two machine independent header files must have conditionals to include
it.
ANSI `stdarg.h' differs from traditional `varargs.h' mainly in the
calling convention for `va_start'. The traditional implementation
takes just one argument, which is the variable in which to store the
argument pointer. The ANSI implementation of `va_start' takes an
additional second argument. The user is supposed to write the last
named argument of the function here.
However, `va_start' should not use this argument. The way to find
the end of the named arguments is with the built-in functions described
below.
`__builtin_saveregs ()'
Use this built-in function to save the argument registers in
memory so that the varargs mechanism can access them. Both ANSI
and traditional versions of `va_start' must use
`__builtin_saveregs', unless you use `SETUP_INCOMING_VARARGS' (see
below) instead.
On some machines, `__builtin_saveregs' is open-coded under the
control of the macro `EXPAND_BUILTIN_SAVEREGS'. On other machines,
it calls a routine written in assembler language, found in
`libgcc2.c'.
Regardless of what code is generated for the call to
`__builtin_saveregs', it appears at the beginning of the function,
not where the call to `__builtin_saveregs' is written. This is
because the registers must be saved before the function starts to
use them for its own purposes.
`__builtin_args_info (CATEGORY)'
Use this built-in function to find the first anonymous arguments in
registers.
In general, a machine may have several categories of registers
used for arguments, each for a particular category of data types.
(For example, on some machines, floating-point registers are used
for floating-point arguments while other arguments are passed in
the general registers.) To make non-varargs functions use the
proper calling convention, you have defined the `CUMULATIVE_ARGS'
data type to record how many registers in each category have been
used so far
`__builtin_args_info' accesses the same data structure of type
`CUMULATIVE_ARGS' after the ordinary argument layout is finished
with it, with CATEGORY specifying which word to access. Thus, the
value indicates the first unused register in a given category.
Normally, you would use `__builtin_args_info' in the implementation
of `va_start', accessing each category just once and storing the
value in the `va_list' object. This is because `va_list' will
have to update the values, and there is no way to alter the values
accessed by `__builtin_args_info'.
`__builtin_next_arg ()'
This is the equivalent of `__builtin_args_info', for stack
arguments. It returns the address of the first anonymous stack
argument, as type `void *'. If `ARGS_GROW_DOWNWARD', it returns
the address of the location above the first anonymous stack
argument. Use it in `va_start' to initialize the pointer for
fetching arguments from the stack.
`__builtin_classify_type (OBJECT)'
Since each machine has its own conventions for which data types are
passed in which kind of register, your implementation of `va_arg'
has to embody these conventions. The easiest way to categorize the
specified data type is to use `__builtin_classify_type' together
with `sizeof' and `__alignof__'.
`__builtin_classify_type' ignores the value of OBJECT, considering
only its data type. It returns an integer describing what kind of
type that is--integer, floating, pointer, structure, and so on.
The file `typeclass.h' defines an enumeration that you can use to
interpret the values of `__builtin_classify_type'.
These machine description macros help implement varargs:
`EXPAND_BUILTIN_SAVEREGS (ARGS)'
If defined, is a C expression that produces the machine-specific
code for a call to `__builtin_saveregs'. This code will be moved
to the very beginning of the function, before any parameter access
are made. The return value of this function should be an RTX that
contains the value to use as the return of `__builtin_saveregs'.
The argument ARGS is a `tree_list' containing the arguments that
were passed to `__builtin_saveregs'.
If this macro is not defined, the compiler will output an ordinary
call to the library function `__builtin_saveregs'.
`SETUP_INCOMING_VARARGS (ARGS_SO_FAR, MODE, TYPE, PRETEND_ARGS_SIZE, SECOND_TIME)'
This macro offers an alternative to using `__builtin_saveregs' and
defining the macro `EXPAND_BUILTIN_SAVEREGS'. Use it to store the
anonymous register arguments into the stack so that all the
arguments appear to have been passed consecutively on the stack.
Once this is done, you can use the standard implementation of
varargs that works for machines that pass all their arguments on
the stack.
The argument ARGS_SO_FAR is the `CUMULATIVE_ARGS' data structure,
containing the values that obtain after processing of the named
arguments. The arguments MODE and TYPE describe the last named
argument--its machine mode and its data type as a tree node.
The macro implementation should do two things: first, push onto the
stack all the argument registers *not* used for the named
arguments, and second, store the size of the data thus pushed into
the `int'-valued variable whose name is supplied as the argument
PRETEND_ARGS_SIZE. The value that you store here will serve as
additional offset for setting up the stack frame.
Because you must generate code to push the anonymous arguments at
compile time without knowing their data types,
`SETUP_INCOMING_VARARGS' is only useful on machines that have just
a single category of argument register and use it uniformly for
all data types.
If the argument SECOND_TIME is nonzero, it means that the
arguments of the function are being analyzed for the second time.
This happens for an inline function, which is not actually
compiled until the end of the source file. The macro
`SETUP_INCOMING_VARARGS' should not generate any instructions in
this case.
File: gcc.info, Node: Trampolines, Next: Library Calls, Prev: Varargs, Up: Target Macros
Trampolines for Nested Functions
================================
A "trampoline" is a small piece of code that is created at run time
when the address of a nested function is taken. It normally resides on
the stack, in the stack frame of the containing function. These macros
tell GNU CC how to generate code to allocate and initialize a
trampoline.
The instructions in the trampoline must do two things: load a
constant address into the static chain register, and jump to the real
address of the nested function. On CISC machines such as the m68k,
this requires two instructions, a move immediate and a jump. Then the
two addresses exist in the trampoline as word-long immediate operands.
On RISC machines, it is often necessary to load each address into a
register in two parts. Then pieces of each address form separate
immediate operands.
The code generated to initialize the trampoline must store the
variable parts--the static chain value and the function address--into
the immediate operands of the instructions. On a CISC machine, this is
simply a matter of copying each address to a memory reference at the
proper offset from the start of the trampoline. On a RISC machine, it
may be necessary to take out pieces of the address and store them
separately.
`TRAMPOLINE_TEMPLATE (FILE)'
A C statement to output, on the stream FILE, assembler code for a
block of data that contains the constant parts of a trampoline.
This code should not include a label--the label is taken care of
automatically.
`TRAMPOLINE_SECTION'
The name of a subroutine to switch to the section in which the
trampoline template is to be placed (*note Sections::.). The
default is a value of `readonly_data_section', which places the
trampoline in the section containing read-only data.
`TRAMPOLINE_SIZE'
A C expression for the size in bytes of the trampoline, as an
integer.
`TRAMPOLINE_ALIGNMENT'
Alignment required for trampolines, in bits.
If you don't define this macro, the value of `BIGGEST_ALIGNMENT'
is used for aligning trampolines.
`INITIALIZE_TRAMPOLINE (ADDR, FNADDR, STATIC_CHAIN)'
A C statement to initialize the variable parts of a trampoline.
ADDR is an RTX for the address of the trampoline; FNADDR is an RTX
for the address of the nested function; STATIC_CHAIN is an RTX for
the static chain value that should be passed to the function when
it is called.
`ALLOCATE_TRAMPOLINE (FP)'
A C expression to allocate run-time space for a trampoline. The
expression value should be an RTX representing a memory reference
to the space for the trampoline.
If this macro is not defined, by default the trampoline is
allocated as a stack slot. This default is right for most
machines. The exceptions are machines where it is impossible to
execute instructions in the stack area. On such machines, you may
have to implement a separate stack, using this macro in
conjunction with `FUNCTION_PROLOGUE' and `FUNCTION_EPILOGUE'.
FP points to a data structure, a `struct function', which
describes the compilation status of the immediate containing
function of the function which the trampoline is for. Normally
(when `ALLOCATE_TRAMPOLINE' is not defined), the stack slot for the
trampoline is in the stack frame of this containing function.
Other allocation strategies probably must do something analogous
with this information.
Implementing trampolines is difficult on many machines because they
have separate instruction and data caches. Writing into a stack
location fails to clear the memory in the instruction cache, so when
the program jumps to that location, it executes the old contents.
Here are two possible solutions. One is to clear the relevant parts
of the instruction cache whenever a trampoline is set up. The other is
to make all trampolines identical, by having them jump to a standard
subroutine. The former technique makes trampoline execution faster; the
latter makes initialization faster.
To clear the instruction cache when a trampoline is initialized,
define the following macros which describe the shape of the cache.
`INSN_CACHE_SIZE'
The total size in bytes of the cache.
`INSN_CACHE_LINE_WIDTH'
The length in bytes of each cache line. The cache is divided into
cache lines which are disjoint slots, each holding a contiguous
chunk of data fetched from memory. Each time data is brought into
the cache, an entire line is read at once. The data loaded into a
cache line is always aligned on a boundary equal to the line size.
`INSN_CACHE_DEPTH'
The number of alternative cache lines that can hold any particular
memory location.
To use a standard subroutine, define the following macro. In
addition, you must make sure that the instructions in a trampoline fill
an entire cache line with identical instructions, or else ensure that
the beginning of the trampoline code is always aligned at the same
point in its cache line. Look in `m68k.h' as a guide.
`TRANSFER_FROM_TRAMPOLINE'
Define this macro if trampolines need a special subroutine to do
their work. The macro should expand to a series of `asm'
statements which will be compiled with GNU CC. They go in a
library function named `__transfer_from_trampoline'.
If you need to avoid executing the ordinary prologue code of a
compiled C function when you jump to the subroutine, you can do so
by placing a special label of your own in the assembler code. Use
one `asm' statement to generate an assembler label, and another to
make the label global. Then trampolines can use that label to
jump directly to your special assembler code.
File: gcc.info, Node: Library Calls, Next: Addressing Modes, Prev: Trampolines, Up: Target Macros
Implicit Calls to Library Routines
==================================
`MULSI3_LIBCALL'
A C string constant giving the name of the function to call for
multiplication of one signed full-word by another. If you do not
define this macro, the default name is used, which is `__mulsi3',
a function defined in `libgcc.a'.
`DIVSI3_LIBCALL'
A C string constant giving the name of the function to call for
division of one signed full-word by another. If you do not define
this macro, the default name is used, which is `__divsi3', a
function defined in `libgcc.a'.
`UDIVSI3_LIBCALL'
A C string constant giving the name of the function to call for
division of one unsigned full-word by another. If you do not
define this macro, the default name is used, which is `__udivsi3',
a function defined in `libgcc.a'.
`MODSI3_LIBCALL'
A C string constant giving the name of the function to call for the
remainder in division of one signed full-word by another. If you
do not define this macro, the default name is used, which is
`__modsi3', a function defined in `libgcc.a'.
`UMODSI3_LIBCALL'
A C string constant giving the name of the function to call for the
remainder in division of one unsigned full-word by another. If
you do not define this macro, the default name is used, which is
`__umodsi3', a function defined in `libgcc.a'.
`MULDI3_LIBCALL'
A C string constant giving the name of the function to call for
multiplication of one signed double-word by another. If you do not
define this macro, the default name is used, which is `__muldi3',
a function defined in `libgcc.a'.
`DIVDI3_LIBCALL'
A C string constant giving the name of the function to call for
division of one signed double-word by another. If you do not
define this macro, the default name is used, which is `__divdi3', a
function defined in `libgcc.a'.
`UDIVDI3_LIBCALL'
A C string constant giving the name of the function to call for
division of one unsigned full-word by another. If you do not
define this macro, the default name is used, which is `__udivdi3',
a function defined in `libgcc.a'.
`MODDI3_LIBCALL'
A C string constant giving the name of the function to call for the
remainder in division of one signed double-word by another. If
you do not define this macro, the default name is used, which is
`__moddi3', a function defined in `libgcc.a'.
`UMODDI3_LIBCALL'
A C string constant giving the name of the function to call for the
remainder in division of one unsigned full-word by another. If
you do not define this macro, the default name is used, which is
`__umoddi3', a function defined in `libgcc.a'.
`TARGET_EDOM'
The value of `EDOM' on the target machine, as a C integer constant
expression. If you don't define this macro, GNU CC does not
attempt to deposit the value of `EDOM' into `errno' directly.
Look in `/usr/include/errno.h' to find the value of `EDOM' on your
system.
If you do not define `TARGET_EDOM', then compiled code reports
domain errors by calling the library function and letting it
report the error. If mathematical functions on your system use
`matherr' when there is an error, then you should leave
`TARGET_EDOM' undefined so that `matherr' is used normally.
`GEN_ERRNO_RTX'
Define this macro as a C expression to create an rtl expression
that refers to the global "variable" `errno'. (On certain systems,
`errno' may not actually be a variable.) If you don't define this
macro, a reasonable default is used.
`TARGET_MEM_FUNCTIONS'
Define this macro if GNU CC should generate calls to the System V
(and ANSI C) library functions `memcpy' and `memset' rather than
the BSD functions `bcopy' and `bzero'.
`LIBGCC_NEEDS_DOUBLE'
Define this macro if only `float' arguments cannot be passed to
library routines (so they must be converted to `double'). This
macro affects both how library calls are generated and how the
library routines in `libgcc1.c' accept their arguments. It is
useful on machines where floating and fixed point arguments are
passed differently, such as the i860.
`FLOAT_ARG_TYPE'
Define this macro to override the type used by the library
routines to pick up arguments of type `float'. (By default, they
use a union of `float' and `int'.)
The obvious choice would be `float'--but that won't work with
traditional C compilers that expect all arguments declared as
`float' to arrive as `double'. To avoid this conversion, the
library routines ask for the value as some other type and then
treat it as a `float'.
On some systems, no other type will work for this. For these
systems, you must use `LIBGCC_NEEDS_DOUBLE' instead, to force
conversion of the values `double' before they are passed.
`FLOATIFY (PASSED-VALUE)'
Define this macro to override the way library routines redesignate
a `float' argument as a `float' instead of the type it was passed
as. The default is an expression which takes the `float' field of
the union.
`FLOAT_VALUE_TYPE'
Define this macro to override the type used by the library
routines to return values that ought to have type `float'. (By
default, they use `int'.)
The obvious choice would be `float'--but that won't work with
traditional C compilers gratuitously convert values declared as
`float' into `double'.
`INTIFY (FLOAT-VALUE)'
Define this macro to override the way the value of a
`float'-returning library routine should be packaged in order to
return it. These functions are actually declared to return type
`FLOAT_VALUE_TYPE' (normally `int').
These values can't be returned as type `float' because traditional
C compilers would gratuitously convert the value to a `double'.
A local variable named `intify' is always available when the macro
`INTIFY' is used. It is a union of a `float' field named `f' and
a field named `i' whose type is `FLOAT_VALUE_TYPE' or `int'.
If you don't define this macro, the default definition works by
copying the value through that union.
`nongcc_SI_type'
Define this macro as the name of the data type corresponding to
`SImode' in the system's own C compiler.
You need not define this macro if that type is `int', as it usually
is.
`perform_...'
Define these macros to supply explicit C statements to carry out
various arithmetic operations on types `float' and `double' in the
library routines in `libgcc1.c'. See that file for a full list of
these macros and their arguments.
On most machines, you don't need to define any of these macros,
because the C compiler that comes with the system takes care of
doing them.
`NEXT_OBJC_RUNTIME'
Define this macro to generate code for Objective C message sending
using the calling convention of the NeXT system. This calling
convention involves passing the object, the selector and the
method arguments all at once to the method-lookup library function.
The default calling convention passes just the object and the
selector to the lookup function, which returns a pointer to the
method.
File: gcc.info, Node: Addressing Modes, Next: Condition Code, Prev: Library Calls, Up: Target Macros
Addressing Modes
================
`HAVE_POST_INCREMENT'
Define this macro if the machine supports post-increment
addressing.
`HAVE_PRE_INCREMENT'
`HAVE_POST_DECREMENT'
`HAVE_PRE_DECREMENT'
Similar for other kinds of addressing.
`CONSTANT_ADDRESS_P (X)'
A C expression that is 1 if the RTX X is a constant which is a
valid address. On most machines, this can be defined as
`CONSTANT_P (X)', but a few machines are more restrictive in which
constant addresses are supported.
`CONSTANT_P' accepts integer-values expressions whose values are
not explicitly known, such as `symbol_ref', `label_ref', and
`high' expressions and `const' arithmetic expressions, in addition
to `const_int' and `const_double' expressions.
`MAX_REGS_PER_ADDRESS'
A number, the maximum number of registers that can appear in a
valid memory address. Note that it is up to you to specify a
value equal to the maximum number that `GO_IF_LEGITIMATE_ADDRESS'
would ever accept.
`GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL)'
A C compound statement with a conditional `goto LABEL;' executed
if X (an RTX) is a legitimate memory address on the target machine
for a memory operand of mode MODE.
It usually pays to define several simpler macros to serve as
subroutines for this one. Otherwise it may be too complicated to
understand.
This macro must exist in two variants: a strict variant and a
non-strict one. The strict variant is used in the reload pass. It
must be defined so that any pseudo-register that has not been
allocated a hard register is considered a memory reference. In
contexts where some kind of register is required, a pseudo-register
with no hard register must be rejected.
The non-strict variant is used in other passes. It must be
defined to accept all pseudo-registers in every context where some
kind of register is required.
Compiler source files that want to use the strict variant of this
macro define the macro `REG_OK_STRICT'. You should use an `#ifdef
REG_OK_STRICT' conditional to define the strict variant in that
case and the non-strict variant otherwise.
Typically among the subroutines used to define
`GO_IF_LEGITIMATE_ADDRESS' are subroutines to check for acceptable
registers for various purposes (one for base registers, one for
index registers, and so on). Then only these subroutine macros
need have two variants; the higher levels of macros may be the same
whether strict or not.
Normally, constant addresses which are the sum of a `symbol_ref'
and an integer are stored inside a `const' RTX to mark them as
constant. Therefore, there is no need to recognize such sums
specifically as legitimate addresses. Normally you would simply
recognize any `const' as legitimate.
Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant
sums that are not marked with `const'. It assumes that a naked
`plus' indicates indexing. If so, then you *must* reject such
naked constant sums as illegitimate addresses, so that none of
them will be given to `PRINT_OPERAND_ADDRESS'.
On some machines, whether a symbolic address is legitimate depends
on the section that the address refers to. On these machines,
define the macro `ENCODE_SECTION_INFO' to store the information
into the `symbol_ref', and then check for it here. When you see a
`const', you will have to look inside it to find the `symbol_ref'
in order to determine the section. *Note Assembler Format::.
The best way to modify the name string is by adding text to the
beginning, with suitable punctuation to prevent any ambiguity.
Allocate the new name in `saveable_obstack'. You will have to
modify `ASM_OUTPUT_LABELREF' to remove and decode the added text
and output the name accordingly, and define `STRIP_NAME_ENCODING'
to access the original name string.
You can check the information stored here into the `symbol_ref' in
the definitions of `GO_IF_LEGITIMATE_ADDRESS' and
`PRINT_OPERAND_ADDRESS'.
`REG_OK_FOR_BASE_P (X)'
A C expression that is nonzero if X (assumed to be a `reg' RTX) is
valid for use as a base register. For hard registers, it should
always accept those which the hardware permits and reject the
others. Whether the macro accepts or rejects pseudo registers
must be controlled by `REG_OK_STRICT' as described above. This
usually requires two variant definitions, of which `REG_OK_STRICT'
controls the one actually used.
`REG_OK_FOR_INDEX_P (X)'
A C expression that is nonzero if X (assumed to be a `reg' RTX) is
valid for use as an index register.
The difference between an index register and a base register is
that the index register may be scaled. If an address involves the
sum of two registers, neither one of them scaled, then either one
may be labeled the "base" and the other the "index"; but whichever
labeling is used must fit the machine's constraints of which
registers may serve in each capacity. The compiler will try both
labelings, looking for one that is valid, and will reload one or
both registers only if neither labeling works.
`LEGITIMIZE_ADDRESS (X, OLDX, MODE, WIN)'
A C compound statement that attempts to replace X with a valid
memory address for an operand of mode MODE. WIN will be a C
statement label elsewhere in the code; the macro definition may use
GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN);
to avoid further processing if the address has become legitimate.
X will always be the result of a call to `break_out_memory_refs',
and OLDX will be the operand that was given to that function to
produce X.
The code generated by this macro should not alter the substructure
of X. If it transforms X into a more legitimate form, it should
assign X (which will always be a C variable) a new value.
It is not necessary for this macro to come up with a legitimate
address. The compiler has standard ways of doing so in all cases.
In fact, it is safe for this macro to do nothing. But often a
machine-dependent strategy can generate better code.
`GO_IF_MODE_DEPENDENT_ADDRESS (ADDR, LABEL)'
A C statement or compound statement with a conditional `goto
LABEL;' executed if memory address X (an RTX) can have different
meanings depending on the machine mode of the memory reference it
is used for or if the address is valid for some modes but not
others.
Autoincrement and autodecrement addresses typically have
mode-dependent effects because the amount of the increment or
decrement is the size of the operand being addressed. Some
machines have other mode-dependent addresses. Many RISC machines
have no mode-dependent addresses.
You may assume that ADDR is a valid address for the machine.
`LEGITIMATE_CONSTANT_P (X)'
A C expression that is nonzero if X is a legitimate constant for
an immediate operand on the target machine. You can assume that X
satisfies `CONSTANT_P', so you need not check this. In fact, `1'
is a suitable definition for this macro on machines where anything
`CONSTANT_P' is valid.
File: gcc.info, Node: Condition Code, Next: Costs, Prev: Addressing Modes, Up: Target Macros
Condition Code Status
=====================
The file `conditions.h' defines a variable `cc_status' to describe
how the condition code was computed (in case the interpretation of the
condition code depends on the instruction that it was set by). This
variable contains the RTL expressions on which the condition code is
currently based, and several standard flags.
Sometimes additional machine-specific flags must be defined in the
machine description header file. It can also add additional
machine-specific information by defining `CC_STATUS_MDEP'.
`CC_STATUS_MDEP'
C code for a data type which is used for declaring the `mdep'
component of `cc_status'. It defaults to `int'.
This macro is not used on machines that do not use `cc0'.
`CC_STATUS_MDEP_INIT'
A C expression to initialize the `mdep' field to "empty". The
default definition does nothing, since most machines don't use the
field anyway. If you want to use the field, you should probably
define this macro to initialize it.
This macro is not used on machines that do not use `cc0'.
`NOTICE_UPDATE_CC (EXP, INSN)'
A C compound statement to set the components of `cc_status'
appropriately for an insn INSN whose body is EXP. It is this
macro's responsibility to recognize insns that set the condition
code as a byproduct of other activity as well as those that
explicitly set `(cc0)'.
This macro is not used on machines that do not use `cc0'.
If there are insns that do not set the condition code but do alter
other machine registers, this macro must check to see whether they
invalidate the expressions that the condition code is recorded as
reflecting. For example, on the 68000, insns that store in address
registers do not set the condition code, which means that usually
`NOTICE_UPDATE_CC' can leave `cc_status' unaltered for such insns.
But suppose that the previous insn set the condition code based
on location `a4@(102)' and the current insn stores a new value in
`a4'. Although the condition code is not changed by this, it will
no longer be true that it reflects the contents of `a4@(102)'.
Therefore, `NOTICE_UPDATE_CC' must alter `cc_status' in this case
to say that nothing is known about the condition code value.
The definition of `NOTICE_UPDATE_CC' must be prepared to deal with
the results of peephole optimization: insns whose patterns are
`parallel' RTXs containing various `reg', `mem' or constants which
are just the operands. The RTL structure of these insns is not
sufficient to indicate what the insns actually do. What
`NOTICE_UPDATE_CC' should do when it sees one is just to run
`CC_STATUS_INIT'.
A possible definition of `NOTICE_UPDATE_CC' is to call a function
that looks at an attribute (*note Insn Attributes::.) named, for
example, `cc'. This avoids having detailed information about
patterns in two places, the `md' file and in `NOTICE_UPDATE_CC'.
`EXTRA_CC_MODES'
A list of names to be used for additional modes for condition code
values in registers (*note Jump Patterns::.). These names are
added to `enum machine_mode' and all have class `MODE_CC'. By
convention, they should start with `CC' and end with `mode'.
You should only define this macro if your machine does not use
`cc0' and only if additional modes are required.
`EXTRA_CC_NAMES'
A list of C strings giving the names for the modes listed in
`EXTRA_CC_MODES'. For example, the Sparc defines this macro and
`EXTRA_CC_MODES' as
#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode
#define EXTRA_CC_NAMES "CC_NOOV", "CCFP"
This macro is not required if `EXTRA_CC_MODES' is not defined.
`SELECT_CC_MODE (OP, X, Y)'
Returns a mode from class `MODE_CC' to be used when comparison
operation code OP is applied to rtx X and Y. For example, on the
Sparc, `SELECT_CC_MODE' is defined as (see *note Jump Patterns::.
for a description of the reason for this definition)
#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS || GET_CODE (X) == NEG) \
? CC_NOOVmode : CCmode))
This macro is not required if `EXTRA_CC_MODES' is not defined.