BBN-Vax-TCP/sys/sig.c
/* sig.c 4.12 81/07/03 */
#include "../h/param.h"
#include "../h/systm.h"
#include "../h/dir.h"
#include "../h/user.h"
#include "../h/proc.h"
#include "../h/inode.h"
#include "../h/reg.h"
#include "../h/text.h"
#include "../h/seg.h"
#include "../h/mtpr.h"
#include "../h/pte.h"
#include "../h/psl.h"
#include "../h/vm.h"
#include "../h/buf.h"
#include "../h/vlimit.h"
/*
* Priority for tracing
*/
#define IPCPRI PZERO
/*
* Tracing variables.
* Used to pass trace command from
* parent to child being traced.
* This data base cannot be
* shared and is locked
* per user.
*/
struct
{
int ip_lock;
int ip_req;
int *ip_addr;
int ip_data;
} ipc;
/*
* Send the specified signal to
* all processes with 'pgrp' as
* process group.
* Called by tty.c for quits and
* interrupts.
*/
gsignal(pgrp, sig)
register pgrp;
{
register struct proc *p;
if(pgrp == 0)
return;
for(p = proc; p < procNPROC; p++)
if(p->p_pgrp == pgrp)
psignal(p, sig);
}
/*
* Send the specified signal to
* the specified process.
*/
psignal(p, sig)
register struct proc *p;
register int sig;
{
register s;
register int (*action)();
long sigmask;
if((unsigned)sig >= NSIG)
return;
sigmask = (1L << (sig-1));
/*
* If proc is traced, always give parent a chance.
* Otherwise get the signal action from the bits in the proc table.
*/
if (p->p_flag & STRC)
action = SIG_DFL;
else {
s = (p->p_siga1&sigmask) != 0;
s <<= 1;
s |= (p->p_siga0&sigmask) != 0;
action = (int(*)())s;
/*
* If the signal is ignored, we forget about it immediately.
*/
if (action == SIG_IGN)
return;
}
#define mask(sig) (1<<(sig-1))
#define stops (mask(SIGSTOP)|mask(SIGTSTP)|mask(SIGTTIN)|mask(SIGTTOU))
if (sig) {
p->p_sig |= sigmask;
switch (sig) {
case SIGTERM:
if ((p->p_flag&STRC) != 0 || action != SIG_DFL)
break;
/* fall into ... */
case SIGKILL:
if (p->p_nice > NZERO)
p->p_nice = NZERO;
break;
case SIGCONT:
p->p_sig &= ~stops;
break;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
p->p_sig &= ~mask(SIGCONT);
break;
}
}
#undef mask
#undef stops
/*
* Defer further processing for signals which are held.
*/
if (action == SIG_HOLD)
return;
s = spl6();
switch (p->p_stat) {
case SSLEEP:
/*
* If process is sleeping at negative priority
* we can't interrupt the sleep... the signal will
* be noticed when the process returns through
* trap() or syscall().
*/
if (p->p_pri <= PZERO)
goto out;
/*
* Process is sleeping and traced... make it runnable
* so it can discover the signal in issig() and stop
* for the parent.
*/
if (p->p_flag&STRC)
goto run;
switch (sig) {
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
/*
* These are the signals which by default
* stop a process.
*/
if (action != SIG_DFL)
goto run;
/*
* Don't clog system with children of init
* stopped from the keyboard.
*/
if (sig != SIGSTOP && p->p_pptr == &proc[1]) {
psignal(p, SIGKILL);
p->p_sig &= ~sigmask;
splx(s);
return;
}
/*
* If a child in vfork(), stopping could
* cause deadlock.
*/
if (p->p_flag&SVFORK)
goto out;
p->p_sig &= ~sigmask;
p->p_cursig = sig;
stop(p);
goto out;
case SIGTINT:
case SIGCHLD:
/*
* These signals are special in that they
* don't get propogated... if the process
* isn't interested, forget it.
*/
if (action != SIG_DFL)
goto run;
p->p_sig &= ~sigmask; /* take it away */
goto out;
default:
/*
* All other signals cause the process to run
*/
goto run;
}
/*NOTREACHED*/
case SSTOP:
/*
* If traced process is already stopped,
* then no further action is necessary.
*/
if (p->p_flag&STRC)
goto out;
switch (sig) {
case SIGKILL:
/*
* Kill signal always sets processes running.
*/
goto run;
case SIGCONT:
/*
* If the process catches SIGCONT, let it handle
* the signal itself. If it isn't waiting on
* an event, then it goes back to run state.
* Otherwise, process goes back to sleep state.
*/
if (action != SIG_DFL || p->p_wchan == 0)
goto run;
p->p_stat = SSLEEP;
goto out;
case SIGSTOP:
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
/*
* Already stopped, don't need to stop again.
* (If we did the shell could get confused.)
*/
p->p_sig &= ~sigmask; /* take it away */
goto out;
default:
/*
* If process is sleeping interruptibly, then
* unstick it so that when it is continued
* it can look at the signal.
* But don't setrun the process as its not to
* be unstopped by the signal alone.
*/
if (p->p_wchan && p->p_pri > PZERO)
unsleep(p);
goto out;
}
/*NOTREACHED*/
default:
/*
* SRUN, SIDL, SZOMB do nothing with the signal,
* other than kicking ourselves if we are running.
* It will either never be noticed, or noticed very soon.
*/
if (p == u.u_procp && !noproc)
aston();
goto out;
}
/*NOTREACHED*/
run:
/*
* Raise priority to at least PUSER.
*/
if (p->p_pri > PUSER)
if ((p != u.u_procp || noproc) && p->p_stat == SRUN &&
(p->p_flag & SLOAD)) {
remrq(p);
p->p_pri = PUSER;
setrq(p);
} else
p->p_pri = PUSER;
setrun(p);
out:
splx(s);
}
/*
* Returns true if the current
* process has a signal to process.
* The signal to process is put in p_cursig.
* This is asked at least once each time a process enters the
* system (though this can usually be done without actually
* calling issig by checking the pending signal masks.)
* A signal does not do anything
* directly to a process; it sets
* a flag that asks the process to
* do something to itself.
*/
issig()
{
register struct proc *p;
register int sig;
long sigbits;
long sigmask;
p = u.u_procp;
for (;;) {
sigbits = p->p_sig;
if ((p->p_flag&STRC) == 0)
sigbits &= ~p->p_ignsig;
if (p->p_flag&SVFORK)
#define bit(a) (1<<(a-1))
sigbits &= ~(bit(SIGSTOP)|bit(SIGTSTP)|bit(SIGTTIN)|bit(SIGTTOU));
if (sigbits == 0)
break;
sig = ffs(sigbits);
sigmask = 1L << (sig-1);
p->p_sig &= ~sigmask; /* take the signal! */
p->p_cursig = sig;
if (p->p_flag&STRC && (p->p_flag&SVFORK)==0) {
/*
* If traced, always stop, and stay
* stopped until released by the parent.
*/
do {
stop(p);
swtch();
} while (!procxmt() && p->p_flag&STRC);
/*
* If parent wants us to take the signal,
* then it will leave it in p->p_cursig;
* otherwise we just look for signals again.
*/
sig = p->p_cursig;
if (sig == 0)
continue;
}
switch (u.u_signal[sig]) {
case SIG_DFL:
/*
* Don't take default actions on system processes.
*/
if (p <= &proc[2])
break;
switch (sig) {
case SIGTSTP:
case SIGTTIN:
case SIGTTOU:
/*
* Children of init aren't allowed to stop
* on signals from the keyboard.
*/
if (p->p_pptr == &proc[1]) {
psignal(p, SIGKILL);
continue;
}
/* fall into ... */
case SIGSTOP:
if (p->p_flag&STRC)
continue;
stop(p);
swtch();
continue;
case SIGTINT:
case SIGCONT:
case SIGCHLD:
/*
* These signals are normally not
* sent if the action is the default.
* This can happen only if you reset the
* signal action from an action which was
* not deferred to SIG_DFL before the
* system gets a chance to post the signal.
*/
continue; /* == ignore */
default:
goto send;
}
/*NOTREACHED*/
case SIG_HOLD:
case SIG_IGN:
/*
* Masking above should prevent us
* ever trying to take action on a held
* or ignored signal, unless process is traced.
*/
if ((p->p_flag&STRC) == 0)
printf("issig\n");
continue;
default:
/*
* This signal has an action, let
* psig process it.
*/
goto send;
}
/*NOTREACHED*/
}
/*
* Didn't find a signal to send.
*/
p->p_cursig = 0;
return (0);
send:
/*
* Let psig process the signal.
*/
return (sig);
}
#ifndef vax
ffs(mask)
register long mask;
{
register int i;
for(i=1; i<NSIG; i++) {
if(mask & 1)
return(i);
mask >>= 1;
}
return(0);
}
#endif
/*
* Put the argument process into the stopped
* state and notify the parent via wakeup and/or signal.
*/
stop(p)
register struct proc *p;
{
p->p_stat = SSTOP;
p->p_flag &= ~SWTED;
wakeup((caddr_t)p->p_pptr);
/*
* Avoid sending signal to parent if process is traced
*/
if (p->p_flag&STRC)
return;
psignal(p->p_pptr, SIGCHLD);
}
/*
* Perform the action specified by
* the current signal.
* The usual sequence is:
* if(issig())
* psig();
* The signal bit has already been cleared by issig,
* and the current signal number stored in p->p_cursig.
*/
psig()
{
register struct proc *rp = u.u_procp;
register int n = rp->p_cursig;
long sigmask = 1L << (n-1);
register int (*action)();
if (rp->p_cursig == 0)
panic("psig");
action = u.u_signal[n];
if (action != SIG_DFL) {
if (action == SIG_IGN || action == SIG_HOLD)
panic("psig action");
u.u_error = 0;
if(n != SIGILL && n != SIGTRAP)
u.u_signal[n] = 0;
/*
* If this catch value indicates automatic holding of
* subsequent signals, set the hold value.
*/
if (SIGISDEFER(action)) {
(void) spl6();
if ((int)SIG_HOLD & 1)
rp->p_siga0 |= sigmask;
else
rp->p_siga0 &= ~sigmask;
if ((int)SIG_HOLD & 2)
rp->p_siga1 |= sigmask;
else
rp->p_siga1 &= ~sigmask;
u.u_signal[n] = SIG_HOLD;
(void) spl0();
action = SIGUNDEFER(action);
}
sendsig(action, n);
rp->p_cursig = 0;
return;
}
switch (n) {
case SIGILL:
case SIGIOT:
case SIGBUS:
case SIGQUIT:
case SIGTRAP:
case SIGEMT:
case SIGFPE:
case SIGSEGV:
case SIGSYS:
u.u_arg[0] = n;
if(core())
n += 0200;
}
exit(n);
}
#ifdef unneeded
int corestop = 0;
#endif
/*
* Create a core image on the file "core"
* If you are looking for protection glitches,
* there are probably a wealth of them here
* when this occurs to a suid command.
*
* It writes UPAGES block of the
* user.h area followed by the entire
* data+stack segments.
*/
core()
{
register struct inode *ip;
extern schar();
#ifdef unneeded
if (corestop) {
int i;
for (i = 0; i < 10; i++)
if (u.u_comm[i])
putchar(u.u_comm[i], 0);
printf(", uid %d\n", u.u_uid);
if (corestop&2)
asm("halt");
}
#endif
if (ctob(UPAGES+u.u_dsize+u.u_ssize) >= u.u_limit[LIM_CORE])
return (0);
u.u_error = 0;
u.u_dirp = "core";
ip = namei(schar, 1);
if(ip == NULL) {
if(u.u_error)
return(0);
ip = maknode(0666);
if (ip==NULL)
return(0);
}
if(!access(ip, IWRITE) &&
(ip->i_mode&IFMT) == IFREG && ip->i_vfdcnt == 0 &&
u.u_uid == u.u_ruid && ip->i_nlink == 1) {
itrunc(ip);
u.u_offset = 0;
u.u_base = (caddr_t)&u;
u.u_count = ctob(UPAGES);
u.u_segflg = 1;
writei(ip);
u.u_base = (char *)ctob(u.u_tsize);
u.u_count = ctob(u.u_dsize);
u.u_segflg = 0;
writei(ip);
u.u_base = (char *)(USRSTACK - ctob(u.u_ssize));
u.u_count = ctob(u.u_ssize);
writei(ip);
} else
u.u_error = EFAULT;
iput(ip);
return(u.u_error==0);
}
/*
* grow the stack to include the SP
* true return if successful.
*/
grow(sp)
unsigned sp;
{
register si;
if(sp >= USRSTACK-ctob(u.u_ssize))
return(0);
si = clrnd(btoc((USRSTACK-sp)) - u.u_ssize + SINCR);
if (ctob(u.u_ssize+si) > u.u_limit[LIM_STACK])
return(0);
if (chksize(u.u_tsize, u.u_dsize, u.u_ssize+si))
return(0);
if (swpexpand(u.u_dsize, u.u_ssize+si, &u.u_dmap, &u.u_smap)==0)
return(0);
expand(si, P1BR);
return(1);
}
/*
* sys-trace system call.
*/
ptrace()
{
register struct proc *p;
register struct a {
int req;
int pid;
int *addr;
int data;
} *uap;
uap = (struct a *)u.u_ap;
if (uap->req <= 0) {
u.u_procp->p_flag |= STRC;
return;
}
p = pfind(uap->pid);
if (p == 0 || p->p_stat != SSTOP || p->p_ppid != u.u_procp->p_pid) {
u.u_error = ESRCH;
return;
}
while (ipc.ip_lock)
sleep((caddr_t)&ipc, IPCPRI);
ipc.ip_lock = p->p_pid;
ipc.ip_data = uap->data;
ipc.ip_addr = uap->addr;
ipc.ip_req = uap->req;
p->p_flag &= ~SWTED;
while (ipc.ip_req > 0) {
if (p->p_stat==SSTOP)
setrun(p);
sleep((caddr_t)&ipc, IPCPRI);
}
u.u_r.r_val1 = ipc.ip_data;
if (ipc.ip_req < 0)
u.u_error = EIO;
ipc.ip_lock = 0;
wakeup((caddr_t)&ipc);
}
int ipcreg[] = {R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, AP, FP, SP, PC};
/*
* Code that the child process
* executes to implement the command
* of the parent process in tracing.
*/
procxmt()
{
register int i;
register *p;
register struct text *xp;
if (ipc.ip_lock != u.u_procp->p_pid)
return(0);
u.u_procp->p_slptime = 0;
i = ipc.ip_req;
ipc.ip_req = 0;
switch (i) {
/* read user I */
case 1:
if (!useracc((caddr_t)ipc.ip_addr, 4, B_READ))
goto error;
ipc.ip_data = fuiword((caddr_t)ipc.ip_addr);
break;
/* read user D */
case 2:
if (!useracc((caddr_t)ipc.ip_addr, 4, B_READ))
goto error;
ipc.ip_data = fuword((caddr_t)ipc.ip_addr);
break;
/* read u */
case 3:
i = (int)ipc.ip_addr;
if (i<0 || i >= ctob(UPAGES))
goto error;
ipc.ip_data = ((physadr)&u)->r[i>>2];
break;
/* write user I */
/* Must set up to allow writing */
case 4:
/*
* If text, must assure exclusive use
*/
if (xp = u.u_procp->p_textp) {
if (xp->x_count!=1 || xp->x_iptr->i_mode&ISVTX)
goto error;
xp->x_iptr->i_flag &= ~ITEXT;
}
i = -1;
if (chgprot((caddr_t)ipc.ip_addr, RW) &&
chgprot((caddr_t)ipc.ip_addr+(sizeof(int)-1), RW))
i = suiword((caddr_t)ipc.ip_addr, ipc.ip_data);
(void) chgprot((caddr_t)ipc.ip_addr, RO);
(void) chgprot((caddr_t)ipc.ip_addr+(sizeof(int)-1), RO);
if (i < 0)
goto error;
if (xp)
xp->x_flag |= XWRIT;
break;
/* write user D */
case 5:
if (suword((caddr_t)ipc.ip_addr, 0) < 0)
goto error;
(void) suword((caddr_t)ipc.ip_addr, ipc.ip_data);
break;
/* write u */
case 6:
i = (int)ipc.ip_addr;
p = (int *)&((physadr)&u)->r[i>>2];
for (i=0; i<16; i++)
if (p == &u.u_ar0[ipcreg[i]])
goto ok;
if (p == &u.u_ar0[PS]) {
ipc.ip_data |= PSL_CURMOD|PSL_PRVMOD;
ipc.ip_data &= ~PSL_USERCLR;
goto ok;
}
goto error;
ok:
*p = ipc.ip_data;
break;
/* set signal and continue */
/* one version causes a trace-trap */
case 9:
case 7:
if ((int)ipc.ip_addr != 1)
u.u_ar0[PC] = (int)ipc.ip_addr;
if ((unsigned)ipc.ip_data > NSIG)
goto error;
u.u_procp->p_cursig = ipc.ip_data; /* see issig */
if (i == 9)
u.u_ar0[PS] |= PSL_T;
wakeup((caddr_t)&ipc);
return (1);
/* force exit */
case 8:
wakeup((caddr_t)&ipc);
exit(u.u_procp->p_cursig);
default:
error:
ipc.ip_req = -1;
}
wakeup((caddr_t)&ipc);
return(0);
}