;;- Machine description for GNU C compiler for Alliant FX systems ;; Copyright (C) 1989 Free Software Foundation, Inc. ;; Adapted from m68k.md by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu) ;; and Joe Weening (weening@gang-of-four.stanford.edu). ;; This file is part of GNU CC. ;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version. ;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. ;;- instruction definitions ;;- @@The original PO technology requires these to be ordered by speed, ;;- @@ so that assigner will pick the fastest. ;;- See file "rtl.def" for documentation on define_insn, match_*, et. al. ;;- When naming insn's (operand 0 of define_insn) be careful about using ;;- names from other targets machine descriptions. ;;- cpp macro #define NOTICE_UPDATE_CC in file tm.h handles condition code ;;- updates for most instructions. ;;- Operand classes for the register allocator: ;;- 'a' one of the address registers can be used. ;;- 'd' one of the data registers can be used. ;;- 'f' one of the CE floating point registers can be used ;;- 'r' either a data or an address register can be used. ;;- Immediate integer operand constraints: ;;- 'I' 1 .. 8 ;;- 'J' -32768 .. 32767 ;;- 'K' -128 .. 127 ;;- 'L' -8 .. -1 ;;- Some remnants of constraint codes for the m68k ('x','y','G','H') ;;- may remain in the insn definitions. ;;- Some of these insn's are composites of several Alliant op codes. ;;- The assembler (or final @@??) insures that the appropriate one is ;;- selected. ;; We don't want to allow a constant operand for test insns because ;; (set (cc0) (const_int foo)) has no mode information. Such insns will ;; be folded while optimizing anyway. (define_insn "tstsi" [(set (cc0) (match_operand:SI 0 "nonimmediate_operand" "rm"))] "" "* { if (TARGET_68020 || ! ADDRESS_REG_P (operands[0])) return \"tst%.l %0\"; /* If you think that the 68020 does not support tstl a0, reread page B-167 of the 68020 manual more carefully. */ /* On an address reg, cmpw may replace cmpl. */ return \"cmp%.w %#0,%0\"; }") (define_insn "tsthi" [(set (cc0) (match_operand:HI 0 "nonimmediate_operand" "rm"))] "" "* { if (TARGET_68020 || ! ADDRESS_REG_P (operands[0])) return \"tst%.w %0\"; return \"cmp%.w %#0,%0\"; }") (define_insn "tstqi" [(set (cc0) (match_operand:QI 0 "nonimmediate_operand" "dm"))] "" "tst%.b %0") (define_insn "tstsf" [(set (cc0) (match_operand:SF 0 "nonimmediate_operand" "fm"))] "TARGET_CE" "* { cc_status.flags = CC_IN_FP; return \"ftest%.s %0\"; }") (define_insn "tstdf" [(set (cc0) (match_operand:DF 0 "nonimmediate_operand" "fm"))] "TARGET_CE" "* { cc_status.flags = CC_IN_FP; return \"ftest%.d %0\"; }") ;; compare instructions. ;; A composite of the cmp, cmpa, & cmpi m68000 op codes. (define_insn "cmpsi" [(set (cc0) (compare (match_operand:SI 0 "nonimmediate_operand" "rKs,mr,>") (match_operand:SI 1 "general_operand" "mr,Ksr,>")))] "" "* { if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) return \"cmpm%.l %1,%0\"; if (REG_P (operands[1]) || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM)) { cc_status.flags |= CC_REVERSED; return \"cmp%.l %d0,%d1\"; } return \"cmp%.l %d1,%d0\"; }") (define_insn "cmphi" [(set (cc0) (compare (match_operand:HI 0 "nonimmediate_operand" "rnm,d,n,m") (match_operand:HI 1 "general_operand" "d,rnm,m,n")))] "" "* { if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) return \"cmpm%.w %1,%0\"; if ((REG_P (operands[1]) && !ADDRESS_REG_P (operands[1])) || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM)) { cc_status.flags |= CC_REVERSED; return \"cmp%.w %d0,%d1\"; } return \"cmp%.w %d1,%d0\"; }") (define_insn "cmpqi" [(set (cc0) (compare (match_operand:QI 0 "nonimmediate_operand" "dn,md,>") (match_operand:QI 1 "general_operand" "dm,nd,>")))] "" "* { if (GET_CODE (operands[0]) == MEM && GET_CODE (operands[1]) == MEM) return \"cmpm%.b %1,%0\"; if (REG_P (operands[1]) || (!REG_P (operands[0]) && GET_CODE (operands[0]) != MEM)) { cc_status.flags |= CC_REVERSED; return \"cmp%.b %d0,%d1\"; } return \"cmp%.b %d1,%d0\"; }") (define_insn "cmpdf" [(set (cc0) (compare (match_operand:DF 0 "nonimmediate_operand" "f,m") (match_operand:DF 1 "nonimmediate_operand" "fm,f")))] "TARGET_CE" "* { cc_status.flags = CC_IN_FP; if (FP_REG_P (operands[0])) return \"fcmp%.d %1,%0\"; cc_status.flags |= CC_REVERSED; return \"fcmp%.d %0,%1\"; }") (define_insn "cmpsf" [(set (cc0) (compare (match_operand:SF 0 "nonimmediate_operand" "f,m") (match_operand:SF 1 "nonimmediate_operand" "fm,f")))] "TARGET_CE" "* { cc_status.flags = CC_IN_FP; if (FP_REG_P (operands[0])) return \"fcmp%.s %1,%0\"; cc_status.flags |= CC_REVERSED; return \"fcmp%.s %0,%1\"; }") ;; Recognizers for btst instructions. (define_insn "" [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "do") (const_int 1) (minus:SI (const_int 7) (match_operand:SI 1 "general_operand" "di"))))] "" "* { return output_btst (operands, operands[1], operands[0], insn, 7); }") (define_insn "" [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "d") (const_int 1) (minus:SI (const_int 31) (match_operand:SI 1 "general_operand" "di"))))] "" "* { return output_btst (operands, operands[1], operands[0], insn, 31); }") ;; The following two patterns are like the previous two ;; except that they use the fact that bit-number operands ;; are automatically masked to 3 or 5 bits. (define_insn "" [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "do") (const_int 1) (minus:SI (const_int 7) (and:SI (match_operand:SI 1 "general_operand" "d") (const_int 7)))))] "" "* { return output_btst (operands, operands[1], operands[0], insn, 7); }") (define_insn "" [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "d") (const_int 1) (minus:SI (const_int 31) (and:SI (match_operand:SI 1 "general_operand" "d") (const_int 31)))))] "" "* { return output_btst (operands, operands[1], operands[0], insn, 31); }") ;; Nonoffsettable mem refs are ok in this one pattern ;; since we don't try to adjust them. (define_insn "" [(set (cc0) (zero_extract (match_operand:QI 0 "nonimmediate_operand" "md") (const_int 1) (match_operand:SI 1 "general_operand" "i")))] "GET_CODE (operands[1]) == CONST_INT && (unsigned) INTVAL (operands[1]) < 8" "* { operands[1] = gen_rtx (CONST_INT, VOIDmode, 7 - INTVAL (operands[1])); return output_btst (operands, operands[1], operands[0], insn, 7); }") (define_insn "" [(set (cc0) (zero_extract (match_operand:SI 0 "nonimmediate_operand" "do") (const_int 1) (match_operand:SI 1 "general_operand" "i")))] "GET_CODE (operands[1]) == CONST_INT" "* { if (GET_CODE (operands[0]) == MEM) { operands[0] = adj_offsettable_operand (operands[0], INTVAL (operands[1]) / 8); operands[1] = gen_rtx (CONST_INT, VOIDmode, 7 - INTVAL (operands[1]) % 8); return output_btst (operands, operands[1], operands[0], insn, 7); } operands[1] = gen_rtx (CONST_INT, VOIDmode, 31 - INTVAL (operands[1])); return output_btst (operands, operands[1], operands[0], insn, 31); }") ;; move instructions ;; A special case in which it is not desirable ;; to reload the constant into a data register. (define_insn "" [(set (match_operand:SI 0 "push_operand" "=m") (match_operand:SI 1 "general_operand" "J"))] "GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) >= -0x8000 && INTVAL (operands[1]) < 0x8000" "* { if (operands[1] == const0_rtx) return \"clr%.l %0\"; return \"pea %a1\"; }") ;This is never used. ;(define_insn "swapsi" ; [(set (match_operand:SI 0 "general_operand" "r") ; (match_operand:SI 1 "general_operand" "r")) ; (set (match_dup 1) (match_dup 0))] ; "" ; "exg %1,%0") ;; Special case of fullword move when source is zero. ;; The reason this is special is to avoid loading a zero ;; into a data reg with moveq in order to store it elsewhere. (define_insn "" [(set (match_operand:SI 0 "general_operand" "=a,g") (const_int 0))] "" "@ sub%.l %0,%0 clr%.l %0") ;; General case of fullword move. The register constraints ;; force integer constants in range for a moveq to be reloaded ;; if they are headed for memory. (define_insn "movsi" ;; Notes: make sure no alternative allows g vs g. ;; We don't allow f-regs since fixed point cannot go in them. ;; We do allow y and x regs since fixed point is allowed in them. [(set (match_operand:SI 0 "general_operand" "=g,da,y,!*x*r*m") (match_operand:SI 1 "general_operand" "daymKs,i,g,*x*r*m"))] "" "* { if (GET_CODE (operands[1]) == CONST_INT) { if (operands[1] == const0_rtx && (DATA_REG_P (operands[0]) || GET_CODE (operands[0]) == MEM)) return \"clr%.l %0\"; else if (DATA_REG_P (operands[0]) && INTVAL (operands[1]) < 128 && INTVAL (operands[1]) >= -128) return \"moveq %1,%0\"; else if (ADDRESS_REG_P (operands[0]) && INTVAL (operands[1]) < 0x8000 && INTVAL (operands[1]) >= -0x8000) return \"mov%.w %1,%0\"; else if (push_operand (operands[0], SImode) && INTVAL (operands[1]) < 0x8000 && INTVAL (operands[1]) >= -0x8000) return \"pea %a1\"; } else if ((GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST) && push_operand (operands[0], SImode)) return \"pea %a1\"; else if ((GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST) && ADDRESS_REG_P (operands[0])) return \"lea %a1,%0\"; return \"mov%.l %1,%0\"; }") (define_insn "movhi" [(set (match_operand:HI 0 "general_operand" "=g") (match_operand:HI 1 "general_operand" "g"))] "" "* { if (GET_CODE (operands[1]) == CONST_INT) { if (operands[1] == const0_rtx && (DATA_REG_P (operands[0]) || GET_CODE (operands[0]) == MEM)) return \"clr%.w %0\"; else if (DATA_REG_P (operands[0]) && INTVAL (operands[1]) < 128 && INTVAL (operands[1]) >= -128) { return \"moveq %1,%0\"; } else if (INTVAL (operands[1]) < 0x8000 && INTVAL (operands[1]) >= -0x8000) return \"mov%.w %1,%0\"; } else if (CONSTANT_P (operands[1])) return \"mov%.l %1,%0\"; /* Recognize the insn before a tablejump, one that refers to a table of offsets. Such an insn will need to refer to a label on the insn. So output one. Use the label-number of the table of offsets to generate this label. */ if (GET_CODE (operands[1]) == MEM && GET_CODE (XEXP (operands[1], 0)) == PLUS && (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF || GET_CODE (XEXP (XEXP (operands[1], 0), 1)) == LABEL_REF) && GET_CODE (XEXP (XEXP (operands[1], 0), 0)) != PLUS && GET_CODE (XEXP (XEXP (operands[1], 0), 1)) != PLUS) { rtx labelref; if (GET_CODE (XEXP (XEXP (operands[1], 0), 0)) == LABEL_REF) labelref = XEXP (XEXP (operands[1], 0), 0); else labelref = XEXP (XEXP (operands[1], 0), 1); ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, \"LI\", CODE_LABEL_NUMBER (XEXP (labelref, 0))); } return \"mov%.w %1,%0\"; }") (define_insn "movstricthi" [(set (strict_low_part (match_operand:HI 0 "general_operand" "+dm")) (match_operand:HI 1 "general_operand" "rmn"))] "" "* { if (operands[1] == const0_rtx) return \"clr%.w %0\"; return \"mov%.w %1,%0\"; }") (define_insn "movqi" [(set (match_operand:QI 0 "general_operand" "=d,*a,m,m,?*a") (match_operand:QI 1 "general_operand" "dmi*a,d*a,dmi,?*a,m"))] "" "* { rtx xoperands[4]; if (ADDRESS_REG_P (operands[0]) && GET_CODE (operands[1]) == MEM) { xoperands[1] = operands[1]; xoperands[2] = gen_rtx (MEM, QImode, gen_rtx (PLUS, VOIDmode, stack_pointer_rtx, const1_rtx)); xoperands[3] = stack_pointer_rtx; /* Just pushing a byte puts it in the high byte of the halfword. */ /* We must put it in the low half, the second byte. */ output_asm_insn (\"subq%.w %#2,%3\;mov%.b %1,%2\", xoperands); return \"mov%.w %+,%0\"; } if (ADDRESS_REG_P (operands[1]) && GET_CODE (operands[0]) == MEM) { xoperands[0] = operands[0]; xoperands[1] = operands[1]; xoperands[2] = gen_rtx (MEM, QImode, gen_rtx (PLUS, VOIDmode, stack_pointer_rtx, const1_rtx)); xoperands[3] = stack_pointer_rtx; output_asm_insn (\"mov%.w %1,%-\;mov%.b %2,%0\;addq%.w %#2,%3\", xoperands); return \"\"; } if (operands[1] == const0_rtx) return \"clr%.b %0\"; if (GET_CODE (operands[1]) == CONST_INT && INTVAL (operands[1]) == -1) return \"st %0\"; if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1])) return \"mov%.l %1,%0\"; if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1])) return \"mov%.w %1,%0\"; return \"mov%.b %1,%0\"; }") (define_insn "movstrictqi" [(set (strict_low_part (match_operand:QI 0 "general_operand" "+dm")) (match_operand:QI 1 "general_operand" "dmn"))] "" "* { if (operands[1] == const0_rtx) return \"clr%.b %0\"; return \"mov%.b %1,%0\"; }") ;; Floating-point moves on a CE are faster using an FP register than ;; with movl instructions. (Especially for double floats, but also ;; for single floats, even though it takes an extra instruction.) But ;; on an IP, the FP registers are simulated and so should be avoided. ;; We do this by using define_expand for movsf and movdf, and using ;; different constraints for each target type. The constraints for ;; TARGET_CE allow general registers because they sometimes need to ;; hold floats, but they are not preferable. (define_expand "movsf" [(set (match_operand:SF 0 "general_operand" "") (match_operand:SF 1 "nonimmediate_operand" ""))] "" "") (define_insn "" [(set (match_operand:SF 0 "general_operand" "=f,m,!*r,!f*m") (match_operand:SF 1 "nonimmediate_operand" "fm,f,f*r*m,*r"))] "TARGET_CE" "* { if (FP_REG_P (operands[0])) { if (FP_REG_P (operands[1])) return \"fmove%.s %1,%0\"; if (REG_P (operands[1])) return \"mov%.l %1,%-\;fmove%.s %+,%0\"; return \"fmove%.s %1,%0\"; } if (FP_REG_P (operands[1])) { if (REG_P (operands[0])) return \"fmove%.s %1,%-\;mov%.l %+,%0\"; return \"fmove%.s %1,%0\"; } return \"mov%.l %1,%0\"; }") (define_insn "" [(set (match_operand:SF 0 "general_operand" "=frm") (match_operand:SF 1 "nonimmediate_operand" "frm"))] "!TARGET_CE" "* { if (FP_REG_P (operands[0])) { if (FP_REG_P (operands[1])) return \"fmove%.s %1,%0\"; if (REG_P (operands[1])) return \"mov%.l %1,%-\;fmove%.s %+,%0\"; return \"fmove%.s %1,%0\"; } if (FP_REG_P (operands[1])) { if (REG_P (operands[0])) return \"fmove%.s %1,%-\;mov%.l %+,%0\"; return \"fmove%.s %1,%0\"; } return \"mov%.l %1,%0\"; }") (define_expand "movdf" [(set (match_operand:DF 0 "general_operand" "") (match_operand:DF 1 "nonimmediate_operand" ""))] "" "") (define_insn "" [(set (match_operand:DF 0 "general_operand" "=f,m,!*r,!f*m") (match_operand:DF 1 "nonimmediate_operand" "fm,f,f*r*m,*r"))] "TARGET_CE" "* { if (FP_REG_P (operands[0])) { if (FP_REG_P (operands[1])) return \"fmove%.d %1,%0\"; if (REG_P (operands[1])) { rtx xoperands[2]; xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); output_asm_insn (\"mov%.l %1,%-\", xoperands); output_asm_insn (\"mov%.l %1,%-\", operands); return \"fmove%.d %+,%0\"; } return \"fmove%.d %1,%0\"; } else if (FP_REG_P (operands[1])) { if (REG_P (operands[0])) { output_asm_insn (\"fmove%.d %1,%-\;mov%.l %+,%0\", operands); operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); return \"mov%.l %+,%0\"; } return \"fmove%.d %1,%0\"; } return output_move_double (operands); }") (define_insn "" [(set (match_operand:DF 0 "general_operand" "=frm") (match_operand:DF 1 "nonimmediate_operand" "frm"))] "!TARGET_CE" "* { if (FP_REG_P (operands[0])) { if (FP_REG_P (operands[1])) return \"fmove%.d %1,%0\"; if (REG_P (operands[1])) { rtx xoperands[2]; xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); output_asm_insn (\"mov%.l %1,%-\", xoperands); output_asm_insn (\"mov%.l %1,%-\", operands); return \"fmove%.d %+,%0\"; } return \"fmove%.d %1,%0\"; } else if (FP_REG_P (operands[1])) { if (REG_P (operands[0])) { output_asm_insn (\"fmove%.d %1,%-\;mov%.l %+,%0\", operands); operands[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1); return \"mov%.l %+,%0\"; } return \"fmove%.d %1,%0\"; } return output_move_double (operands); }") (define_insn "movdi" [(set (match_operand:DI 0 "general_operand" "=rm,&r,&ro<>") (match_operand:DI 1 "general_operand" "r,m,roi<>"))] "" "* { return output_move_double (operands); } ") ;; This goes after the move instructions ;; because the move instructions are better (require no spilling) ;; when they can apply. It goes before the add/sub insns ;; so we will prefer it to them. (define_insn "pushasi" [(set (match_operand:SI 0 "push_operand" "=m") (match_operand:SI 1 "address_operand" "p"))] "" "pea %a1") ;; truncation instructions (define_insn "truncsiqi2" [(set (match_operand:QI 0 "general_operand" "=dm,d") (truncate:QI (match_operand:SI 1 "general_operand" "doJ,i")))] "" "* { if (GET_CODE (operands[0]) == REG) return \"mov%.l %1,%0\"; if (GET_CODE (operands[1]) == MEM) operands[1] = adj_offsettable_operand (operands[1], 3); return \"mov%.b %1,%0\"; }") (define_insn "trunchiqi2" [(set (match_operand:QI 0 "general_operand" "=dm,d") (truncate:QI (match_operand:HI 1 "general_operand" "doJ,i")))] "" "* { if (GET_CODE (operands[0]) == REG && (GET_CODE (operands[1]) == MEM || GET_CODE (operands[1]) == CONST_INT)) return \"mov%.w %1,%0\"; if (GET_CODE (operands[0]) == REG) return \"mov%.l %1,%0\"; if (GET_CODE (operands[1]) == MEM) operands[1] = adj_offsettable_operand (operands[1], 1); return \"mov%.b %1,%0\"; }") (define_insn "truncsihi2" [(set (match_operand:HI 0 "general_operand" "=dm,d") (truncate:HI (match_operand:SI 1 "general_operand" "roJ,i")))] "" "* { if (GET_CODE (operands[0]) == REG) return \"mov%.l %1,%0\"; if (GET_CODE (operands[1]) == MEM) operands[1] = adj_offsettable_operand (operands[1], 2); return \"mov%.w %1,%0\"; }") ;; zero extension instructions (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "") (const_int 0)) (set (strict_low_part (subreg:HI (match_dup 0) 0)) (match_operand:HI 1 "general_operand" ""))] "" "operands[1] = make_safe_from (operands[1], operands[0]);") (define_expand "zero_extendqihi2" [(set (match_operand:HI 0 "register_operand" "") (const_int 0)) (set (strict_low_part (subreg:QI (match_dup 0) 0)) (match_operand:QI 1 "general_operand" ""))] "" "operands[1] = make_safe_from (operands[1], operands[0]);") (define_expand "zero_extendqisi2" [(set (match_operand:SI 0 "register_operand" "") (const_int 0)) (set (strict_low_part (subreg:QI (match_dup 0) 0)) (match_operand:QI 1 "general_operand" ""))] "" " operands[1] = make_safe_from (operands[1], operands[0]); ") ;; Patterns to recognize zero-extend insns produced by the combiner. (define_insn "" [(set (match_operand:SI 0 "general_operand" "=do<>") (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "rm")))] "" "* { if (DATA_REG_P (operands[0])) { if (GET_CODE (operands[1]) == REG && REGNO (operands[0]) == REGNO (operands[1])) return \"and%.l %#0xFFFF,%0\"; if (reg_mentioned_p (operands[0], operands[1])) return \"mov%.w %1,%0\;and%.l %#0xFFFF,%0\"; return \"clr%.l %0\;mov%.w %1,%0\"; } else if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) return \"mov%.w %1,%0\;clr%.w %0\"; else if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == POST_INC) return \"clr%.w %0\;mov%.w %1,%0\"; else { output_asm_insn (\"clr%.w %0\", operands); operands[0] = adj_offsettable_operand (operands[0], 2); return \"mov%.w %1,%0\"; } }") (define_insn "" [(set (match_operand:HI 0 "general_operand" "=do<>") (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "dm")))] "" "* { if (DATA_REG_P (operands[0])) { if (GET_CODE (operands[1]) == REG && REGNO (operands[0]) == REGNO (operands[1])) return \"and%.w %#0xFF,%0\"; if (reg_mentioned_p (operands[0], operands[1])) return \"mov%.b %1,%0\;and%.w %#0xFF,%0\"; return \"clr%.w %0\;mov%.b %1,%0\"; } else if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) { if (REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM) return \"clr%.w %-\;mov%.b %1,%0\"; else return \"mov%.b %1,%0\;clr%.b %0\"; } else if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == POST_INC) return \"clr%.b %0\;mov%.b %1,%0\"; else { output_asm_insn (\"clr%.b %0\", operands); operands[0] = adj_offsettable_operand (operands[0], 1); return \"mov%.b %1,%0\"; } }") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=do<>") (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "dm")))] "" "* { if (DATA_REG_P (operands[0])) { if (GET_CODE (operands[1]) == REG && REGNO (operands[0]) == REGNO (operands[1])) return \"and%.l %#0xFF,%0\"; if (reg_mentioned_p (operands[0], operands[1])) return \"mov%.b %1,%0\;and%.l %#0xFF,%0\"; return \"clr%.l %0\;mov%.b %1,%0\"; } else if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC) { operands[0] = XEXP (XEXP (operands[0], 0), 0); return \"clr%.l %0@-\;mov%.b %1,%0@(3)\"; } else if (GET_CODE (operands[0]) == MEM && GET_CODE (XEXP (operands[0], 0)) == POST_INC) { operands[0] = XEXP (XEXP (operands[0], 0), 0); return \"clr%.l %0@+\;mov%.b %1,%0@(-1)\"; } else { output_asm_insn (\"clr%.l %0\", operands); operands[0] = adj_offsettable_operand (operands[0], 3); return \"mov%.b %1,%0\"; } }") ;; sign extension instructions (define_insn "extendhisi2" [(set (match_operand:SI 0 "general_operand" "=*d,a") (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,rmn")))] "" "@ ext%.l %0 mov%.w %1,%0") (define_insn "extendqihi2" [(set (match_operand:HI 0 "general_operand" "=d") (sign_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0")))] "" "ext%.w %0") (define_insn "extendqisi2" [(set (match_operand:SI 0 "general_operand" "=d") (sign_extend:SI (match_operand:QI 1 "nonimmediate_operand" "0")))] "TARGET_68020" "extb%.l %0") ;; Conversions between float and double. (define_insn "extendsfdf2" [(set (match_operand:DF 0 "general_operand" "=f,m") (float_extend:DF (match_operand:SF 1 "nonimmediate_operand" "fm,f")))] "TARGET_CE" "fmovesd %1,%0") (define_insn "truncdfsf2" [(set (match_operand:SF 0 "general_operand" "=f,m") (float_truncate:SF (match_operand:DF 1 "nonimmediate_operand" "fm,f")))] "TARGET_CE" "fmoveds %1,%0") ;; Conversion between fixed point and floating point. ;; Note that among the fix-to-float insns ;; the ones that start with SImode come first. ;; That is so that an operand that is a CONST_INT ;; (and therefore lacks a specific machine mode). ;; will be recognized as SImode (which is always valid) ;; rather than as QImode or HImode. (define_insn "floatsisf2" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:SI 1 "nonimmediate_operand" "dm")))] "TARGET_CE" "fmovels %1,%0") (define_insn "floatsidf2" [(set (match_operand:DF 0 "register_operand" "=f") (float:DF (match_operand:SI 1 "nonimmediate_operand" "dm")))] "TARGET_CE" "fmoveld %1,%0") (define_insn "floathisf2" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:HI 1 "nonimmediate_operand" "dm")))] "TARGET_CE" "fmovews %1,%0") (define_insn "floathidf2" [(set (match_operand:DF 0 "register_operand" "=f") (float:DF (match_operand:HI 1 "nonimmediate_operand" "dm")))] "TARGET_CE" "fmovewd %1,%0") (define_insn "floatqisf2" [(set (match_operand:SF 0 "register_operand" "=f") (float:SF (match_operand:QI 1 "nonimmediate_operand" "dm")))] "TARGET_CE" "fmovebs %1,%0") (define_insn "floatqidf2" [(set (match_operand:DF 0 "register_operand" "=f") (float:DF (match_operand:QI 1 "nonimmediate_operand" "dm")))] "TARGET_CE" "fmovebd %1,%0") ;; Float-to-fix conversion insns. (define_insn "fix_truncsfqi2" [(set (match_operand:QI 0 "general_operand" "=dm") (fix:QI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] "TARGET_CE" "fmovesb %1,%0") (define_insn "fix_truncsfhi2" [(set (match_operand:HI 0 "general_operand" "=dm") (fix:HI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] "TARGET_CE" "fmovesw %1,%0") (define_insn "fix_truncsfsi2" [(set (match_operand:SI 0 "general_operand" "=dm") (fix:SI (fix:SF (match_operand:SF 1 "register_operand" "f"))))] "TARGET_CE" "fmovesl %1,%0") (define_insn "fix_truncdfqi2" [(set (match_operand:QI 0 "general_operand" "=dm") (fix:QI (fix:DF (match_operand:DF 1 "register_operand" "f"))))] "TARGET_CE" "fmovedb %1,%0") (define_insn "fix_truncdfhi2" [(set (match_operand:HI 0 "general_operand" "=dm") (fix:HI (fix:DF (match_operand:DF 1 "register_operand" "f"))))] "TARGET_CE" "fmovedw %1,%0") (define_insn "fix_truncdfsi2" [(set (match_operand:SI 0 "general_operand" "=dm") (fix:SI (fix:DF (match_operand:DF 1 "register_operand" "f"))))] "TARGET_CE" "fmovedl %1,%0") ;; add instructions (define_insn "addsi3" [(set (match_operand:SI 0 "general_operand" "=m,r,!a,!a") (plus:SI (match_operand:SI 1 "general_operand" "%0,0,a,rJK") (match_operand:SI 2 "general_operand" "dIKLs,mrIKLs,rJK,a")))] "" "* { if (! operands_match_p (operands[0], operands[1])) { if (!ADDRESS_REG_P (operands[1])) { rtx tmp = operands[1]; operands[1] = operands[2]; operands[2] = tmp; } /* These insns can result from reloads to access stack slots over 64k from the frame pointer. */ if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) + 0x8000 >= (unsigned) 0x10000) return \"mov%.l %2,%0\;add%.l %1,%0\"; if (GET_CODE (operands[2]) == REG) return \"lea %1@[%2:L:B],%0\"; else return \"lea %1@(%c2),%0\"; } if (GET_CODE (operands[2]) == CONST_INT) { if (INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 8) return (ADDRESS_REG_P (operands[0]) ? \"addq%.w %2,%0\" : \"addq%.l %2,%0\"); if (INTVAL (operands[2]) < 0 && INTVAL (operands[2]) >= -8) { operands[2] = gen_rtx (CONST_INT, VOIDmode, - INTVAL (operands[2])); return (ADDRESS_REG_P (operands[0]) ? \"subq%.w %2,%0\" : \"subq%.l %2,%0\"); } if (ADDRESS_REG_P (operands[0]) && INTVAL (operands[2]) >= -0x8000 && INTVAL (operands[2]) < 0x8000) return \"add%.w %2,%0\"; } return \"add%.l %2,%0\"; }") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=a") (plus:SI (match_operand:SI 1 "general_operand" "0") (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rmn"))))] "" "add%.w %2,%0") (define_insn "addhi3" [(set (match_operand:HI 0 "general_operand" "=mr,mr,m,r") (plus:HI (match_operand:HI 1 "general_operand" "%0,0,0,0") (match_operand:HI 2 "general_operand" "I,L,dn,rmn")))] "" "@ addq%.w %2,%0 subq%.w #%n2,%0 add%.w %2,%0 add%.w %2,%0") (define_insn "" [(set (strict_low_part (match_operand:HI 0 "general_operand" "+m,d")) (plus:HI (match_dup 0) (match_operand:HI 1 "general_operand" "dn,rmn")))] "" "add%.w %1,%0") (define_insn "addqi3" [(set (match_operand:QI 0 "general_operand" "=md,mr,m,d") (plus:QI (match_operand:QI 1 "general_operand" "%0,0,0,0") (match_operand:QI 2 "general_operand" "I,L,dn,dmn")))] "" "@ addq%.b %2,%0 subq%.b #%n2,%0 add%.b %2,%0 add%.b %2,%0") (define_insn "" [(set (strict_low_part (match_operand:QI 0 "general_operand" "+m,d")) (plus:QI (match_dup 0) (match_operand:QI 1 "general_operand" "dn,dmn")))] "" "add%.b %1,%0") (define_insn "adddf3" [(set (match_operand:DF 0 "register_operand" "=f") (plus:DF (match_operand:DF 1 "nonimmediate_operand" "%f") (match_operand:DF 2 "nonimmediate_operand" "fm")))] "TARGET_CE" "fadd%.d %2,%1,%0") (define_insn "addsf3" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (match_operand:SF 1 "nonimmediate_operand" "%f") (match_operand:SF 2 "nonimmediate_operand" "fm")))] "TARGET_CE" "fadd%.s %2,%1,%0") ;; subtract instructions (define_insn "subsi3" [(set (match_operand:SI 0 "general_operand" "=m,r,!a,?d") (minus:SI (match_operand:SI 1 "general_operand" "0,0,a,mrIKs") (match_operand:SI 2 "general_operand" "dIKs,mrIKs,J,0")))] "" "* { if (! operands_match_p (operands[0], operands[1])) { if (operands_match_p (operands[0], operands[2])) { if (GET_CODE (operands[1]) == CONST_INT) { if (INTVAL (operands[1]) > 0 && INTVAL (operands[1]) <= 8) return \"subq%.l %1,%0\;neg%.l %0\"; } return \"sub%.l %1,%0\;neg%.l %0\"; } /* This case is matched by J, but negating -0x8000 in an lea would give an invalid displacement. So do this specially. */ if (INTVAL (operands[2]) == -0x8000) return \"mov%.l %1,%0\;sub%.l %2,%0\"; return \"lea %1@(%n2),%0\"; } if (GET_CODE (operands[2]) == CONST_INT) { if (INTVAL (operands[2]) > 0 && INTVAL (operands[2]) <= 8) return \"subq%.l %2,%0\"; if (ADDRESS_REG_P (operands[0]) && INTVAL (operands[2]) >= -0x8000 && INTVAL (operands[2]) < 0x8000) return \"sub%.w %2,%0\"; } return \"sub%.l %2,%0\"; }") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=a") (minus:SI (match_operand:SI 1 "general_operand" "0") (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "rmn"))))] "" "sub%.w %2,%0") (define_insn "subhi3" [(set (match_operand:HI 0 "general_operand" "=m,r") (minus:HI (match_operand:HI 1 "general_operand" "0,0") (match_operand:HI 2 "general_operand" "dn,rmn")))] "" "sub%.w %2,%0") (define_insn "" [(set (strict_low_part (match_operand:HI 0 "general_operand" "+m,d")) (minus:HI (match_dup 0) (match_operand:HI 1 "general_operand" "dn,rmn")))] "" "sub%.w %1,%0") (define_insn "subqi3" [(set (match_operand:QI 0 "general_operand" "=m,d") (minus:QI (match_operand:QI 1 "general_operand" "0,0") (match_operand:QI 2 "general_operand" "dn,dmn")))] "" "sub%.b %2,%0") (define_insn "" [(set (strict_low_part (match_operand:QI 0 "general_operand" "+m,d")) (minus:QI (match_dup 0) (match_operand:QI 1 "general_operand" "dn,dmn")))] "" "sub%.b %1,%0") (define_insn "subdf3" [(set (match_operand:DF 0 "register_operand" "=f,f,f") (minus:DF (match_operand:DF 1 "nonimmediate_operand" "f,f,m") (match_operand:DF 2 "nonimmediate_operand" "f,m,f")))] "TARGET_CE" "@ fsub%.d %2,%1,%0 fsub%.d %2,%1,%0 frsub%.d %1,%2,%0") (define_insn "subsf3" [(set (match_operand:SF 0 "register_operand" "=f,f,f") (minus:SF (match_operand:SF 1 "nonimmediate_operand" "f,f,m") (match_operand:SF 2 "nonimmediate_operand" "f,m,f")))] "TARGET_CE" "@ fsub%.s %2,%1,%0 fsub%.s %2,%1,%0 frsub%.s %1,%2,%0") ;; multiply instructions (define_insn "mulhi3" [(set (match_operand:HI 0 "general_operand" "=d") (mult:HI (match_operand:HI 1 "general_operand" "%0") (match_operand:HI 2 "general_operand" "dmn")))] "" "muls %2,%0") (define_insn "mulhisi3" [(set (match_operand:SI 0 "general_operand" "=d") (mult:SI (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%0")) (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm"))))] "" "muls %2,%0") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=d") (mult:SI (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%0")) (match_operand:SI 2 "const_int_operand" "n")))] "" "muls %2,%0") (define_insn "mulsi3" [(set (match_operand:SI 0 "general_operand" "=d") (mult:SI (match_operand:SI 1 "general_operand" "%0") (match_operand:SI 2 "general_operand" "dmsK")))] "TARGET_68020" "muls%.l %2,%0") (define_insn "umulhisi3" [(set (match_operand:SI 0 "general_operand" "=d") (mult:SI (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%0")) (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm"))))] "" "mulu %2,%0") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=d") (mult:SI (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "%0")) (match_operand:SI 2 "const_int_operand" "n")))] "" "mulu %2,%0") (define_insn "muldf3" [(set (match_operand:DF 0 "register_operand" "=f") (mult:DF (match_operand:DF 1 "nonimmediate_operand" "%f") (match_operand:DF 2 "nonimmediate_operand" "fm")))] "TARGET_CE" "fmul%.d %2,%1,%0") (define_insn "mulsf3" [(set (match_operand:SF 0 "register_operand" "=f") (mult:SF (match_operand:SF 1 "nonimmediate_operand" "%f") (match_operand:SF 2 "nonimmediate_operand" "fm")))] "TARGET_CE" "fmul%.s %2,%1,%0") ;; divide instructions (define_insn "divhi3" [(set (match_operand:HI 0 "general_operand" "=d") (div:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dmn")))] "" "extl %0\;divs %2,%0") (define_insn "divhisi3" [(set (match_operand:HI 0 "general_operand" "=d") (truncate:HI (div:SI (match_operand:SI 1 "general_operand" "0") (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))] "" "divs %2,%0") (define_insn "" [(set (match_operand:HI 0 "general_operand" "=d") (truncate:HI (div:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "const_int_operand" "n"))))] "" "divs %2,%0") (define_insn "divsi3" [(set (match_operand:SI 0 "general_operand" "=d") (div:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dmsK")))] "TARGET_68020" "divs%.l %2,%0,%0") (define_insn "udivhi3" [(set (match_operand:HI 0 "general_operand" "=d") (udiv:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dmn")))] "" "and%.l %#0xFFFF,%0\;divu %2,%0") (define_insn "udivhisi3" [(set (match_operand:HI 0 "general_operand" "=d") (truncate:HI (udiv:SI (match_operand:SI 1 "general_operand" "0") (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))] "" "divu %2,%0") (define_insn "" [(set (match_operand:HI 0 "general_operand" "=d") (truncate:HI (udiv:SI (match_operand:SI 1 "nonimmediate_operand" "0") (match_operand:HI 2 "const_int_operand" "n"))))] "" "divu %2,%0") (define_insn "udivsi3" [(set (match_operand:SI 0 "general_operand" "=d") (udiv:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dmsK")))] "TARGET_68020" "divu%.l %2,%0,%0") (define_insn "divdf3" [(set (match_operand:DF 0 "register_operand" "=f,f,f") (div:DF (match_operand:DF 1 "nonimmediate_operand" "f,f,m") (match_operand:DF 2 "nonimmediate_operand" "f,m,f")))] "TARGET_CE" "@ fdiv%.d %2,%1,%0 fdiv%.d %2,%1,%0 frdiv%.d %1,%2,%0") (define_insn "divsf3" [(set (match_operand:SF 0 "register_operand" "=f,f,f") (div:SF (match_operand:SF 1 "nonimmediate_operand" "f,f,m") (match_operand:SF 2 "nonimmediate_operand" "f,m,f")))] "TARGET_CE" "@ fdiv%.s %2,%1,%0 fdiv%.s %2,%1,%0 frdiv%.s %1,%2,%0") ;; Remainder instructions. (define_insn "modhi3" [(set (match_operand:HI 0 "general_operand" "=d") (mod:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dmn")))] "" "extl %0\;divs %2,%0\;swap %0") (define_insn "modhisi3" [(set (match_operand:HI 0 "general_operand" "=d") (truncate:HI (mod:SI (match_operand:SI 1 "general_operand" "0") (sign_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))] "" "divs %2,%0\;swap %0") (define_insn "" [(set (match_operand:HI 0 "general_operand" "=d") (truncate:HI (mod:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "const_int_operand" "n"))))] "" "divs %2,%0\;swap %0") (define_insn "umodhi3" [(set (match_operand:HI 0 "general_operand" "=d") (umod:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dmn")))] "" "and%.l %#0xFFFF,%0\;divu %2,%0\;swap %0") (define_insn "umodhisi3" [(set (match_operand:HI 0 "general_operand" "=d") (truncate:HI (umod:SI (match_operand:SI 1 "general_operand" "0") (zero_extend:SI (match_operand:HI 2 "nonimmediate_operand" "dm")))))] "" "divu %2,%0\;swap %0") (define_insn "" [(set (match_operand:HI 0 "general_operand" "=d") (truncate:HI (umod:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "const_int_operand" "n"))))] "" "divu %2,%0\;swap %0") (define_insn "divmodsi4" [(set (match_operand:SI 0 "general_operand" "=d") (div:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dmsK"))) (set (match_operand:SI 3 "general_operand" "=d") (mod:SI (match_dup 1) (match_dup 2)))] "TARGET_68020" "divs%.l %2,%0,%3") (define_insn "udivmodsi4" [(set (match_operand:SI 0 "general_operand" "=d") (udiv:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dmsK"))) (set (match_operand:SI 3 "general_operand" "=d") (umod:SI (match_dup 1) (match_dup 2)))] "TARGET_68020" "divu%.l %2,%0,%3") ;; logical-and instructions (define_insn "andsi3" [(set (match_operand:SI 0 "general_operand" "=m,d") (and:SI (match_operand:SI 1 "general_operand" "%0,0") (match_operand:SI 2 "general_operand" "dKs,dmKs")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && (INTVAL (operands[2]) | 0xffff) == 0xffffffff && (DATA_REG_P (operands[0]) || offsettable_memref_p (operands[0]))) { if (GET_CODE (operands[0]) != REG) operands[0] = adj_offsettable_operand (operands[0], 2); operands[2] = gen_rtx (CONST_INT, VOIDmode, INTVAL (operands[2]) & 0xffff); /* Do not delete a following tstl %0 insn; that would be incorrect. */ CC_STATUS_INIT; if (operands[2] == const0_rtx) return \"clr%.w %0\"; return \"and%.w %2,%0\"; } return \"and%.l %2,%0\"; }") (define_insn "andhi3" [(set (match_operand:HI 0 "general_operand" "=m,d") (and:HI (match_operand:HI 1 "general_operand" "%0,0") (match_operand:HI 2 "general_operand" "dn,dmn")))] "" "and%.w %2,%0") (define_insn "andqi3" [(set (match_operand:QI 0 "general_operand" "=m,d") (and:QI (match_operand:QI 1 "general_operand" "%0,0") (match_operand:QI 2 "general_operand" "dn,dmn")))] "" "and%.b %2,%0") ;; inclusive-or instructions (define_insn "iorsi3" [(set (match_operand:SI 0 "general_operand" "=m,d") (ior:SI (match_operand:SI 1 "general_operand" "%0,0") (match_operand:SI 2 "general_operand" "dKs,dmKs")))] "" "* { register int logval; if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) >> 16 == 0 && (DATA_REG_P (operands[0]) || offsettable_memref_p (operands[0]))) { if (GET_CODE (operands[0]) != REG) operands[0] = adj_offsettable_operand (operands[0], 2); /* Do not delete a following tstl %0 insn; that would be incorrect. */ CC_STATUS_INIT; return \"or%.w %2,%0\"; } if (GET_CODE (operands[2]) == CONST_INT && (logval = exact_log2 (INTVAL (operands[2]))) >= 0 && (DATA_REG_P (operands[0]) || offsettable_memref_p (operands[0]))) { if (DATA_REG_P (operands[0])) operands[1] = gen_rtx (CONST_INT, VOIDmode, logval); else { operands[0] = adj_offsettable_operand (operands[0], 3 - (logval / 8)); operands[1] = gen_rtx (CONST_INT, VOIDmode, logval % 8); } return \"bset %1,%0\"; } return \"or%.l %2,%0\"; }") (define_insn "iorhi3" [(set (match_operand:HI 0 "general_operand" "=m,d") (ior:HI (match_operand:HI 1 "general_operand" "%0,0") (match_operand:HI 2 "general_operand" "dn,dmn")))] "" "or%.w %2,%0") (define_insn "iorqi3" [(set (match_operand:QI 0 "general_operand" "=m,d") (ior:QI (match_operand:QI 1 "general_operand" "%0,0") (match_operand:QI 2 "general_operand" "dn,dmn")))] "" "or%.b %2,%0") ;; xor instructions (define_insn "xorsi3" [(set (match_operand:SI 0 "general_operand" "=do,m") (xor:SI (match_operand:SI 1 "general_operand" "%0,0") (match_operand:SI 2 "general_operand" "di,dKs")))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) >> 16 == 0 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))) { if (! DATA_REG_P (operands[0])) operands[0] = adj_offsettable_operand (operands[0], 2); /* Do not delete a following tstl %0 insn; that would be incorrect. */ CC_STATUS_INIT; return \"eor%.w %2,%0\"; } return \"eor%.l %2,%0\"; }") (define_insn "xorhi3" [(set (match_operand:HI 0 "general_operand" "=dm") (xor:HI (match_operand:HI 1 "general_operand" "%0") (match_operand:HI 2 "general_operand" "dn")))] "" "eor%.w %2,%0") (define_insn "xorqi3" [(set (match_operand:QI 0 "general_operand" "=dm") (xor:QI (match_operand:QI 1 "general_operand" "%0") (match_operand:QI 2 "general_operand" "dn")))] "" "eor%.b %2,%0") ;; negation instructions (define_insn "negsi2" [(set (match_operand:SI 0 "general_operand" "=dm") (neg:SI (match_operand:SI 1 "general_operand" "0")))] "" "neg%.l %0") (define_insn "neghi2" [(set (match_operand:HI 0 "general_operand" "=dm") (neg:HI (match_operand:HI 1 "general_operand" "0")))] "" "neg%.w %0") (define_insn "negqi2" [(set (match_operand:QI 0 "general_operand" "=dm") (neg:QI (match_operand:QI 1 "general_operand" "0")))] "" "neg%.b %0") (define_insn "negsf2" [(set (match_operand:SF 0 "register_operand" "=f") (neg:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))] "TARGET_CE" "fneg%.s %1,%0") (define_insn "negdf2" [(set (match_operand:DF 0 "register_operand" "=f") (neg:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))] "TARGET_CE" "fneg%.d %1,%0") ;; Absolute value instructions (define_insn "abssf2" [(set (match_operand:SF 0 "register_operand" "=f") (abs:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))] "TARGET_CE" "fabs%.s %1,%0") (define_insn "absdf2" [(set (match_operand:DF 0 "register_operand" "=f") (abs:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))] "TARGET_CE" "fabs%.d %1,%0") ;; Square root instructions (define_insn "sqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (sqrt:SF (match_operand:SF 1 "nonimmediate_operand" "fm")))] "TARGET_CE" "fsqrt%.s %1,%0") (define_insn "sqrtdf2" [(set (match_operand:DF 0 "register_operand" "=f") (sqrt:DF (match_operand:DF 1 "nonimmediate_operand" "fm")))] "TARGET_CE" "fsqrt%.d %1,%0") ;; one complement instructions (define_insn "one_cmplsi2" [(set (match_operand:SI 0 "general_operand" "=dm") (not:SI (match_operand:SI 1 "general_operand" "0")))] "" "not%.l %0") (define_insn "one_cmplhi2" [(set (match_operand:HI 0 "general_operand" "=dm") (not:HI (match_operand:HI 1 "general_operand" "0")))] "" "not%.w %0") (define_insn "one_cmplqi2" [(set (match_operand:QI 0 "general_operand" "=dm") (not:QI (match_operand:QI 1 "general_operand" "0")))] "" "not%.b %0") ;; arithmetic shift instructions ;; We don't need the shift memory by 1 bit instruction (define_insn "ashlsi3" [(set (match_operand:SI 0 "general_operand" "=d") (ashift:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dI")))] "" "asl%.l %2,%0") (define_insn "ashlhi3" [(set (match_operand:HI 0 "general_operand" "=d") (ashift:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dI")))] "" "asl%.w %2,%0") (define_insn "ashlqi3" [(set (match_operand:QI 0 "general_operand" "=d") (ashift:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "general_operand" "dI")))] "" "asl%.b %2,%0") (define_insn "ashrsi3" [(set (match_operand:SI 0 "general_operand" "=d") (ashiftrt:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dI")))] "" "asr%.l %2,%0") (define_insn "ashrhi3" [(set (match_operand:HI 0 "general_operand" "=d") (ashiftrt:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dI")))] "" "asr%.w %2,%0") (define_insn "ashrqi3" [(set (match_operand:QI 0 "general_operand" "=d") (ashiftrt:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "general_operand" "dI")))] "" "asr%.b %2,%0") ;; logical shift instructions (define_insn "lshlsi3" [(set (match_operand:SI 0 "general_operand" "=d") (lshift:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dI")))] "" "lsl%.l %2,%0") (define_insn "lshlhi3" [(set (match_operand:HI 0 "general_operand" "=d") (lshift:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dI")))] "" "lsl%.w %2,%0") (define_insn "lshlqi3" [(set (match_operand:QI 0 "general_operand" "=d") (lshift:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "general_operand" "dI")))] "" "lsl%.b %2,%0") (define_insn "lshrsi3" [(set (match_operand:SI 0 "general_operand" "=d") (lshiftrt:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dI")))] "" "lsr%.l %2,%0") (define_insn "lshrhi3" [(set (match_operand:HI 0 "general_operand" "=d") (lshiftrt:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dI")))] "" "lsr%.w %2,%0") (define_insn "lshrqi3" [(set (match_operand:QI 0 "general_operand" "=d") (lshiftrt:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "general_operand" "dI")))] "" "lsr%.b %2,%0") ;; rotate instructions (define_insn "rotlsi3" [(set (match_operand:SI 0 "general_operand" "=d") (rotate:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dI")))] "" "rol%.l %2,%0") (define_insn "rotlhi3" [(set (match_operand:HI 0 "general_operand" "=d") (rotate:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dI")))] "" "rol%.w %2,%0") (define_insn "rotlqi3" [(set (match_operand:QI 0 "general_operand" "=d") (rotate:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "general_operand" "dI")))] "" "rol%.b %2,%0") (define_insn "rotrsi3" [(set (match_operand:SI 0 "general_operand" "=d") (rotatert:SI (match_operand:SI 1 "general_operand" "0") (match_operand:SI 2 "general_operand" "dI")))] "" "ror%.l %2,%0") (define_insn "rotrhi3" [(set (match_operand:HI 0 "general_operand" "=d") (rotatert:HI (match_operand:HI 1 "general_operand" "0") (match_operand:HI 2 "general_operand" "dI")))] "" "ror%.w %2,%0") (define_insn "rotrqi3" [(set (match_operand:QI 0 "general_operand" "=d") (rotatert:QI (match_operand:QI 1 "general_operand" "0") (match_operand:QI 2 "general_operand" "dI")))] "" "ror%.b %2,%0") ;; Special cases of bit-field insns which we should ;; recognize in preference to the general case. ;; These handle aligned 8-bit and 16-bit fields, ;; which can usually be done with move instructions. (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "+do") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "const_int_operand" "i")) (match_operand:SI 3 "general_operand" "d"))] "TARGET_68020 && TARGET_BITFIELD && (INTVAL (operands[1]) == 8 || INTVAL (operands[1]) == 16) && INTVAL (operands[2]) % INTVAL (operands[1]) == 0 && (GET_CODE (operands[0]) == REG || ! mode_dependent_address_p (XEXP (operands[0], 0)))" "* { if (REG_P (operands[0])) { if (INTVAL (operands[1]) + INTVAL (operands[2]) != 32) return \"bfins %3,[%c2,%c1]%0\"; } else operands[0] = adj_offsettable_operand (operands[0], INTVAL (operands[2]) / 8); if (GET_CODE (operands[3]) == MEM) operands[3] = adj_offsettable_operand (operands[3], (32 - INTVAL (operands[1])) / 8); if (INTVAL (operands[1]) == 8) return \"mov%.b %3,%0\"; return \"mov%.w %3,%0\"; }") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=&d") (zero_extract:SI (match_operand:SI 1 "nonimmediate_operand" "do") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")))] "TARGET_68020 && TARGET_BITFIELD && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16) && INTVAL (operands[3]) % INTVAL (operands[2]) == 0 && (GET_CODE (operands[1]) == REG || ! mode_dependent_address_p (XEXP (operands[1], 0)))" "* { if (REG_P (operands[1])) { if (INTVAL (operands[2]) + INTVAL (operands[3]) != 32) return \"bfextu [%c3,%c2]%1,%0\"; } else operands[1] = adj_offsettable_operand (operands[1], INTVAL (operands[3]) / 8); output_asm_insn (\"clrl %0\", operands); if (GET_CODE (operands[0]) == MEM) operands[0] = adj_offsettable_operand (operands[0], (32 - INTVAL (operands[1])) / 8); if (INTVAL (operands[2]) == 8) return \"mov%.b %1,%0\"; return \"mov%.w %1,%0\"; }") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=d") (sign_extract:SI (match_operand:SI 1 "nonimmediate_operand" "do") (match_operand:SI 2 "const_int_operand" "i") (match_operand:SI 3 "const_int_operand" "i")))] "TARGET_68020 && TARGET_BITFIELD && (INTVAL (operands[2]) == 8 || INTVAL (operands[2]) == 16) && INTVAL (operands[3]) % INTVAL (operands[2]) == 0 && (GET_CODE (operands[1]) == REG || ! mode_dependent_address_p (XEXP (operands[1], 0)))" "* { if (REG_P (operands[1])) { if (INTVAL (operands[2]) + INTVAL (operands[3]) != 32) return \"bfexts [%c3,%c2]%1,%0\"; } else operands[1] = adj_offsettable_operand (operands[1], INTVAL (operands[3]) / 8); if (INTVAL (operands[2]) == 8) return \"mov%.b %1,%0\;extb%.l %0\"; return \"mov%.w %1,%0\;ext%.l %0\"; }") ;; Bit field instructions, general cases. ;; "o,d" constraint causes a nonoffsettable memref to match the "o" ;; so that its address is reloaded. (define_insn "extv" [(set (match_operand:SI 0 "general_operand" "=d,d") (sign_extract:SI (match_operand:QI 1 "nonimmediate_operand" "o,d") (match_operand:SI 2 "general_operand" "di,di") (match_operand:SI 3 "general_operand" "di,di")))] "TARGET_68020 && TARGET_BITFIELD" "bfexts [%c3,%c2]%1,%0") (define_insn "extzv" [(set (match_operand:SI 0 "general_operand" "=d,d") (zero_extract:SI (match_operand:QI 1 "nonimmediate_operand" "o,d") (match_operand:SI 2 "general_operand" "di,di") (match_operand:SI 3 "general_operand" "di,di")))] "TARGET_68020 && TARGET_BITFIELD" "bfextu [%c3,%c2]%1,%0") (define_insn "" [(set (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "+o,d") (match_operand:SI 1 "general_operand" "di,di") (match_operand:SI 2 "general_operand" "di,di")) (xor:SI (zero_extract:SI (match_dup 0) (match_dup 1) (match_dup 2)) (match_operand:SI 3 "const_int_operand" "i,i")))] "TARGET_68020 && TARGET_BITFIELD && (INTVAL (operands[3]) == -1 || (GET_CODE (operands[1]) == CONST_INT && (~ INTVAL (operands[3]) & ((1 << INTVAL (operands[1]))- 1)) == 0))" "* { CC_STATUS_INIT; return \"bfchg [%c2,%c1]%0\"; }") (define_insn "" [(set (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "+o,d") (match_operand:SI 1 "general_operand" "di,di") (match_operand:SI 2 "general_operand" "di,di")) (const_int 0))] "TARGET_68020 && TARGET_BITFIELD" "* { CC_STATUS_INIT; return \"bfclr [%c2,%c1]%0\"; }") (define_insn "" [(set (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "+o,d") (match_operand:SI 1 "general_operand" "di,di") (match_operand:SI 2 "general_operand" "di,di")) (const_int -1))] "TARGET_68020 && TARGET_BITFIELD" "* { CC_STATUS_INIT; return \"bfset [%c2,%c1]%0\"; }") (define_insn "insv" [(set (zero_extract:SI (match_operand:QI 0 "nonimmediate_operand" "+o,d") (match_operand:SI 1 "general_operand" "di,di") (match_operand:SI 2 "general_operand" "di,di")) (match_operand:SI 3 "general_operand" "d,d"))] "TARGET_68020 && TARGET_BITFIELD" "bfins %3,[%c2,%c1]%0") ;; Now recognize bit field insns that operate on registers ;; (or at least were intended to do so). (define_insn "" [(set (match_operand:SI 0 "general_operand" "=d") (sign_extract:SI (match_operand:SI 1 "nonimmediate_operand" "d") (match_operand:SI 2 "general_operand" "di") (match_operand:SI 3 "general_operand" "di")))] "TARGET_68020 && TARGET_BITFIELD" "bfexts [%c3,%c2]%1,%0") (define_insn "" [(set (match_operand:SI 0 "general_operand" "=d") (zero_extract:SI (match_operand:SI 1 "nonimmediate_operand" "d") (match_operand:SI 2 "general_operand" "di") (match_operand:SI 3 "general_operand" "di")))] "TARGET_68020 && TARGET_BITFIELD" "bfextu [%c3,%c2]%1,%0") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "+d") (match_operand:SI 1 "general_operand" "di") (match_operand:SI 2 "general_operand" "di")) (const_int 0))] "TARGET_68020 && TARGET_BITFIELD" "* { CC_STATUS_INIT; return \"bfclr [%c2,%c1]%0\"; }") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "+d") (match_operand:SI 1 "general_operand" "di") (match_operand:SI 2 "general_operand" "di")) (const_int -1))] "TARGET_68020 && TARGET_BITFIELD" "* { CC_STATUS_INIT; return \"bfset [%c2,%c1]%0\"; }") (define_insn "" [(set (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "+d") (match_operand:SI 1 "general_operand" "di") (match_operand:SI 2 "general_operand" "di")) (match_operand:SI 3 "general_operand" "d"))] "TARGET_68020 && TARGET_BITFIELD" "* { return \"bfins %3,[%c2,%c1]%0\"; }") ;; Special patterns for optimizing bit-field instructions. (define_insn "" [(set (cc0) (zero_extract:SI (match_operand:QI 0 "memory_operand" "o") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "general_operand" "di")))] "TARGET_68020 && TARGET_BITFIELD" "* { if (operands[1] == const1_rtx && GET_CODE (operands[2]) == CONST_INT) { int width = GET_CODE (operands[0]) == REG ? 31 : 7; return output_btst (operands, gen_rtx (CONST_INT, VOIDmode, width - INTVAL (operands[2])), operands[0], insn, 1000); /* Pass 1000 as SIGNPOS argument so that btst will not think we are testing the sign bit for an `and' and assume that nonzero implies a negative result. */ } if (INTVAL (operands[1]) != 32) cc_status.flags = CC_NOT_NEGATIVE; return \"bftst [%c2,%c1]%0\"; }") ;;; now handle the register cases (define_insn "" [(set (cc0) (zero_extract:SI (match_operand:SI 0 "nonimmediate_operand" "d") (match_operand:SI 1 "const_int_operand" "i") (match_operand:SI 2 "general_operand" "di")))] "TARGET_68020 && TARGET_BITFIELD" "* { if (operands[1] == const1_rtx && GET_CODE (operands[2]) == CONST_INT) { int width = GET_CODE (operands[0]) == REG ? 31 : 7; return output_btst (operands, gen_rtx (CONST_INT, VOIDmode, width - INTVAL (operands[2])), operands[0], insn, 1000); /* Pass 1000 as SIGNPOS argument so that btst will not think we are testing the sign bit for an `and' and assume that nonzero implies a negative result. */ } if (INTVAL (operands[1]) != 32) cc_status.flags = CC_NOT_NEGATIVE; return \"bftst [%c2,%c1]%0\"; }") (define_insn "seq" [(set (match_operand:QI 0 "general_operand" "=d") (eq:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; OUTPUT_JUMP (\"seq %0\", \"fseq %0\", \"seq %0\"); ") (define_insn "sne" [(set (match_operand:QI 0 "general_operand" "=d") (ne:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; OUTPUT_JUMP (\"sne %0\", \"fsneq %0\", \"sne %0\"); ") (define_insn "sgt" [(set (match_operand:QI 0 "general_operand" "=d") (gt:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; OUTPUT_JUMP (\"sgt %0\", \"fsgt %0\", \"and%.b %#0xc,%!\;sgt %0\"); ") (define_insn "sgtu" [(set (match_operand:QI 0 "general_operand" "=d") (gtu:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; return \"shi %0\"; ") (define_insn "slt" [(set (match_operand:QI 0 "general_operand" "=d") (lt:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; OUTPUT_JUMP (\"slt %0\", \"fslt %0\", \"smi %0\"); ") (define_insn "sltu" [(set (match_operand:QI 0 "general_operand" "=d") (ltu:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; return \"scs %0\"; ") (define_insn "sge" [(set (match_operand:QI 0 "general_operand" "=d") (ge:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; OUTPUT_JUMP (\"sge %0\", \"fsge %0\", \"spl %0\"); ") (define_insn "sgeu" [(set (match_operand:QI 0 "general_operand" "=d") (geu:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; return \"scc %0\"; ") (define_insn "sle" [(set (match_operand:QI 0 "general_operand" "=d") (le:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; OUTPUT_JUMP (\"sle %0\", \"fsle %0\", \"and%.b %#0xc,%!\;sle %0\"); ") (define_insn "sleu" [(set (match_operand:QI 0 "general_operand" "=d") (leu:QI (cc0) (const_int 0)))] "" "* cc_status = cc_prev_status; return \"sls %0\"; ") ;; Basic conditional jump instructions. (define_insn "beq" [(set (pc) (if_then_else (eq (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { OUTPUT_JUMP (\"jeq %l0\", \"fbeq %l0\", \"jeq %l0\"); }") (define_insn "bne" [(set (pc) (if_then_else (ne (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { OUTPUT_JUMP (\"jne %l0\", \"fbneq %l0\", \"jne %l0\"); }") (define_insn "bgt" [(set (pc) (if_then_else (gt (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* OUTPUT_JUMP (\"jgt %l0\", \"fbgt %l0\", \"and%.b %#0xc,%!\;jgt %l0\"); ") (define_insn "bgtu" [(set (pc) (if_then_else (gtu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return \"jhi %l0\"; ") (define_insn "blt" [(set (pc) (if_then_else (lt (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* OUTPUT_JUMP (\"jlt %l0\", \"fblt %l0\", \"jmi %l0\"); ") (define_insn "bltu" [(set (pc) (if_then_else (ltu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return \"jcs %l0\"; ") (define_insn "bge" [(set (pc) (if_then_else (ge (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* OUTPUT_JUMP (\"jge %l0\", \"fbge %l0\", \"jpl %l0\"); ") (define_insn "bgeu" [(set (pc) (if_then_else (geu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return \"jcc %l0\"; ") (define_insn "ble" [(set (pc) (if_then_else (le (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* OUTPUT_JUMP (\"jle %l0\", \"fble %l0\", \"and%.b %#0xc,%!\;jle %l0\"); ") (define_insn "bleu" [(set (pc) (if_then_else (leu (cc0) (const_int 0)) (label_ref (match_operand 0 "" "")) (pc)))] "" "* return \"jls %l0\"; ") ;; Negated conditional jump instructions. (define_insn "" [(set (pc) (if_then_else (eq (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { OUTPUT_JUMP (\"jne %l0\", \"fbneq %l0\", \"jne %l0\"); }") (define_insn "" [(set (pc) (if_then_else (ne (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { OUTPUT_JUMP (\"jeq %l0\", \"fbeq %l0\", \"jeq %l0\"); }") (define_insn "" [(set (pc) (if_then_else (gt (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* OUTPUT_JUMP (\"jle %l0\", \"fbngt %l0\", \"and%.b %#0xc,%!\;jle %l0\"); ") (define_insn "" [(set (pc) (if_then_else (gtu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return \"jls %l0\"; ") (define_insn "" [(set (pc) (if_then_else (lt (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* OUTPUT_JUMP (\"jge %l0\", \"fbnlt %l0\", \"jpl %l0\"); ") (define_insn "" [(set (pc) (if_then_else (ltu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return \"jcc %l0\"; ") (define_insn "" [(set (pc) (if_then_else (ge (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* OUTPUT_JUMP (\"jlt %l0\", \"fbnge %l0\", \"jmi %l0\"); ") (define_insn "" [(set (pc) (if_then_else (geu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return \"jcs %l0\"; ") (define_insn "" [(set (pc) (if_then_else (le (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* OUTPUT_JUMP (\"jgt %l0\", \"fbnle %l0\", \"and%.b %#0xc,%!\;jgt %l0\"); ") (define_insn "" [(set (pc) (if_then_else (leu (cc0) (const_int 0)) (pc) (label_ref (match_operand 0 "" ""))))] "" "* return \"jhi %l0\"; ") ;; Subroutines of "casesi". (define_expand "casesi_1" [(set (match_operand:SI 3 "general_operand" "") (plus:SI (match_operand:SI 0 "general_operand" "") ;; Note operand 1 has been negated! (match_operand:SI 1 "immediate_operand" ""))) (set (cc0) (compare (match_operand:SI 2 "nonimmediate_operand" "") (match_dup 3))) (set (pc) (if_then_else (ltu (cc0) (const_int 0)) (label_ref (match_operand 4 "" "")) (pc)))] "" "") (define_expand "casesi_2" [(set (match_operand:SI 0 "" "") (mem:HI (match_operand:SI 1 "" ""))) ;; The USE here is so that at least one jump-insn will refer to the label, ;; to keep it alive in jump_optimize. (parallel [(set (pc) (plus:SI (pc) (match_dup 0))) (use (label_ref (match_operand 2 "" "")))])] "" "") ;; Operand 0 is index (in bytes); operand 1 is minimum, operand 2 the maximum; ;; operand 3 is CODE_LABEL for the table; ;; operand 4 is the CODE_LABEL to go to if index out of range. (define_expand "casesi" ;; We don't use these for generating the RTL, but we must describe ;; the operands here. [(match_operand:SI 0 "general_operand" "") (match_operand:SI 1 "immediate_operand" "") (match_operand:SI 2 "general_operand" "") (match_operand 3 "" "") (match_operand 4 "" "")] "" " { rtx table_elt_addr; rtx index_diff; operands[1] = negate_rtx (SImode, operands[1]); index_diff = gen_reg_rtx (SImode); /* Emit the first few insns. */ emit_insn (gen_casesi_1 (operands[0], operands[1], operands[2], index_diff, operands[4])); /* Construct a memory address. This may emit some insns. */ table_elt_addr = memory_address_noforce (HImode, gen_rtx (PLUS, Pmode, gen_rtx (MULT, Pmode, index_diff, gen_rtx (CONST_INT, VOIDmode, 2)), gen_rtx (LABEL_REF, VOIDmode, operands[3]))); /* Emit the last few insns. */ emit_insn (gen_casesi_2 (gen_reg_rtx (HImode), table_elt_addr, operands[3])); DONE; }") ;; Recognize one of the insns resulting from casesi_2. (define_insn "" [(set (pc) (plus:SI (pc) (match_operand:HI 0 "general_operand" "r"))) (use (label_ref (match_operand 1 "" "")))] "" "* return \"jmp pc@(2:B)[%0:W:B]\"; ") ;; Unconditional and other jump instructions (define_insn "jump" [(set (pc) (label_ref (match_operand 0 "" "")))] "" "* return \"jra %l0\"; ") (define_insn "" [(set (pc) (if_then_else (ne (match_operand:HI 0 "general_operand" "d,m,g") (const_int 0)) (label_ref (match_operand 1 "" "")) (pc))) (set (match_dup 0) (plus:HI (match_dup 0) (const_int -1)))] "" "@ dbra %0,%l1 subq%.w %#1,%0\;jcc %l1 subq%.w %#1,%0\;cmp%.w %#-1,%0\;jne %l1") (define_insn "" [(set (pc) (if_then_else (ne (match_operand:SI 0 "general_operand" "d,m,g") (const_int 0)) (label_ref (match_operand 1 "" "")) (pc))) (set (match_dup 0) (plus:SI (match_dup 0) (const_int -1)))] "" "@ dbra %0,%l1\;clr%.w %0\;subq%.l %#1,%0\;jcc %l1 subq%.l %#1,%0\;jcc %l1 subq%.l %#1,%0\;cmp%.l %#-1,%0\;jne %l1") ;; dbra patterns that use REG_NOTES info generated by strength_reduce. (define_insn "decrement_and_branch_until_zero" [(set (pc) (if_then_else (ge (match_operand:SI 0 "general_operand" "d,m,g") (const_int 1)) (label_ref (match_operand 1 "" "")) (pc))) (set (match_dup 0) (plus:SI (match_dup 0) (const_int -1)))] "find_reg_note (insn, REG_NONNEG, 0)" "@ dbra %0,%l1\;clrw %0\;subql %#1,%0\;jcc %l1 subq%.l %#1,%0\;jcc %l1 subq%.l %#1,%0\;cmp%.l %#-1,%0\;jne %l1") ;; Call subroutine with no return value. (define_insn "call" [(call (match_operand:QI 0 "memory_operand" "o") (match_operand:SI 1 "general_operand" "g"))] "" "* { rtx xoperands[2]; int size = XINT(operands[1],0); if (size == 0) output_asm_insn (\"sub%.l a0,a0\;jbsr %0\", operands); else { xoperands[1] = gen_rtx (CONST_INT, VOIDmode, size/4); output_asm_insn (\"mov%.l sp,a0\;pea %a1\", xoperands); output_asm_insn (\"jbsr %0\", operands); size = size + 4; xoperands[1] = gen_rtx (CONST_INT, VOIDmode, size); if (size <= 8) output_asm_insn (\"addq%.l %1,sp\", xoperands); else if (size < 0x8000) output_asm_insn (\"add%.w %1,sp\", xoperands); else output_asm_insn (\"add%.l %1,sp\", xoperands); } return \"mov%.l a6@(-4),a0\"; }") ;; Call subroutine, returning value in operand 0 ;; (which must be a hard register). (define_insn "call_value" [(set (match_operand 0 "" "=rf") (call (match_operand:QI 1 "memory_operand" "o") (match_operand:SI 2 "general_operand" "g")))] "" "* { rtx xoperands[3]; int size = XINT(operands[2],0); if (size == 0) output_asm_insn(\"sub%.l a0,a0\;jbsr %1\", operands); else { xoperands[2] = gen_rtx (CONST_INT, VOIDmode, size/4); output_asm_insn (\"mov%.l sp,a0\;pea %a2\", xoperands); output_asm_insn (\"jbsr %1\", operands); size = size + 4; xoperands[2] = gen_rtx (CONST_INT, VOIDmode, size); if (size <= 8) output_asm_insn (\"addq%.l %2,sp\", xoperands); else if (size < 0x8000) output_asm_insn (\"add%.w %2,sp\", xoperands); else output_asm_insn (\"add%.l %2,sp\", xoperands); } return \"mov%.l a6@(-4),a0\"; }") (define_insn "nop" [(const_int 0)] "" "nop") ;; This should not be used unless the add/sub insns can't be. (define_insn "" [(set (match_operand:SI 0 "general_operand" "=a") (match_operand:QI 1 "address_operand" "p"))] "" "lea %a1,%0") ;; This is the first machine-dependent peephole optimization. ;; It is useful when a floating value is returned from a function call ;; and then is moved into an FP register. ;; But it is mainly intended to test the support for these optimizations. ;Not applicable to Alliant -- floating results are returned in fp0 ;(define_peephole ; [(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4))) ; (set (match_operand:DF 0 "register_operand" "f") ; (match_operand:DF 1 "register_operand" "ad"))] ; "FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])" ; "* ;{ ; rtx xoperands[2]; ; xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1); ; output_asm_insn (\"mov%.l %1,%@\", xoperands); ; output_asm_insn (\"mov%.l %1,%-\", operands); ; return \"fmove%.d %+,%0\"; ;} ;") ;;- Local variables: ;;- mode:emacs-lisp ;;- comment-start: ";;- " ;;- comment-start-skip: ";+- *" ;;- eval: (set-syntax-table (copy-sequence (syntax-table))) ;;- eval: (modify-syntax-entry ?[ "(]") ;;- eval: (modify-syntax-entry ?] ")[") ;;- eval: (modify-syntax-entry ?{ "(}") ;;- eval: (modify-syntax-entry ?} "){") ;;- End: