4.4BSD/usr/src/contrib/gcc-2.3.3/config/fx80.md

;;- Machine description for GNU C compiler for Alliant FX systems
;;   Copyright (C) 1989 Free Software Foundation, Inc.
;;   Adapted from m68k.md by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu)
;;   and Joe Weening (weening@gang-of-four.stanford.edu).

;; This file is part of GNU CC.

;; GNU CC is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 2, or (at your option)
;; any later version.

;; GNU CC is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU CC; see the file COPYING.  If not, write to
;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.


;;- instruction definitions

;;- @@The original PO technology requires these to be ordered by speed,
;;- @@    so that assigner will pick the fastest.

;;- See file "rtl.def" for documentation on define_insn, match_*, et. al.

;;- When naming insn's (operand 0 of define_insn) be careful about using
;;- names from other targets machine descriptions.

;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code
;;- updates for most instructions.

;;- Operand classes for the register allocator:
;;- 'a' one of the address registers can be used.
;;- 'd' one of the data registers can be used.
;;- 'f' one of the CE floating point registers can be used
;;- 'r' either a data or an address register can be used.

;;- Immediate integer operand constraints:
;;- 'I'  1 .. 8
;;- 'J'  -32768 .. 32767
;;- 'K'  -128 .. 127
;;- 'L'  -8 .. -1

;;- Some remnants of constraint codes for the m68k ('x','y','G','H')
;;- may remain in the insn definitions.

;;- Some of these insn's are composites of several Alliant op codes.
;;- The assembler (or final @@??) insures that the appropriate one is
;;- selected.

;; We don't want to allow a constant operand for test insns because
;; (set (cc0) (const_int foo)) has no mode information.  Such insns will
;; be folded while optimizing anyway.

(define_insn "tstsi"
  [(set (cc0)
	(match_operand:SI 0 "nonimmediate_operand" "rm"))]
  ""
  "*
{
  if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
    return \"tst%.l %0\";
  /* If you think that the 68020 does not support tstl a0,
     reread page B-167 of the 68020 manual more carefully.  */
  /* On an address reg, cmpw may replace cmpl.  */
  return \"cmp%.w %#0,%0\";
}")

(define_insn "tsthi"
  [(set (cc0)
	(match_operand:HI 0 "nonimmediate_operand" "rm"))]
  ""
  "*
{
  if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
    return \"tst%.w %0\";
  return \"cmp%.w %#0,%0\";
}")

(define_insn "tstqi"
  [(set (cc0)
	(match_operand:QI 0 "nonimmediate_operand" "dm"))]
  ""
  "tst%.b %0")

(define_insn "tstsf"
  [(set (cc0)
	(match_operand:SF 0 "nonimmediate_operand" "fm"))]
  "TARGET_CE"
  "*
{
  cc_status.flags = CC_IN_FP;
  return \"ftest%.s %0\";
}")

(define_insn "tstdf"
  [(set (cc0)
	(match_operand:DF 0 "nonimmediate_operand" "fm"))]
  "TARGET_CE"
  "*
{
  cc_status.flags = CC_IN_FP;
  return \"ftest%.d %0\";
}")

;; compare instructions.

;; A composite of the cmp, cmpa, & cmpi m68000 op codes.
(define_insn "cmpsi"
  [(set (cc0)
	(compare (match_operand:SI 0 "nonimmediate_operand" "rKs,mr,>")
		 (match_operand:SI 1 "general_operand" "mr,Ksr,>")))]
  ""
  "*
{
  if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
    return \"cmpm%.l %1,%0\";
  if (REG_P (operands[1])
      || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
    {
      cc_status.flags |= CC_REVERSED;
      return \"cmp%.l %d0,%d1\"; 
    }
  return \"cmp%.l %d1,%d0\";
}")

(define_insn "cmphi"
  [(set (cc0)
	(compare (match_operand:HI 0 "nonimmediate_operand" "rnm,d,n,m")
		 (match_operand:HI 1 "general_operand" "d,rnm,m,n")))]
  ""
  "*
{
  if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
    return \"cmpm%.w %1,%0\";
  if ((REG_P (operands[1]) && !ADDRESS_REG_P (operands[1]))
      || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
    { cc_status.flags |= CC_REVERSED;
      return \"cmp%.w %d0,%d1\"; 
    }
  return \"cmp%.w %d1,%d0\";
}")

(define_insn "cmpqi"
  [(set (cc0)
	(compare (match_operand:QI 0 "nonimmediate_operand" "dn,md,>")
		 (match_operand:QI 1 "general_operand" "dm,nd,>")))]
  ""
  "*
{
  if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM)
    return \"cmpm%.b %1,%0\";
  if (REG_P (operands[1])
      || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM))
    {
      cc_status.flags |= CC_REVERSED;
      return \"cmp%.b %d0,%d1\";
    }
  return \"cmp%.b %d1,%d0\";
}")

(define_insn "cmpdf"
  [(set (cc0)
	(compare (match_operand:DF 0 "nonimmediate_operand" "f,m")
		 (match_operand:DF 1 "nonimmediate_operand" "fm,f")))]
  "TARGET_CE"
  "*
{
  cc_status.flags = CC_IN_FP;
  if (FP_REG_P (operands[0]))
    return \"fcmp%.d %1,%0\";
  cc_status.flags |= CC_REVERSED;
  return \"fcmp%.d %0,%1\";
}")

(define_insn "cmpsf"
  [(set (cc0)
	(compare (match_operand:SF 0 "nonimmediate_operand" "f,m")
		 (match_operand:SF 1 "nonimmediate_operand" "fm,f")))]
  "TARGET_CE"
  "*
{
  cc_status.flags = CC_IN_FP;
  if (FP_REG_P (operands[0]))
    return \"fcmp%.s %1,%0\";
  cc_status.flags |= CC_REVERSED;
  return \"fcmp%.s %0,%1\";
}")

;; Recognizers for btst instructions.

(define_insn ""
  [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "do")
			    (const_int 1)
			    (minus:SI (const_int 7)
				      (match_operand:SI 1 "general_operand" "di"))))]
  ""
  "* { return output_btst (operands, operands[1], operands[0], insn, 7); }")

(define_insn ""
  [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "d")
			    (const_int 1)
			    (minus:SI (const_int 31)
				      (match_operand:SI 1 "general_operand" "di"))))]
  ""
  "* { return output_btst (operands, operands[1], operands[0], insn, 31); }")

;; The following two patterns are like the previous two
;; except that they use the fact that bit-number operands
;; are automatically masked to 3 or 5 bits.

(define_insn ""
  [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "do")
			    (const_int 1)
			    (minus:SI (const_int 7)
				      (and:SI
				       (match_operand:SI 1 "general_operand" "d")
				       (const_int 7)))))]
  ""
  "* { return output_btst (operands, operands[1], operands[0], insn, 7); }")

(define_insn ""
  [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "d")
			    (const_int 1)
			    (minus:SI (const_int 31)
				      (and:SI
				       (match_operand:SI 1 "general_operand" "d")
				       (const_int 31)))))]
  ""
  "* { return output_btst (operands, operands[1], operands[0], insn, 31); }")

;; Nonoffsettable mem refs are ok in this one pattern
;; since we don't try to adjust them.
(define_insn ""
  [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "md")
			    (const_int 1)
			    (match_operand:SI 1 "general_operand" "i")))]
  "GET_CODE (operands[1]) == CONST_INT
   && (unsigned) INTVAL (operands[1]) < 8"
  "*
{
  operands[1] = gen_rtx (CONST_INT, VOIDmode, 7 - INTVAL (operands[1]));
  return output_btst (operands, operands[1], operands[0], insn, 7);
}")


(define_insn ""
  [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "do")
			    (const_int 1)
			    (match_operand:SI 1 "general_operand" "i")))]
  "GET_CODE (operands[1]) == CONST_INT"
  "*
{
  if (GET_CODE (operands[0]) == MEM)
    {
      operands[0] = adj_offsettable_operand (operands[0],
					     INTVAL (operands[1]) / 8);
      operands[1] = gen_rtx (CONST_INT, VOIDmode, 
			     7 - INTVAL (operands[1]) % 8);
      return output_btst (operands, operands[1], operands[0], insn, 7);
    }
  operands[1] = gen_rtx (CONST_INT, VOIDmode,
			 31 - INTVAL (operands[1]));
  return output_btst (operands, operands[1], operands[0], insn, 31);
}")


;; move instructions

;; A special case in which it is not desirable
;; to reload the constant into a data register.
(define_insn ""
  [(set (match_operand:SI 0 "push_operand" "=m")
	(match_operand:SI 1 "general_operand" "J"))]
  "GET_CODE (operands[1]) == CONST_INT
   && INTVAL (operands[1]) >= -0x8000
   && INTVAL (operands[1]) < 0x8000"
  "*
{
  if (operands[1] == const0_rtx)
    return \"clr%.l %0\";
  return \"pea %a1\";
}")

;This is never used.
;(define_insn "swapsi"
;  [(set (match_operand:SI 0 "general_operand" "r")
;	(match_operand:SI 1 "general_operand" "r"))
;   (set (match_dup 1) (match_dup 0))]
;  ""
;  "exg %1,%0")

;; Special case of fullword move when source is zero.
;; The reason this is special is to avoid loading a zero
;; into a data reg with moveq in order to store it elsewhere.
   
(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=a,g")
	(const_int 0))]
  ""
  "@
   sub%.l %0,%0
   clr%.l %0")

;; General case of fullword move.  The register constraints
;; force integer constants in range for a moveq to be reloaded
;; if they are headed for memory.
(define_insn "movsi"
  ;; Notes: make sure no alternative allows g vs g.
  ;; We don't allow f-regs since fixed point cannot go in them.
  ;; We do allow y and x regs since fixed point is allowed in them.
  [(set (match_operand:SI 0 "general_operand" "=g,da,y,!*x*r*m")
	(match_operand:SI 1 "general_operand" "daymKs,i,g,*x*r*m"))]
  ""
  "*
{
  if (GET_CODE (operands[1]) == CONST_INT)
    {
      if (operands[1] == const0_rtx
	  && (DATA_REG_P (operands[0])
	      || GET_CODE (operands[0]) == MEM))
	return \"clr%.l %0\";
      else if (DATA_REG_P (operands[0])
	       && INTVAL (operands[1]) < 128
	       && INTVAL (operands[1]) >= -128)
	return \"moveq %1,%0\";
      else if (ADDRESS_REG_P (operands[0])
	       && INTVAL (operands[1]) < 0x8000
	       && INTVAL (operands[1]) >= -0x8000)
	return \"mov%.w %1,%0\";
      else if (push_operand (operands[0], SImode)
	       && INTVAL (operands[1]) < 0x8000
	       && INTVAL (operands[1]) >= -0x8000)
        return \"pea %a1\";
    }
  else if ((GET_CODE (operands[1]) == SYMBOL_REF
	    || GET_CODE (operands[1]) == CONST)
	   && push_operand (operands[0], SImode))
    return \"pea %a1\";
  else if ((GET_CODE (operands[1]) == SYMBOL_REF
	    || GET_CODE (operands[1]) == CONST)
	   && ADDRESS_REG_P (operands[0]))
    return \"lea %a1,%0\";
  return \"mov%.l %1,%0\";
}")

(define_insn "movhi"
  [(set (match_operand:HI 0 "general_operand" "=g")
	(match_operand:HI 1 "general_operand" "g"))]
  ""
  "*
{
  if (GET_CODE (operands[1]) == CONST_INT)
    {
      if (operands[1] == const0_rtx
	  && (DATA_REG_P (operands[0])
	      || GET_CODE (operands[0]) == MEM))
	return \"clr%.w %0\";
      else if (DATA_REG_P (operands[0])
	       && INTVAL (operands[1]) < 128
	       && INTVAL (operands[1]) >= -128)
        {
	  return \"moveq %1,%0\";
	}
      else if (INTVAL (operands[1]) < 0x8000
	       && INTVAL (operands[1]) >= -0x8000)
	return \"mov%.w %1,%0\";
    }
  else if (CONSTANT_P (operands[1]))
    return \"mov%.l %1,%0\";
  /* Recognize the insn before a tablejump, one that refers
     to a table of offsets.  Such an insn will need to refer
     to a label on the insn.  So output one.  Use the label-number
     of the table of offsets to generate this label.  */
  if (GET_CODE (operands[1]) == MEM
      && GET_CODE (XEXP (operands[1], 0)) == PLUS
      && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF
	  || GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF)
      && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS
      && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) != PLUS)
    {
      rtx labelref;
      if (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF)
	labelref = XEXP (XEXP (operands[1], 0), 0);
      else
	labelref = XEXP (XEXP (operands[1], 0), 1);
      ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"LI\",
				 CODE_LABEL_NUMBER (XEXP (labelref, 0)));
    }
  return \"mov%.w %1,%0\";
}")

(define_insn "movstricthi"
  [(set (strict_low_part (match_operand:HI 0 "general_operand" "+dm"))
	(match_operand:HI 1 "general_operand" "rmn"))]
  ""
  "*
{
  if (operands[1] == const0_rtx)
    return \"clr%.w %0\";
  return \"mov%.w %1,%0\";
}")

(define_insn "movqi"
  [(set (match_operand:QI 0 "general_operand" "=d,*a,m,m,?*a")
	(match_operand:QI 1 "general_operand" "dmi*a,d*a,dmi,?*a,m"))]
  ""
  "*
{
  rtx xoperands[4];
  if (ADDRESS_REG_P (operands[0]) && GET_CODE (operands[1]) == MEM)
    {
      xoperands[1] = operands[1];
      xoperands[2]
        = gen_rtx (MEM, QImode,
		   gen_rtx (PLUS, VOIDmode, stack_pointer_rtx, const1_rtx));
      xoperands[3] = stack_pointer_rtx;
      /* Just pushing a byte puts it in the high byte of the halfword.  */
      /* We must put it in the low half, the second byte.  */
      output_asm_insn (\"subq%.w %#2,%3\;mov%.b %1,%2\", xoperands);
      return \"mov%.w %+,%0\";
    }
  if (ADDRESS_REG_P (operands[1]) && GET_CODE (operands[0]) == MEM)
    {
      xoperands[0] = operands[0];
      xoperands[1] = operands[1];
      xoperands[2]
        = gen_rtx (MEM, QImode,
		   gen_rtx (PLUS, VOIDmode, stack_pointer_rtx, const1_rtx));
      xoperands[3] = stack_pointer_rtx;
      output_asm_insn (\"mov%.w %1,%-\;mov%.b %2,%0\;addq%.w %#2,%3\", xoperands);
      return \"\";
    }
  if (operands[1] == const0_rtx)
    return \"clr%.b %0\";
  if (GET_CODE (operands[1]) == CONST_INT
      && INTVAL (operands[1]) == -1)
    return \"st %0\";
  if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
    return \"mov%.l %1,%0\";
  if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
    return \"mov%.w %1,%0\";
  return \"mov%.b %1,%0\";
}")

(define_insn "movstrictqi"
  [(set (strict_low_part (match_operand:QI 0 "general_operand" "+dm"))
	(match_operand:QI 1 "general_operand" "dmn"))]
  ""
  "*
{
  if (operands[1] == const0_rtx)
    return \"clr%.b %0\";
  return \"mov%.b %1,%0\";
}")

;; Floating-point moves on a CE are faster using an FP register than
;; with movl instructions.  (Especially for double floats, but also
;; for single floats, even though it takes an extra instruction.)  But
;; on an IP, the FP registers are simulated and so should be avoided.
;; We do this by using define_expand for movsf and movdf, and using
;; different constraints for each target type.  The constraints for
;; TARGET_CE allow general registers because they sometimes need to
;; hold floats, but they are not preferable.

(define_expand "movsf"
  [(set (match_operand:SF 0 "general_operand" "")
	(match_operand:SF 1 "nonimmediate_operand" ""))]
  ""
  "")

(define_insn ""
  [(set (match_operand:SF 0 "general_operand" "=f,m,!*r,!f*m")
	(match_operand:SF 1 "nonimmediate_operand" "fm,f,f*r*m,*r"))]
  "TARGET_CE"
  "*
{
  if (FP_REG_P (operands[0]))
    {
      if (FP_REG_P (operands[1]))
	return \"fmove%.s %1,%0\";
      if (REG_P (operands[1]))
	return \"mov%.l %1,%-\;fmove%.s %+,%0\";
      return \"fmove%.s %1,%0\";
    }
  if (FP_REG_P (operands[1]))
    {
      if (REG_P (operands[0]))
	return \"fmove%.s %1,%-\;mov%.l %+,%0\";
      return \"fmove%.s %1,%0\";
    }
  return \"mov%.l %1,%0\";
}")

(define_insn ""
  [(set (match_operand:SF 0 "general_operand" "=frm")
	(match_operand:SF 1 "nonimmediate_operand" "frm"))]
  "!TARGET_CE"
  "*
{
  if (FP_REG_P (operands[0]))
    {
      if (FP_REG_P (operands[1]))
	return \"fmove%.s %1,%0\";
      if (REG_P (operands[1]))
	return \"mov%.l %1,%-\;fmove%.s %+,%0\";
      return \"fmove%.s %1,%0\";
    }
  if (FP_REG_P (operands[1]))
    {
      if (REG_P (operands[0]))
	return \"fmove%.s %1,%-\;mov%.l %+,%0\";
      return \"fmove%.s %1,%0\";
    }
  return \"mov%.l %1,%0\";
}")

(define_expand "movdf"
  [(set (match_operand:DF 0 "general_operand" "")
	(match_operand:DF 1 "nonimmediate_operand" ""))]
  ""
  "")

(define_insn ""
  [(set (match_operand:DF 0 "general_operand" "=f,m,!*r,!f*m")
	(match_operand:DF 1 "nonimmediate_operand" "fm,f,f*r*m,*r"))]
  "TARGET_CE"
  "*
{
  if (FP_REG_P (operands[0]))
    {
      if (FP_REG_P (operands[1]))
	return \"fmove%.d %1,%0\";
      if (REG_P (operands[1]))
	{
	  rtx xoperands[2];
	  xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
	  output_asm_insn (\"mov%.l %1,%-\", xoperands);
	  output_asm_insn (\"mov%.l %1,%-\", operands);
	  return \"fmove%.d %+,%0\";
	}
      return \"fmove%.d %1,%0\";
    }
  else if (FP_REG_P (operands[1]))
    {
      if (REG_P (operands[0]))
	{
	  output_asm_insn (\"fmove%.d %1,%-\;mov%.l %+,%0\", operands);
	  operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
	  return \"mov%.l %+,%0\";
	}
      return \"fmove%.d %1,%0\";
    }
  return output_move_double (operands);
}")

(define_insn ""
  [(set (match_operand:DF 0 "general_operand" "=frm")
	(match_operand:DF 1 "nonimmediate_operand" "frm"))]
  "!TARGET_CE"
  "*
{
  if (FP_REG_P (operands[0]))
    {
      if (FP_REG_P (operands[1]))
	return \"fmove%.d %1,%0\";
      if (REG_P (operands[1]))
	{
	  rtx xoperands[2];
	  xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
	  output_asm_insn (\"mov%.l %1,%-\", xoperands);
	  output_asm_insn (\"mov%.l %1,%-\", operands);
	  return \"fmove%.d %+,%0\";
	}
      return \"fmove%.d %1,%0\";
    }
  else if (FP_REG_P (operands[1]))
    {
      if (REG_P (operands[0]))
	{
	  output_asm_insn (\"fmove%.d %1,%-\;mov%.l %+,%0\", operands);
	  operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
	  return \"mov%.l %+,%0\";
	}
      return \"fmove%.d %1,%0\";
    }
  return output_move_double (operands);
}")

(define_insn "movdi"
  [(set (match_operand:DI 0 "general_operand" "=rm,&r,&ro<>")
	(match_operand:DI 1 "general_operand" "r,m,roi<>"))]
  ""
  "*
{
  return output_move_double (operands);
}
")

;; This goes after the move instructions
;; because the move instructions are better (require no spilling)
;; when they can apply.  It goes before the add/sub insns
;; so we will prefer it to them.

(define_insn "pushasi"
  [(set (match_operand:SI 0 "push_operand" "=m")
	(match_operand:SI 1 "address_operand" "p"))]
  ""
  "pea %a1")

;; truncation instructions
(define_insn "truncsiqi2"
  [(set (match_operand:QI 0 "general_operand" "=dm,d")
	(truncate:QI
	 (match_operand:SI 1 "general_operand" "doJ,i")))]
  ""
  "*
{
  if (GET_CODE (operands[0]) == REG)
    return \"mov%.l %1,%0\";
  if (GET_CODE (operands[1]) == MEM)
    operands[1] = adj_offsettable_operand (operands[1], 3);
  return \"mov%.b %1,%0\";
}")

(define_insn "trunchiqi2"
  [(set (match_operand:QI 0 "general_operand" "=dm,d")
	(truncate:QI
	 (match_operand:HI 1 "general_operand" "doJ,i")))]
  ""
  "*
{
  if (GET_CODE (operands[0]) == REG
      && (GET_CODE (operands[1]) == MEM
	  || GET_CODE (operands[1]) == CONST_INT))
    return \"mov%.w %1,%0\";
  if (GET_CODE (operands[0]) == REG)
    return \"mov%.l %1,%0\";
  if (GET_CODE (operands[1]) == MEM)
    operands[1] = adj_offsettable_operand (operands[1], 1);
  return \"mov%.b %1,%0\";
}")

(define_insn "truncsihi2"
  [(set (match_operand:HI 0 "general_operand" "=dm,d")
	(truncate:HI
	 (match_operand:SI 1 "general_operand" "roJ,i")))]
  ""
  "*
{
  if (GET_CODE (operands[0]) == REG)
    return \"mov%.l %1,%0\";
  if (GET_CODE (operands[1]) == MEM)
    operands[1] = adj_offsettable_operand (operands[1], 2);
  return \"mov%.w %1,%0\";
}")

;; zero extension instructions

(define_expand "zero_extendhisi2"
  [(set (match_operand:SI 0 "register_operand" "")
	(const_int 0))
   (set (strict_low_part (subreg:HI (match_dup 0) 0))
	(match_operand:HI 1 "general_operand" ""))]
  ""
  "operands[1] = make_safe_from (operands[1], operands[0]);")

(define_expand "zero_extendqihi2"
  [(set (match_operand:HI 0 "register_operand" "")
	(const_int 0))
   (set (strict_low_part (subreg:QI (match_dup 0) 0))
	(match_operand:QI 1 "general_operand" ""))]
  ""
  "operands[1] = make_safe_from (operands[1], operands[0]);")

(define_expand "zero_extendqisi2"
  [(set (match_operand:SI 0 "register_operand" "")
	(const_int 0))
   (set (strict_low_part (subreg:QI (match_dup 0) 0))
	(match_operand:QI 1 "general_operand" ""))]
  ""
  " operands[1] = make_safe_from (operands[1], operands[0]); ")

;; Patterns to recognize zero-extend insns produced by the combiner.
(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=do<>")
	(zero_extend:SI
	 (match_operand:HI 1 "nonimmediate_operand" "rm")))]
  ""
  "*
{
  if (DATA_REG_P (operands[0]))
    {
      if (GET_CODE (operands[1]) == REG
	  && REGNO (operands[0]) == REGNO (operands[1]))
	return \"and%.l %#0xFFFF,%0\";
      if (reg_mentioned_p (operands[0], operands[1]))
        return \"mov%.w %1,%0\;and%.l %#0xFFFF,%0\";
      return \"clr%.l %0\;mov%.w %1,%0\";
    }
  else if (GET_CODE (operands[0]) == MEM
	   && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
    return \"mov%.w %1,%0\;clr%.w %0\";
  else if (GET_CODE (operands[0]) == MEM
	   && GET_CODE (XEXP (operands[0], 0)) == POST_INC)
    return \"clr%.w %0\;mov%.w %1,%0\";
  else
    {
      output_asm_insn (\"clr%.w %0\", operands);
      operands[0] = adj_offsettable_operand (operands[0], 2);
      return \"mov%.w %1,%0\";
    }
}")

(define_insn ""
  [(set (match_operand:HI 0 "general_operand" "=do<>")
	(zero_extend:HI
	 (match_operand:QI 1 "nonimmediate_operand" "dm")))]
  ""
  "*
{
  if (DATA_REG_P (operands[0]))
    {
      if (GET_CODE (operands[1]) == REG
	  && REGNO (operands[0]) == REGNO (operands[1]))
	return \"and%.w %#0xFF,%0\";
      if (reg_mentioned_p (operands[0], operands[1]))
        return \"mov%.b %1,%0\;and%.w %#0xFF,%0\";
      return \"clr%.w %0\;mov%.b %1,%0\";
    }
  else if (GET_CODE (operands[0]) == MEM
	   && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
    {
      if (REGNO (XEXP (XEXP (operands[0], 0), 0))
	  == STACK_POINTER_REGNUM)
	return \"clr%.w %-\;mov%.b %1,%0\";
      else
	return \"mov%.b %1,%0\;clr%.b %0\";
    }
  else if (GET_CODE (operands[0]) == MEM
	   && GET_CODE (XEXP (operands[0], 0)) == POST_INC)
    return \"clr%.b %0\;mov%.b %1,%0\";
  else
    {
      output_asm_insn (\"clr%.b %0\", operands);
      operands[0] = adj_offsettable_operand (operands[0], 1);
      return \"mov%.b %1,%0\";
    }
}")

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=do<>")
	(zero_extend:SI
	 (match_operand:QI 1 "nonimmediate_operand" "dm")))]
  ""
  "*
{
  if (DATA_REG_P (operands[0]))
    {
      if (GET_CODE (operands[1]) == REG
	  && REGNO (operands[0]) == REGNO (operands[1]))
	return \"and%.l %#0xFF,%0\";
      if (reg_mentioned_p (operands[0], operands[1]))
        return \"mov%.b %1,%0\;and%.l %#0xFF,%0\";
      return \"clr%.l %0\;mov%.b %1,%0\";
    }
  else if (GET_CODE (operands[0]) == MEM
	   && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
    {
      operands[0] = XEXP (XEXP (operands[0], 0), 0);
      return \"clr%.l %0@-\;mov%.b %1,%0@(3)\";
    }
  else if (GET_CODE (operands[0]) == MEM
	   && GET_CODE (XEXP (operands[0], 0)) == POST_INC)
    {
      operands[0] = XEXP (XEXP (operands[0], 0), 0);
      return \"clr%.l %0@+\;mov%.b %1,%0@(-1)\";
    }
  else
    {
      output_asm_insn (\"clr%.l %0\", operands);
      operands[0] = adj_offsettable_operand (operands[0], 3);
      return \"mov%.b %1,%0\";
    }
}")

;; sign extension instructions

(define_insn "extendhisi2"
  [(set (match_operand:SI 0 "general_operand" "=*d,a")
	(sign_extend:SI
	 (match_operand:HI 1 "nonimmediate_operand" "0,rmn")))]
  ""
  "@
   ext%.l %0
   mov%.w %1,%0")

(define_insn "extendqihi2"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(sign_extend:HI
	 (match_operand:QI 1 "nonimmediate_operand" "0")))]
  ""
  "ext%.w %0")

(define_insn "extendqisi2"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(sign_extend:SI
	 (match_operand:QI 1 "nonimmediate_operand" "0")))]
  "TARGET_68020"
  "extb%.l %0")

;; Conversions between float and double.

(define_insn "extendsfdf2"
  [(set (match_operand:DF 0 "general_operand" "=f,m")
	(float_extend:DF
	  (match_operand:SF 1 "nonimmediate_operand" "fm,f")))]
  "TARGET_CE"
  "fmovesd %1,%0")

(define_insn "truncdfsf2"
  [(set (match_operand:SF 0 "general_operand" "=f,m")
	(float_truncate:SF
	  (match_operand:DF 1 "nonimmediate_operand" "fm,f")))]
  "TARGET_CE"
  "fmoveds %1,%0")

;; Conversion between fixed point and floating point.
;; Note that among the fix-to-float insns
;; the ones that start with SImode come first.
;; That is so that an operand that is a CONST_INT
;; (and therefore lacks a specific machine mode).
;; will be recognized as SImode (which is always valid)
;; rather than as QImode or HImode.

(define_insn "floatsisf2"
  [(set (match_operand:SF 0 "register_operand" "=f")
	(float:SF (match_operand:SI 1 "nonimmediate_operand" "dm")))]
  "TARGET_CE"
  "fmovels %1,%0")

(define_insn "floatsidf2"
  [(set (match_operand:DF 0 "register_operand" "=f")
	(float:DF (match_operand:SI 1 "nonimmediate_operand" "dm")))]
  "TARGET_CE"
  "fmoveld %1,%0")

(define_insn "floathisf2"
  [(set (match_operand:SF 0 "register_operand" "=f")
	(float:SF (match_operand:HI 1 "nonimmediate_operand" "dm")))]
  "TARGET_CE"
  "fmovews %1,%0")

(define_insn "floathidf2"
  [(set (match_operand:DF 0 "register_operand" "=f")
	(float:DF (match_operand:HI 1 "nonimmediate_operand" "dm")))]
  "TARGET_CE"
  "fmovewd %1,%0")

(define_insn "floatqisf2"
  [(set (match_operand:SF 0 "register_operand" "=f")
	(float:SF (match_operand:QI 1 "nonimmediate_operand" "dm")))]
  "TARGET_CE"
  "fmovebs %1,%0")

(define_insn "floatqidf2"
  [(set (match_operand:DF 0 "register_operand" "=f")
	(float:DF (match_operand:QI 1 "nonimmediate_operand" "dm")))]
  "TARGET_CE"
  "fmovebd %1,%0")

;; Float-to-fix conversion insns.

(define_insn "fix_truncsfqi2"
  [(set (match_operand:QI 0 "general_operand" "=dm")
	(fix:QI (fix:SF (match_operand:SF 1 "register_operand" "f"))))]
  "TARGET_CE"
  "fmovesb %1,%0")

(define_insn "fix_truncsfhi2"
  [(set (match_operand:HI 0 "general_operand" "=dm")
	(fix:HI (fix:SF (match_operand:SF 1 "register_operand" "f"))))]
  "TARGET_CE"
  "fmovesw %1,%0")

(define_insn "fix_truncsfsi2"
  [(set (match_operand:SI 0 "general_operand" "=dm")
	(fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))]
  "TARGET_CE"
  "fmovesl %1,%0")

(define_insn "fix_truncdfqi2"
  [(set (match_operand:QI 0 "general_operand" "=dm")
	(fix:QI (fix:DF (match_operand:DF 1 "register_operand" "f"))))]
  "TARGET_CE"
  "fmovedb %1,%0")

(define_insn "fix_truncdfhi2"
  [(set (match_operand:HI 0 "general_operand" "=dm")
	(fix:HI (fix:DF (match_operand:DF 1 "register_operand" "f"))))]
  "TARGET_CE"
  "fmovedw %1,%0")

(define_insn "fix_truncdfsi2"
  [(set (match_operand:SI 0 "general_operand" "=dm")
	(fix:SI (fix:DF (match_operand:DF 1 "register_operand" "f"))))]
  "TARGET_CE"
  "fmovedl %1,%0")

;; add instructions

(define_insn "addsi3"
  [(set (match_operand:SI 0 "general_operand" "=m,r,!a,!a")
	(plus:SI (match_operand:SI 1 "general_operand" "%0,0,a,rJK")
		 (match_operand:SI 2 "general_operand" "dIKLs,mrIKLs,rJK,a")))]
  ""
  "*
{
  if (! operands_match_p (operands[0], operands[1]))
    {
      if (!ADDRESS_REG_P (operands[1]))
	{
	  rtx tmp = operands[1];

	  operands[1] = operands[2];
	  operands[2] = tmp;
	}

      /* These insns can result from reloads to access
	 stack slots over 64k from the frame pointer.  */
      if (GET_CODE (operands[2]) == CONST_INT
	  && INTVAL (operands[2]) + 0x8000 >= (unsigned) 0x10000)
        return \"mov%.l %2,%0\;add%.l %1,%0\";
      if (GET_CODE (operands[2]) == REG)
	return \"lea %1@[%2:L:B],%0\";
      else
	return \"lea %1@(%c2),%0\";
    }
  if (GET_CODE (operands[2]) == CONST_INT)
    {
      if (INTVAL (operands[2]) > 0
	  && INTVAL (operands[2]) <= 8)
	return (ADDRESS_REG_P (operands[0])
		? \"addq%.w %2,%0\"
		: \"addq%.l %2,%0\");
      if (INTVAL (operands[2]) < 0
	  && INTVAL (operands[2]) >= -8)
        {
	  operands[2] = gen_rtx (CONST_INT, VOIDmode,
			         - INTVAL (operands[2]));
	  return (ADDRESS_REG_P (operands[0])
		  ? \"subq%.w %2,%0\"
		  : \"subq%.l %2,%0\");
	}
      if (ADDRESS_REG_P (operands[0])
	  && INTVAL (operands[2]) >= -0x8000
	  && INTVAL (operands[2]) < 0x8000)
	return \"add%.w %2,%0\";
    }
  return \"add%.l %2,%0\";
}")

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=a")
	(plus:SI (match_operand:SI 1 "general_operand" "0")
		 (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rmn"))))]
  ""
  "add%.w %2,%0")

(define_insn "addhi3"
  [(set (match_operand:HI 0 "general_operand" "=mr,mr,m,r")
	(plus:HI (match_operand:HI 1 "general_operand" "%0,0,0,0")
		 (match_operand:HI 2 "general_operand" "I,L,dn,rmn")))]
  ""
  "@
   addq%.w %2,%0
   subq%.w #%n2,%0
   add%.w %2,%0
   add%.w %2,%0")

(define_insn ""
  [(set (strict_low_part (match_operand:HI 0 "general_operand" "+m,d"))
	(plus:HI (match_dup 0)
		 (match_operand:HI 1 "general_operand" "dn,rmn")))]
  ""
  "add%.w %1,%0")

(define_insn "addqi3"
  [(set (match_operand:QI 0 "general_operand" "=md,mr,m,d")
	(plus:QI (match_operand:QI 1 "general_operand" "%0,0,0,0")
		 (match_operand:QI 2 "general_operand" "I,L,dn,dmn")))]
  ""
  "@
   addq%.b %2,%0
   subq%.b #%n2,%0
   add%.b %2,%0
   add%.b %2,%0")

(define_insn ""
  [(set (strict_low_part (match_operand:QI 0 "general_operand" "+m,d"))
	(plus:QI (match_dup 0)
		 (match_operand:QI 1 "general_operand" "dn,dmn")))]
  ""
  "add%.b %1,%0")

(define_insn "adddf3"
  [(set (match_operand:DF 0 "register_operand" "=f")
	(plus:DF (match_operand:DF 1 "nonimmediate_operand" "%f")
		 (match_operand:DF 2 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fadd%.d %2,%1,%0")

(define_insn "addsf3"
  [(set (match_operand:SF 0 "register_operand" "=f")
	(plus:SF (match_operand:SF 1 "nonimmediate_operand" "%f")
		 (match_operand:SF 2 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fadd%.s %2,%1,%0")

;; subtract instructions

(define_insn "subsi3"
  [(set (match_operand:SI 0 "general_operand" "=m,r,!a,?d")
	(minus:SI (match_operand:SI 1 "general_operand" "0,0,a,mrIKs")
		  (match_operand:SI 2 "general_operand" "dIKs,mrIKs,J,0")))]
  ""
  "*
{
  if (! operands_match_p (operands[0], operands[1]))
    {
      if (operands_match_p (operands[0], operands[2]))
	{
	  if (GET_CODE (operands[1]) == CONST_INT)
	    {
	      if (INTVAL (operands[1]) > 0
		  && INTVAL (operands[1]) <= 8)
		return \"subq%.l %1,%0\;neg%.l %0\";
	    }
	  return \"sub%.l %1,%0\;neg%.l %0\";
	}
      /* This case is matched by J, but negating -0x8000
         in an lea would give an invalid displacement.
	 So do this specially.  */
      if (INTVAL (operands[2]) == -0x8000)
	return \"mov%.l %1,%0\;sub%.l %2,%0\";
      return \"lea %1@(%n2),%0\";
    }
  if (GET_CODE (operands[2]) == CONST_INT)
    {
      if (INTVAL (operands[2]) > 0
	  && INTVAL (operands[2]) <= 8)
	return \"subq%.l %2,%0\";
      if (ADDRESS_REG_P (operands[0])
	  && INTVAL (operands[2]) >= -0x8000
	  && INTVAL (operands[2]) < 0x8000)
	return \"sub%.w %2,%0\";
    }
  return \"sub%.l %2,%0\";
}")

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=a")
	(minus:SI (match_operand:SI 1 "general_operand" "0")
		  (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rmn"))))]
  ""
  "sub%.w %2,%0")

(define_insn "subhi3"
  [(set (match_operand:HI 0 "general_operand" "=m,r")
	(minus:HI (match_operand:HI 1 "general_operand" "0,0")
		  (match_operand:HI 2 "general_operand" "dn,rmn")))]
  ""
  "sub%.w %2,%0")

(define_insn ""
  [(set (strict_low_part (match_operand:HI 0 "general_operand" "+m,d"))
	(minus:HI (match_dup 0)
		  (match_operand:HI 1 "general_operand" "dn,rmn")))]
  ""
  "sub%.w %1,%0")

(define_insn "subqi3"
  [(set (match_operand:QI 0 "general_operand" "=m,d")
	(minus:QI (match_operand:QI 1 "general_operand" "0,0")
		  (match_operand:QI 2 "general_operand" "dn,dmn")))]
  ""
  "sub%.b %2,%0")

(define_insn ""
  [(set (strict_low_part (match_operand:QI 0 "general_operand" "+m,d"))
	(minus:QI (match_dup 0)
		  (match_operand:QI 1 "general_operand" "dn,dmn")))]
  ""
  "sub%.b %1,%0")

(define_insn "subdf3"
  [(set (match_operand:DF 0 "register_operand" "=f,f,f")
	(minus:DF (match_operand:DF 1 "nonimmediate_operand" "f,f,m")
		  (match_operand:DF 2 "nonimmediate_operand" "f,m,f")))]
  "TARGET_CE"
  "@
   fsub%.d %2,%1,%0
   fsub%.d %2,%1,%0
   frsub%.d %1,%2,%0")

(define_insn "subsf3"
  [(set (match_operand:SF 0 "register_operand" "=f,f,f")
	(minus:SF (match_operand:SF 1 "nonimmediate_operand" "f,f,m")
		  (match_operand:SF 2 "nonimmediate_operand" "f,m,f")))]
  "TARGET_CE"
  "@
   fsub%.s %2,%1,%0
   fsub%.s %2,%1,%0
   frsub%.s %1,%2,%0")

;; multiply instructions

(define_insn "mulhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(mult:HI (match_operand:HI 1 "general_operand" "%0")
		 (match_operand:HI 2 "general_operand" "dmn")))]
  ""
  "muls %2,%0")

(define_insn "mulhisi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(mult:SI (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%0"))
		 (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm"))))]
  ""
  "muls %2,%0")

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=d")
	(mult:SI (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%0"))
		 (match_operand:SI 2 "const_int_operand" "n")))]
  ""
  "muls %2,%0")

(define_insn "mulsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(mult:SI (match_operand:SI 1 "general_operand" "%0")
		 (match_operand:SI 2 "general_operand" "dmsK")))]
  "TARGET_68020"
  "muls%.l %2,%0")

(define_insn "umulhisi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(mult:SI (zero_extend:SI
		  (match_operand:HI 1 "nonimmediate_operand" "%0"))
		 (zero_extend:SI
		  (match_operand:HI 2 "nonimmediate_operand" "dm"))))]
  ""
  "mulu %2,%0")

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=d")
	(mult:SI (zero_extend:SI
		  (match_operand:HI 1 "nonimmediate_operand" "%0"))
		 (match_operand:SI 2 "const_int_operand" "n")))]
  ""
  "mulu %2,%0")

(define_insn "muldf3"
  [(set (match_operand:DF 0 "register_operand" "=f")
	(mult:DF (match_operand:DF 1 "nonimmediate_operand" "%f")
		 (match_operand:DF 2 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fmul%.d %2,%1,%0")

(define_insn "mulsf3"
  [(set (match_operand:SF 0 "register_operand" "=f")
	(mult:SF (match_operand:SF 1 "nonimmediate_operand" "%f")
		 (match_operand:SF 2 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fmul%.s %2,%1,%0")

;; divide instructions

(define_insn "divhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(div:HI (match_operand:HI 1 "general_operand" "0")
		(match_operand:HI 2 "general_operand" "dmn")))]
  ""
  "extl %0\;divs %2,%0")

(define_insn "divhisi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(truncate:HI
	 (div:SI
	  (match_operand:SI 1 "general_operand" "0")
	  (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))]
  ""
  "divs %2,%0")

(define_insn ""
  [(set (match_operand:HI 0 "general_operand" "=d")
	(truncate:HI (div:SI (match_operand:SI 1 "general_operand" "0")
			     (match_operand:SI 2 "const_int_operand" "n"))))]
  ""
  "divs %2,%0")

(define_insn "divsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(div:SI (match_operand:SI 1 "general_operand" "0")
		(match_operand:SI 2 "general_operand" "dmsK")))]
  "TARGET_68020"
  "divs%.l %2,%0,%0")

(define_insn "udivhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(udiv:HI (match_operand:HI 1 "general_operand" "0")
		 (match_operand:HI 2 "general_operand" "dmn")))]
  ""
  "and%.l %#0xFFFF,%0\;divu %2,%0")

(define_insn "udivhisi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(truncate:HI
	 (udiv:SI
	  (match_operand:SI 1 "general_operand" "0")
	  (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))]
  ""
  "divu %2,%0")

(define_insn ""
  [(set (match_operand:HI 0 "general_operand" "=d")
	(truncate:HI (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "0")
			      (match_operand:HI 2 "const_int_operand" "n"))))]
  ""
  "divu %2,%0")

(define_insn "udivsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(udiv:SI (match_operand:SI 1 "general_operand" "0")
		 (match_operand:SI 2 "general_operand" "dmsK")))]
  "TARGET_68020"
  "divu%.l %2,%0,%0")

(define_insn "divdf3"
  [(set (match_operand:DF 0 "register_operand" "=f,f,f")
	(div:DF (match_operand:DF 1 "nonimmediate_operand" "f,f,m")
		(match_operand:DF 2 "nonimmediate_operand" "f,m,f")))]
  "TARGET_CE"
  "@
   fdiv%.d %2,%1,%0
   fdiv%.d %2,%1,%0
   frdiv%.d %1,%2,%0")

(define_insn "divsf3"
  [(set (match_operand:SF 0 "register_operand" "=f,f,f")
	(div:SF (match_operand:SF 1 "nonimmediate_operand" "f,f,m")
		(match_operand:SF 2 "nonimmediate_operand" "f,m,f")))]
  "TARGET_CE"
  "@
   fdiv%.s %2,%1,%0
   fdiv%.s %2,%1,%0
   frdiv%.s %1,%2,%0")

;; Remainder instructions.

(define_insn "modhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(mod:HI (match_operand:HI 1 "general_operand" "0")
		(match_operand:HI 2 "general_operand" "dmn")))]
  ""
  "extl %0\;divs %2,%0\;swap %0")

(define_insn "modhisi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(truncate:HI
	 (mod:SI
	  (match_operand:SI 1 "general_operand" "0")
	  (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))]
  ""
  "divs %2,%0\;swap %0")

(define_insn ""
  [(set (match_operand:HI 0 "general_operand" "=d")
	(truncate:HI (mod:SI (match_operand:SI 1 "general_operand" "0")
			     (match_operand:SI 2 "const_int_operand" "n"))))]
  ""
  "divs %2,%0\;swap %0")

(define_insn "umodhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(umod:HI (match_operand:HI 1 "general_operand" "0")
		 (match_operand:HI 2 "general_operand" "dmn")))]
  ""
  "and%.l %#0xFFFF,%0\;divu %2,%0\;swap %0")

(define_insn "umodhisi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(truncate:HI
	 (umod:SI
	  (match_operand:SI 1 "general_operand" "0")
	  (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))]
  ""
  "divu %2,%0\;swap %0")

(define_insn ""
  [(set (match_operand:HI 0 "general_operand" "=d")
	(truncate:HI (umod:SI (match_operand:SI 1 "general_operand" "0")
			      (match_operand:SI 2 "const_int_operand" "n"))))]
  ""
  "divu %2,%0\;swap %0")

(define_insn "divmodsi4"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(div:SI (match_operand:SI 1 "general_operand" "0")
		(match_operand:SI 2 "general_operand" "dmsK")))
   (set (match_operand:SI 3 "general_operand" "=d")
	(mod:SI (match_dup 1) (match_dup 2)))]
  "TARGET_68020"
  "divs%.l %2,%0,%3")

(define_insn "udivmodsi4"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(udiv:SI (match_operand:SI 1 "general_operand" "0")
		 (match_operand:SI 2 "general_operand" "dmsK")))
   (set (match_operand:SI 3 "general_operand" "=d")
	(umod:SI (match_dup 1) (match_dup 2)))]
  "TARGET_68020"
  "divu%.l %2,%0,%3")

;; logical-and instructions

(define_insn "andsi3"
  [(set (match_operand:SI 0 "general_operand" "=m,d")
	(and:SI (match_operand:SI 1 "general_operand" "%0,0")
		(match_operand:SI 2 "general_operand" "dKs,dmKs")))]
  ""
  "*
{
  if (GET_CODE (operands[2]) == CONST_INT
      && (INTVAL (operands[2]) | 0xffff) == 0xffffffff
      && (DATA_REG_P (operands[0])
	  || offsettable_memref_p (operands[0])))
    { 
      if (GET_CODE (operands[0]) != REG)
        operands[0] = adj_offsettable_operand (operands[0], 2);
      operands[2] = gen_rtx (CONST_INT, VOIDmode,
			     INTVAL (operands[2]) & 0xffff);
      /* Do not delete a following tstl %0 insn; that would be incorrect.  */
      CC_STATUS_INIT;
      if (operands[2] == const0_rtx)
        return \"clr%.w %0\";
      return \"and%.w %2,%0\";
    }
  return \"and%.l %2,%0\";
}")

(define_insn "andhi3"
  [(set (match_operand:HI 0 "general_operand" "=m,d")
	(and:HI (match_operand:HI 1 "general_operand" "%0,0")
		(match_operand:HI 2 "general_operand" "dn,dmn")))]
  ""
  "and%.w %2,%0")

(define_insn "andqi3"
  [(set (match_operand:QI 0 "general_operand" "=m,d")
	(and:QI (match_operand:QI 1 "general_operand" "%0,0")
		(match_operand:QI 2 "general_operand" "dn,dmn")))]
  ""
  "and%.b %2,%0")


;; inclusive-or instructions

(define_insn "iorsi3"
  [(set (match_operand:SI 0 "general_operand" "=m,d")
	(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
		(match_operand:SI 2 "general_operand" "dKs,dmKs")))]
  ""
  "*
{
  register int logval;
  if (GET_CODE (operands[2]) == CONST_INT
      && INTVAL (operands[2]) >> 16 == 0
      && (DATA_REG_P (operands[0])
	  || offsettable_memref_p (operands[0])))
    { 
      if (GET_CODE (operands[0]) != REG)
        operands[0] = adj_offsettable_operand (operands[0], 2);
      /* Do not delete a following tstl %0 insn; that would be incorrect.  */
      CC_STATUS_INIT;
      return \"or%.w %2,%0\";
    }
  if (GET_CODE (operands[2]) == CONST_INT
      && (logval = exact_log2 (INTVAL (operands[2]))) >= 0
      && (DATA_REG_P (operands[0])
	  || offsettable_memref_p (operands[0])))
    { 
      if (DATA_REG_P (operands[0]))
	operands[1] = gen_rtx (CONST_INT, VOIDmode, logval);
      else
        {
	  operands[0] = adj_offsettable_operand (operands[0], 3 - (logval / 8));
	  operands[1] = gen_rtx (CONST_INT, VOIDmode, logval % 8);
	}
      return \"bset %1,%0\";
    }
  return \"or%.l %2,%0\";
}")

(define_insn "iorhi3"
  [(set (match_operand:HI 0 "general_operand" "=m,d")
	(ior:HI (match_operand:HI 1 "general_operand" "%0,0")
		(match_operand:HI 2 "general_operand" "dn,dmn")))]
  ""
  "or%.w %2,%0")

(define_insn "iorqi3"
  [(set (match_operand:QI 0 "general_operand" "=m,d")
	(ior:QI (match_operand:QI 1 "general_operand" "%0,0")
		(match_operand:QI 2 "general_operand" "dn,dmn")))]
  ""
  "or%.b %2,%0")

;; xor instructions

(define_insn "xorsi3"
  [(set (match_operand:SI 0 "general_operand" "=do,m")
	(xor:SI (match_operand:SI 1 "general_operand" "%0,0")
		(match_operand:SI 2 "general_operand" "di,dKs")))]
  ""
  "*
{
  if (GET_CODE (operands[2]) == CONST_INT
      && INTVAL (operands[2]) >> 16 == 0
      && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0])))
    { 
      if (! DATA_REG_P (operands[0]))
	operands[0] = adj_offsettable_operand (operands[0], 2);
      /* Do not delete a following tstl %0 insn; that would be incorrect.  */
      CC_STATUS_INIT;
      return \"eor%.w %2,%0\";
    }
  return \"eor%.l %2,%0\";
}")

(define_insn "xorhi3"
  [(set (match_operand:HI 0 "general_operand" "=dm")
	(xor:HI (match_operand:HI 1 "general_operand" "%0")
		(match_operand:HI 2 "general_operand" "dn")))]
  ""
  "eor%.w %2,%0")

(define_insn "xorqi3"
  [(set (match_operand:QI 0 "general_operand" "=dm")
	(xor:QI (match_operand:QI 1 "general_operand" "%0")
		(match_operand:QI 2 "general_operand" "dn")))]
  ""
  "eor%.b %2,%0")

;; negation instructions

(define_insn "negsi2"
  [(set (match_operand:SI 0 "general_operand" "=dm")
	(neg:SI (match_operand:SI 1 "general_operand" "0")))]
  ""
  "neg%.l %0")

(define_insn "neghi2"
  [(set (match_operand:HI 0 "general_operand" "=dm")
	(neg:HI (match_operand:HI 1 "general_operand" "0")))]
  ""
  "neg%.w %0")

(define_insn "negqi2"
  [(set (match_operand:QI 0 "general_operand" "=dm")
	(neg:QI (match_operand:QI 1 "general_operand" "0")))]
  ""
  "neg%.b %0")

(define_insn "negsf2"
  [(set (match_operand:SF 0 "register_operand" "=f")
	(neg:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fneg%.s %1,%0")

(define_insn "negdf2"
  [(set (match_operand:DF 0 "register_operand" "=f")
	(neg:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fneg%.d %1,%0")

;; Absolute value instructions

(define_insn "abssf2"
  [(set (match_operand:SF 0 "register_operand" "=f")
	(abs:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fabs%.s %1,%0")

(define_insn "absdf2"
  [(set (match_operand:DF 0 "register_operand" "=f")
	(abs:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fabs%.d %1,%0")

;; Square root instructions

(define_insn "sqrtsf2"
  [(set (match_operand:SF 0 "register_operand" "=f")
	(sqrt:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fsqrt%.s %1,%0")

(define_insn "sqrtdf2"
  [(set (match_operand:DF 0 "register_operand" "=f")
	(sqrt:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))]
  "TARGET_CE"
  "fsqrt%.d %1,%0")

;; one complement instructions

(define_insn "one_cmplsi2"
  [(set (match_operand:SI 0 "general_operand" "=dm")
	(not:SI (match_operand:SI 1 "general_operand" "0")))]
  ""
  "not%.l %0")

(define_insn "one_cmplhi2"
  [(set (match_operand:HI 0 "general_operand" "=dm")
	(not:HI (match_operand:HI 1 "general_operand" "0")))]
  ""
  "not%.w %0")

(define_insn "one_cmplqi2"
  [(set (match_operand:QI 0 "general_operand" "=dm")
	(not:QI (match_operand:QI 1 "general_operand" "0")))]
  ""
  "not%.b %0")


;; arithmetic shift instructions
;; We don't need the shift memory by 1 bit instruction

(define_insn "ashlsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(ashift:SI (match_operand:SI 1 "general_operand" "0")
		   (match_operand:SI 2 "general_operand" "dI")))]
  ""
  "asl%.l %2,%0")

(define_insn "ashlhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(ashift:HI (match_operand:HI 1 "general_operand" "0")
		   (match_operand:HI 2 "general_operand" "dI")))]
  ""
  "asl%.w %2,%0")

(define_insn "ashlqi3"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(ashift:QI (match_operand:QI 1 "general_operand" "0")
		   (match_operand:QI 2 "general_operand" "dI")))]
  ""
  "asl%.b %2,%0")

(define_insn "ashrsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(ashiftrt:SI (match_operand:SI 1 "general_operand" "0")
		     (match_operand:SI 2 "general_operand" "dI")))]
  ""
  "asr%.l %2,%0")

(define_insn "ashrhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(ashiftrt:HI (match_operand:HI 1 "general_operand" "0")
		     (match_operand:HI 2 "general_operand" "dI")))]
  ""
  "asr%.w %2,%0")

(define_insn "ashrqi3"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(ashiftrt:QI (match_operand:QI 1 "general_operand" "0")
		     (match_operand:QI 2 "general_operand" "dI")))]
  ""
  "asr%.b %2,%0")

;; logical shift instructions

(define_insn "lshlsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(lshift:SI (match_operand:SI 1 "general_operand" "0")
		   (match_operand:SI 2 "general_operand" "dI")))]
  ""
  "lsl%.l %2,%0")

(define_insn "lshlhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(lshift:HI (match_operand:HI 1 "general_operand" "0")
		   (match_operand:HI 2 "general_operand" "dI")))]
  ""
  "lsl%.w %2,%0")

(define_insn "lshlqi3"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(lshift:QI (match_operand:QI 1 "general_operand" "0")
		   (match_operand:QI 2 "general_operand" "dI")))]
  ""
  "lsl%.b %2,%0")

(define_insn "lshrsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(lshiftrt:SI (match_operand:SI 1 "general_operand" "0")
		     (match_operand:SI 2 "general_operand" "dI")))]
  ""
  "lsr%.l %2,%0")

(define_insn "lshrhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(lshiftrt:HI (match_operand:HI 1 "general_operand" "0")
		     (match_operand:HI 2 "general_operand" "dI")))]
  ""
  "lsr%.w %2,%0")

(define_insn "lshrqi3"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(lshiftrt:QI (match_operand:QI 1 "general_operand" "0")
		     (match_operand:QI 2 "general_operand" "dI")))]
  ""
  "lsr%.b %2,%0")

;; rotate instructions

(define_insn "rotlsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(rotate:SI (match_operand:SI 1 "general_operand" "0")
		   (match_operand:SI 2 "general_operand" "dI")))]
  ""
  "rol%.l %2,%0")

(define_insn "rotlhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(rotate:HI (match_operand:HI 1 "general_operand" "0")
		   (match_operand:HI 2 "general_operand" "dI")))]
  ""
  "rol%.w %2,%0")

(define_insn "rotlqi3"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(rotate:QI (match_operand:QI 1 "general_operand" "0")
		   (match_operand:QI 2 "general_operand" "dI")))]
  ""
  "rol%.b %2,%0")

(define_insn "rotrsi3"
  [(set (match_operand:SI 0 "general_operand" "=d")
	(rotatert:SI (match_operand:SI 1 "general_operand" "0")
		     (match_operand:SI 2 "general_operand" "dI")))]
  ""
  "ror%.l %2,%0")

(define_insn "rotrhi3"
  [(set (match_operand:HI 0 "general_operand" "=d")
	(rotatert:HI (match_operand:HI 1 "general_operand" "0")
		     (match_operand:HI 2 "general_operand" "dI")))]
  ""
  "ror%.w %2,%0")

(define_insn "rotrqi3"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(rotatert:QI (match_operand:QI 1 "general_operand" "0")
		     (match_operand:QI 2 "general_operand" "dI")))]
  ""
  "ror%.b %2,%0")

;; Special cases of bit-field insns which we should
;; recognize in preference to the general case.
;; These handle aligned 8-bit and 16-bit fields,
;; which can usually be done with move instructions.

(define_insn ""
  [(set (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "+do")
			 (match_operand:SI 1 "const_int_operand" "i")
			 (match_operand:SI 2 "const_int_operand" "i"))
	(match_operand:SI 3 "general_operand" "d"))]
  "TARGET_68020 && TARGET_BITFIELD
   && (INTVAL (operands[1]) == 8 || INTVAL (operands[1]) == 16)
   && INTVAL (operands[2]) % INTVAL (operands[1]) == 0
   && (GET_CODE (operands[0]) == REG
       || ! mode_dependent_address_p (XEXP (operands[0], 0)))"
  "*
{
  if (REG_P (operands[0]))
    {
      if (INTVAL (operands[1]) + INTVAL (operands[2]) != 32)
        return \"bfins %3,[%c2,%c1]%0\";
    }
  else
    operands[0]
      = adj_offsettable_operand (operands[0], INTVAL (operands[2]) / 8);

  if (GET_CODE (operands[3]) == MEM)
    operands[3] = adj_offsettable_operand (operands[3],
					   (32 - INTVAL (operands[1])) / 8);
  if (INTVAL (operands[1]) == 8)
    return \"mov%.b %3,%0\";
  return \"mov%.w %3,%0\";
}")

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=&d")
	(zero_extract:SI (match_operand:SI 1 "nonimmediate_operand" "do")
			 (match_operand:SI 2 "const_int_operand" "i")
			 (match_operand:SI 3 "const_int_operand" "i")))]
  "TARGET_68020 && TARGET_BITFIELD
   && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16)
   && INTVAL (operands[3]) % INTVAL (operands[2]) == 0
   && (GET_CODE (operands[1]) == REG
       || ! mode_dependent_address_p (XEXP (operands[1], 0)))"
  "*
{
  if (REG_P (operands[1]))
    {
      if (INTVAL (operands[2]) + INTVAL (operands[3]) != 32)
	return \"bfextu [%c3,%c2]%1,%0\";
    }
  else
    operands[1]
      = adj_offsettable_operand (operands[1], INTVAL (operands[3]) / 8);

  output_asm_insn (\"clrl %0\", operands);
  if (GET_CODE (operands[0]) == MEM)
    operands[0] = adj_offsettable_operand (operands[0],
					   (32 - INTVAL (operands[1])) / 8);
  if (INTVAL (operands[2]) == 8)
    return \"mov%.b %1,%0\";
  return \"mov%.w %1,%0\";
}")

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=d")
	(sign_extract:SI (match_operand:SI 1 "nonimmediate_operand" "do")
			 (match_operand:SI 2 "const_int_operand" "i")
			 (match_operand:SI 3 "const_int_operand" "i")))]
  "TARGET_68020 && TARGET_BITFIELD
   && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16)
   && INTVAL (operands[3]) % INTVAL (operands[2]) == 0
   && (GET_CODE (operands[1]) == REG
       || ! mode_dependent_address_p (XEXP (operands[1], 0)))"
  "*
{
  if (REG_P (operands[1]))
    {
      if (INTVAL (operands[2]) + INTVAL (operands[3]) != 32)
	return \"bfexts [%c3,%c2]%1,%0\";
    }
  else
    operands[1]
      = adj_offsettable_operand (operands[1], INTVAL (operands[3]) / 8);

  if (INTVAL (operands[2]) == 8)
    return \"mov%.b %1,%0\;extb%.l %0\";
  return \"mov%.w %1,%0\;ext%.l %0\";
}")

;; Bit field instructions, general cases.
;; "o,d" constraint causes a nonoffsettable memref to match the "o"
;; so that its address is reloaded.

(define_insn "extv"
  [(set (match_operand:SI 0 "general_operand" "=d,d")
	(sign_extract:SI (match_operand:QI 1 "nonimmediate_operand" "o,d")
			 (match_operand:SI 2 "general_operand" "di,di")
			 (match_operand:SI 3 "general_operand" "di,di")))]
  "TARGET_68020 && TARGET_BITFIELD"
  "bfexts [%c3,%c2]%1,%0")

(define_insn "extzv"
  [(set (match_operand:SI 0 "general_operand" "=d,d")
	(zero_extract:SI (match_operand:QI 1 "nonimmediate_operand" "o,d")
			 (match_operand:SI 2 "general_operand" "di,di")
			 (match_operand:SI 3 "general_operand" "di,di")))]
  "TARGET_68020 && TARGET_BITFIELD"
  "bfextu [%c3,%c2]%1,%0")

(define_insn ""
  [(set (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "+o,d")
			 (match_operand:SI 1 "general_operand" "di,di")
			 (match_operand:SI 2 "general_operand" "di,di"))
        (xor:SI (zero_extract:SI (match_dup 0) (match_dup 1) (match_dup 2))
		(match_operand:SI 3 "const_int_operand" "i,i")))]
  "TARGET_68020 && TARGET_BITFIELD
   && (INTVAL (operands[3]) == -1
       || (GET_CODE (operands[1]) == CONST_INT
           && (~ INTVAL (operands[3]) & ((1 << INTVAL (operands[1]))- 1)) == 0))"
  "*
{
  CC_STATUS_INIT;
  return \"bfchg [%c2,%c1]%0\";
}")

(define_insn ""
  [(set (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "+o,d")
			 (match_operand:SI 1 "general_operand" "di,di")
			 (match_operand:SI 2 "general_operand" "di,di"))
	(const_int 0))]
  "TARGET_68020 && TARGET_BITFIELD"
  "*
{
  CC_STATUS_INIT;
  return \"bfclr [%c2,%c1]%0\";
}")

(define_insn ""
  [(set (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "+o,d")
			 (match_operand:SI 1 "general_operand" "di,di")
			 (match_operand:SI 2 "general_operand" "di,di"))
	(const_int -1))]
  "TARGET_68020 && TARGET_BITFIELD"
  "*
{
  CC_STATUS_INIT;
  return \"bfset [%c2,%c1]%0\";
}")

(define_insn "insv"
  [(set (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "+o,d")
			 (match_operand:SI 1 "general_operand" "di,di")
			 (match_operand:SI 2 "general_operand" "di,di"))
	(match_operand:SI 3 "general_operand" "d,d"))]
  "TARGET_68020 && TARGET_BITFIELD"
  "bfins %3,[%c2,%c1]%0")

;; Now recognize bit field insns that operate on registers
;; (or at least were intended to do so).

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=d")
	(sign_extract:SI (match_operand:SI 1 "nonimmediate_operand" "d")
			 (match_operand:SI 2 "general_operand" "di")
			 (match_operand:SI 3 "general_operand" "di")))]
  "TARGET_68020 && TARGET_BITFIELD"
  "bfexts [%c3,%c2]%1,%0")

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=d")
	(zero_extract:SI (match_operand:SI 1 "nonimmediate_operand" "d")
			 (match_operand:SI 2 "general_operand" "di")
			 (match_operand:SI 3 "general_operand" "di")))]
  "TARGET_68020 && TARGET_BITFIELD"
  "bfextu [%c3,%c2]%1,%0")

(define_insn ""
  [(set (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "+d")
			 (match_operand:SI 1 "general_operand" "di")
			 (match_operand:SI 2 "general_operand" "di"))
	(const_int 0))]
  "TARGET_68020 && TARGET_BITFIELD"
  "*
{
  CC_STATUS_INIT;
  return \"bfclr [%c2,%c1]%0\";
}")

(define_insn ""
  [(set (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "+d")
			 (match_operand:SI 1 "general_operand" "di")
			 (match_operand:SI 2 "general_operand" "di"))
	(const_int -1))]
  "TARGET_68020 && TARGET_BITFIELD"
  "*
{
  CC_STATUS_INIT;
  return \"bfset [%c2,%c1]%0\";
}")

(define_insn ""
  [(set (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "+d")
			 (match_operand:SI 1 "general_operand" "di")
			 (match_operand:SI 2 "general_operand" "di"))
	(match_operand:SI 3 "general_operand" "d"))]
  "TARGET_68020 && TARGET_BITFIELD"
  "*
{
  return \"bfins %3,[%c2,%c1]%0\";
}")

;; Special patterns for optimizing bit-field instructions.

(define_insn ""
  [(set (cc0)
	(zero_extract:SI (match_operand:QI 0 "memory_operand" "o")
			 (match_operand:SI 1 "const_int_operand" "i")
			 (match_operand:SI 2 "general_operand" "di")))]
  "TARGET_68020 && TARGET_BITFIELD"
  "*
{
  if (operands[1] == const1_rtx
      && GET_CODE (operands[2]) == CONST_INT)
    {    
      int width = GET_CODE (operands[0]) == REG ? 31 : 7;
      return output_btst (operands,
			  gen_rtx (CONST_INT, VOIDmode,
				   width - INTVAL (operands[2])),
			  operands[0],
			  insn, 1000);
      /* Pass 1000 as SIGNPOS argument so that btst will
         not think we are testing the sign bit for an `and'
	 and assume that nonzero implies a negative result.  */
    }
  if (INTVAL (operands[1]) != 32)
    cc_status.flags = CC_NOT_NEGATIVE;
  return \"bftst [%c2,%c1]%0\";
}")

;;; now handle the register cases
(define_insn ""
  [(set (cc0)
	(zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "d")
			 (match_operand:SI 1 "const_int_operand" "i")
			 (match_operand:SI 2 "general_operand" "di")))]
  "TARGET_68020 && TARGET_BITFIELD"
  "*
{
  if (operands[1] == const1_rtx
      && GET_CODE (operands[2]) == CONST_INT)
    {    
      int width = GET_CODE (operands[0]) == REG ? 31 : 7;
      return output_btst (operands,
			  gen_rtx (CONST_INT, VOIDmode,
				   width - INTVAL (operands[2])),
			  operands[0],
			  insn, 1000);
      /* Pass 1000 as SIGNPOS argument so that btst will
         not think we are testing the sign bit for an `and'
	 and assume that nonzero implies a negative result.  */
    }
  if (INTVAL (operands[1]) != 32)
    cc_status.flags = CC_NOT_NEGATIVE;
  return \"bftst [%c2,%c1]%0\";
}")


(define_insn "seq"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(eq:QI (cc0) (const_int 0)))]
  ""
  "*
  cc_status = cc_prev_status;
  OUTPUT_JUMP (\"seq %0\", \"fseq %0\", \"seq %0\");
")

(define_insn "sne"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(ne:QI (cc0) (const_int 0)))]
  ""
  "*
  cc_status = cc_prev_status;
  OUTPUT_JUMP (\"sne %0\", \"fsneq %0\", \"sne %0\");
")

(define_insn "sgt"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(gt:QI (cc0) (const_int 0)))]
  ""
  "*
  cc_status = cc_prev_status;
  OUTPUT_JUMP (\"sgt %0\", \"fsgt %0\", \"and%.b %#0xc,%!\;sgt %0\");
")

(define_insn "sgtu"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(gtu:QI (cc0) (const_int 0)))]
  ""
  "* cc_status = cc_prev_status;
     return \"shi %0\"; ")

(define_insn "slt"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(lt:QI (cc0) (const_int 0)))]
  ""
  "* cc_status = cc_prev_status;
     OUTPUT_JUMP (\"slt %0\", \"fslt %0\", \"smi %0\"); ")

(define_insn "sltu"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(ltu:QI (cc0) (const_int 0)))]
  ""
  "* cc_status = cc_prev_status;
     return \"scs %0\"; ")

(define_insn "sge"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(ge:QI (cc0) (const_int 0)))]
  ""
  "* cc_status = cc_prev_status;
     OUTPUT_JUMP (\"sge %0\", \"fsge %0\", \"spl %0\"); ")

(define_insn "sgeu"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(geu:QI (cc0) (const_int 0)))]
  ""
  "* cc_status = cc_prev_status;
     return \"scc %0\"; ")

(define_insn "sle"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(le:QI (cc0) (const_int 0)))]
  ""
  "*
  cc_status = cc_prev_status;
  OUTPUT_JUMP (\"sle %0\", \"fsle %0\", \"and%.b %#0xc,%!\;sle %0\");
")

(define_insn "sleu"
  [(set (match_operand:QI 0 "general_operand" "=d")
	(leu:QI (cc0) (const_int 0)))]
  ""
  "* cc_status = cc_prev_status;
     return \"sls %0\"; ")

;; Basic conditional jump instructions.

(define_insn "beq"
  [(set (pc)
	(if_then_else (eq (cc0)
			  (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
{
  OUTPUT_JUMP (\"jeq %l0\", \"fbeq %l0\", \"jeq %l0\");
}")

(define_insn "bne"
  [(set (pc)
	(if_then_else (ne (cc0)
			  (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
{
  OUTPUT_JUMP (\"jne %l0\", \"fbneq %l0\", \"jne %l0\");
}")

(define_insn "bgt"
  [(set (pc)
	(if_then_else (gt (cc0)
			  (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
  OUTPUT_JUMP (\"jgt %l0\", \"fbgt %l0\", \"and%.b %#0xc,%!\;jgt %l0\");
")

(define_insn "bgtu"
  [(set (pc)
	(if_then_else (gtu (cc0)
			   (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
  return \"jhi %l0\";
")

(define_insn "blt"
  [(set (pc)
	(if_then_else (lt (cc0)
			  (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
  OUTPUT_JUMP (\"jlt %l0\", \"fblt %l0\", \"jmi %l0\");
")

(define_insn "bltu"
  [(set (pc)
	(if_then_else (ltu (cc0)
			   (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
  return \"jcs %l0\";
")

(define_insn "bge"
  [(set (pc)
	(if_then_else (ge (cc0)
			  (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
  OUTPUT_JUMP (\"jge %l0\", \"fbge %l0\", \"jpl %l0\");
")

(define_insn "bgeu"
  [(set (pc)
	(if_then_else (geu (cc0)
			   (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
  return \"jcc %l0\";
")

(define_insn "ble"
  [(set (pc)
	(if_then_else (le (cc0)
			  (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
  OUTPUT_JUMP (\"jle %l0\", \"fble %l0\", \"and%.b %#0xc,%!\;jle %l0\");
")

(define_insn "bleu"
  [(set (pc)
	(if_then_else (leu (cc0)
			   (const_int 0))
		      (label_ref (match_operand 0 "" ""))
		      (pc)))]
  ""
  "*
  return \"jls %l0\";
")

;; Negated conditional jump instructions.

(define_insn ""
  [(set (pc)
	(if_then_else (eq (cc0)
			  (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
{
  OUTPUT_JUMP (\"jne %l0\", \"fbneq %l0\", \"jne %l0\");
}")

(define_insn ""
  [(set (pc)
	(if_then_else (ne (cc0)
			  (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
{
  OUTPUT_JUMP (\"jeq %l0\", \"fbeq %l0\", \"jeq %l0\");
}")

(define_insn ""
  [(set (pc)
	(if_then_else (gt (cc0)
			  (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
  OUTPUT_JUMP (\"jle %l0\", \"fbngt %l0\", \"and%.b %#0xc,%!\;jle %l0\");
")

(define_insn ""
  [(set (pc)
	(if_then_else (gtu (cc0)
			   (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
  return \"jls %l0\";
")

(define_insn ""
  [(set (pc)
	(if_then_else (lt (cc0)
			  (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
  OUTPUT_JUMP (\"jge %l0\", \"fbnlt %l0\", \"jpl %l0\");
")

(define_insn ""
  [(set (pc)
	(if_then_else (ltu (cc0)
			   (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
  return \"jcc %l0\";
")

(define_insn ""
  [(set (pc)
	(if_then_else (ge (cc0)
			  (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
  OUTPUT_JUMP (\"jlt %l0\", \"fbnge %l0\", \"jmi %l0\");
")

(define_insn ""
  [(set (pc)
	(if_then_else (geu (cc0)
			   (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
  return \"jcs %l0\";
")

(define_insn ""
  [(set (pc)
	(if_then_else (le (cc0)
			  (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
  OUTPUT_JUMP (\"jgt %l0\", \"fbnle %l0\", \"and%.b %#0xc,%!\;jgt %l0\");
")

(define_insn ""
  [(set (pc)
	(if_then_else (leu (cc0)
			   (const_int 0))
		      (pc)
		      (label_ref (match_operand 0 "" ""))))]
  ""
  "*
  return \"jhi %l0\";
")

;; Subroutines of "casesi".

(define_expand "casesi_1"
  [(set (match_operand:SI 3 "general_operand" "")
	(plus:SI (match_operand:SI 0 "general_operand" "")
		 ;; Note operand 1 has been negated!
		 (match_operand:SI 1 "immediate_operand" "")))
   (set (cc0) (compare (match_operand:SI 2 "nonimmediate_operand" "")
		       (match_dup 3)))
   (set (pc) (if_then_else (ltu (cc0) (const_int 0))
			   (label_ref (match_operand 4 "" "")) (pc)))]
  ""
  "")

(define_expand "casesi_2"
  [(set (match_operand:SI 0 "" "") (mem:HI (match_operand:SI 1 "" "")))
   ;; The USE here is so that at least one jump-insn will refer to the label,
   ;; to keep it alive in jump_optimize.
   (parallel [(set (pc)
		   (plus:SI (pc) (match_dup 0)))
	      (use (label_ref (match_operand 2 "" "")))])]
  ""
  "")

;; Operand 0 is index (in bytes); operand 1 is minimum, operand 2 the maximum;
;; operand 3 is CODE_LABEL for the table;
;; operand 4 is the CODE_LABEL to go to if index out of range.
(define_expand "casesi"
  ;; We don't use these for generating the RTL, but we must describe
  ;; the operands here.
  [(match_operand:SI 0 "general_operand" "")
   (match_operand:SI 1 "immediate_operand" "")
   (match_operand:SI 2 "general_operand" "")
   (match_operand 3 "" "")
   (match_operand 4 "" "")]
  ""
  "
{
  rtx table_elt_addr;
  rtx index_diff;

  operands[1] = negate_rtx (SImode, operands[1]);
  index_diff = gen_reg_rtx (SImode);
  /* Emit the first few insns.  */
  emit_insn (gen_casesi_1 (operands[0], operands[1], operands[2],
			   index_diff, operands[4]));
  /* Construct a memory address.  This may emit some insns.  */
  table_elt_addr
    = memory_address_noforce
        (HImode,
	 gen_rtx (PLUS, Pmode,
		  gen_rtx (MULT, Pmode, index_diff,
			   gen_rtx (CONST_INT, VOIDmode, 2)),
		  gen_rtx (LABEL_REF, VOIDmode, operands[3])));
  /* Emit the last few insns.  */
  emit_insn (gen_casesi_2 (gen_reg_rtx (HImode), table_elt_addr, operands[3]));
  DONE;
}")

;; Recognize one of the insns resulting from casesi_2.
(define_insn ""
  [(set (pc)
	(plus:SI (pc) (match_operand:HI 0 "general_operand" "r")))
   (use (label_ref (match_operand 1 "" "")))]
  ""
  "*
  return \"jmp pc@(2:B)[%0:W:B]\";
")

;; Unconditional and other jump instructions
(define_insn "jump"
  [(set (pc)
	(label_ref (match_operand 0 "" "")))]
  ""
  "*
  return \"jra %l0\";
")

(define_insn ""
  [(set (pc)
	(if_then_else
	 (ne (match_operand:HI 0 "general_operand" "d,m,g")
	     (const_int 0))
	 (label_ref (match_operand 1 "" ""))
	 (pc)))
   (set (match_dup 0)
	(plus:HI (match_dup 0)
		 (const_int -1)))]
  ""
  "@
   dbra %0,%l1
   subq%.w %#1,%0\;jcc %l1
   subq%.w %#1,%0\;cmp%.w %#-1,%0\;jne %l1")

(define_insn ""
  [(set (pc)
	(if_then_else
	 (ne (match_operand:SI 0 "general_operand" "d,m,g")
	     (const_int 0))
	 (label_ref (match_operand 1 "" ""))
	 (pc)))
   (set (match_dup 0)
	(plus:SI (match_dup 0)
		 (const_int -1)))]
  ""
  "@
   dbra %0,%l1\;clr%.w %0\;subq%.l %#1,%0\;jcc %l1
   subq%.l %#1,%0\;jcc %l1
   subq%.l %#1,%0\;cmp%.l %#-1,%0\;jne %l1")

;; dbra patterns that use REG_NOTES info generated by strength_reduce.

(define_insn "decrement_and_branch_until_zero"
  [(set (pc)
	(if_then_else
	  (ge (match_operand:SI 0 "general_operand" "d,m,g")
	      (const_int 1))
	  (label_ref (match_operand 1 "" ""))
	  (pc)))
   (set (match_dup 0)
	(plus:SI (match_dup 0)
		 (const_int -1)))]
  "find_reg_note (insn, REG_NONNEG, 0)"
  "@
   dbra %0,%l1\;clrw %0\;subql %#1,%0\;jcc %l1
   subq%.l %#1,%0\;jcc %l1
   subq%.l %#1,%0\;cmp%.l %#-1,%0\;jne %l1")

;; Call subroutine with no return value.
(define_insn "call"
  [(call (match_operand:QI 0 "memory_operand" "o")
	 (match_operand:SI 1 "general_operand" "g"))]
  ""
  "*
{
  rtx xoperands[2];
  int size = XINT(operands[1],0);

  if (size == 0) 
    output_asm_insn (\"sub%.l a0,a0\;jbsr %0\", operands);
  else
  {
    xoperands[1] = gen_rtx (CONST_INT, VOIDmode, size/4);
    output_asm_insn (\"mov%.l sp,a0\;pea %a1\", xoperands);
    output_asm_insn (\"jbsr %0\", operands);
    size = size + 4;
    xoperands[1] = gen_rtx (CONST_INT, VOIDmode, size);
    if (size <= 8)
      output_asm_insn (\"addq%.l %1,sp\", xoperands);
    else if (size < 0x8000)
      output_asm_insn (\"add%.w %1,sp\", xoperands);
    else
      output_asm_insn (\"add%.l %1,sp\", xoperands);
  }
  return \"mov%.l a6@(-4),a0\";
}")

;; Call subroutine, returning value in operand 0
;; (which must be a hard register).
(define_insn "call_value"
  [(set (match_operand 0 "" "=rf")
	(call (match_operand:QI 1 "memory_operand" "o")
	      (match_operand:SI 2 "general_operand" "g")))]
  ""
  "*
{
  rtx xoperands[3];
  int size = XINT(operands[2],0);

  if (size == 0)
    output_asm_insn(\"sub%.l a0,a0\;jbsr %1\", operands);
  else
  {
    xoperands[2] = gen_rtx (CONST_INT, VOIDmode, size/4);
    output_asm_insn (\"mov%.l sp,a0\;pea %a2\", xoperands);
    output_asm_insn (\"jbsr %1\", operands);
    size = size + 4;
    xoperands[2] = gen_rtx (CONST_INT, VOIDmode, size);
    if (size <= 8)
      output_asm_insn (\"addq%.l %2,sp\", xoperands);
    else if (size < 0x8000)
      output_asm_insn (\"add%.w %2,sp\", xoperands);
    else
      output_asm_insn (\"add%.l %2,sp\", xoperands);
  }
  return \"mov%.l a6@(-4),a0\";
}")

(define_insn "nop"
  [(const_int 0)]
  ""
  "nop")

;; This should not be used unless the add/sub insns can't be.

(define_insn ""
  [(set (match_operand:SI 0 "general_operand" "=a")
	(match_operand:QI 1 "address_operand" "p"))]
  ""
  "lea %a1,%0")

;; This is the first machine-dependent peephole optimization.
;; It is useful when a floating value is returned from a function call
;; and then is moved into an FP register.
;; But it is mainly intended to test the support for these optimizations.

;Not applicable to Alliant -- floating results are returned in fp0
;(define_peephole
;  [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
;   (set (match_operand:DF 0 "register_operand" "f")
;	(match_operand:DF 1 "register_operand" "ad"))]
;  "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
;  "*
;{
;  rtx xoperands[2];
;  xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
;  output_asm_insn (\"mov%.l %1,%@\", xoperands);
;  output_asm_insn (\"mov%.l %1,%-\", operands);
;  return \"fmove%.d %+,%0\";
;}
;")


;;- Local variables:
;;- mode:emacs-lisp
;;- comment-start: ";;- "
;;- comment-start-skip: ";+- *"
;;- eval: (set-syntax-table (copy-sequence (syntax-table)))
;;- eval: (modify-syntax-entry ?[ "(]")
;;- eval: (modify-syntax-entry ?] ")[")
;;- eval: (modify-syntax-entry ?{ "(}")
;;- eval: (modify-syntax-entry ?} "){")
;;- End: