FreeBSD-5.3/sbin/camcontrol/camcontrol.c

Compare this file to the similar file:
Show the results in this format:

/*
 * Copyright (c) 1997, 1998, 1999, 2000, 2001, 2002 Kenneth D. Merry
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote products
 *    derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/sbin/camcontrol/camcontrol.c,v 1.52 2004/03/03 01:51:24 ken Exp $");

#include <sys/ioctl.h>
#include <sys/stdint.h>
#include <sys/types.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <ctype.h>
#include <err.h>

#include <cam/cam.h>
#include <cam/cam_debug.h>
#include <cam/cam_ccb.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_da.h>
#include <cam/scsi/scsi_pass.h>
#include <cam/scsi/scsi_message.h>
#include <camlib.h>
#include "camcontrol.h"

typedef enum {
	CAM_CMD_NONE		= 0x00000000,
	CAM_CMD_DEVLIST		= 0x00000001,
	CAM_CMD_TUR		= 0x00000002,
	CAM_CMD_INQUIRY		= 0x00000003,
	CAM_CMD_STARTSTOP	= 0x00000004,
	CAM_CMD_RESCAN		= 0x00000005,
	CAM_CMD_READ_DEFECTS	= 0x00000006,
	CAM_CMD_MODE_PAGE	= 0x00000007,
	CAM_CMD_SCSI_CMD	= 0x00000008,
	CAM_CMD_DEVTREE		= 0x00000009,
	CAM_CMD_USAGE		= 0x0000000a,
	CAM_CMD_DEBUG		= 0x0000000b,
	CAM_CMD_RESET		= 0x0000000c,
	CAM_CMD_FORMAT		= 0x0000000d,
	CAM_CMD_TAG		= 0x0000000e,
	CAM_CMD_RATE		= 0x0000000f,
	CAM_CMD_DETACH		= 0x00000010,
} cam_cmdmask;

typedef enum {
	CAM_ARG_NONE		= 0x00000000,
	CAM_ARG_VERBOSE		= 0x00000001,
	CAM_ARG_DEVICE		= 0x00000002,
	CAM_ARG_BUS		= 0x00000004,
	CAM_ARG_TARGET		= 0x00000008,
	CAM_ARG_LUN		= 0x00000010,
	CAM_ARG_EJECT		= 0x00000020,
	CAM_ARG_UNIT		= 0x00000040,
	CAM_ARG_FORMAT_BLOCK	= 0x00000080,
	CAM_ARG_FORMAT_BFI	= 0x00000100,
	CAM_ARG_FORMAT_PHYS	= 0x00000200,
	CAM_ARG_PLIST		= 0x00000400,
	CAM_ARG_GLIST		= 0x00000800,
	CAM_ARG_GET_SERIAL	= 0x00001000,
	CAM_ARG_GET_STDINQ	= 0x00002000,
	CAM_ARG_GET_XFERRATE	= 0x00004000,
	CAM_ARG_INQ_MASK	= 0x00007000,
	CAM_ARG_MODE_EDIT	= 0x00008000,
	CAM_ARG_PAGE_CNTL	= 0x00010000,
	CAM_ARG_TIMEOUT		= 0x00020000,
	CAM_ARG_CMD_IN		= 0x00040000,
	CAM_ARG_CMD_OUT		= 0x00080000,
	CAM_ARG_DBD		= 0x00100000,
	CAM_ARG_ERR_RECOVER	= 0x00200000,
	CAM_ARG_RETRIES		= 0x00400000,
	CAM_ARG_START_UNIT	= 0x00800000,
	CAM_ARG_DEBUG_INFO	= 0x01000000,
	CAM_ARG_DEBUG_TRACE	= 0x02000000,
	CAM_ARG_DEBUG_SUBTRACE	= 0x04000000,
	CAM_ARG_DEBUG_CDB	= 0x08000000,
	CAM_ARG_DEBUG_XPT	= 0x10000000,
	CAM_ARG_DEBUG_PERIPH	= 0x20000000,
} cam_argmask;

struct camcontrol_opts {
	const char	*optname;	
	cam_cmdmask	cmdnum;
	cam_argmask	argnum;
	const char	*subopt;
};

#ifndef MINIMALISTIC
static const char scsicmd_opts[] = "c:i:o:";
static const char readdefect_opts[] = "f:GP";
static const char negotiate_opts[] = "acD:O:qR:T:UW:";
#endif

struct camcontrol_opts option_table[] = {
#ifndef MINIMALISTIC
	{"tur", CAM_CMD_TUR, CAM_ARG_NONE, NULL},
	{"inquiry", CAM_CMD_INQUIRY, CAM_ARG_NONE, "DSR"},
	{"start", CAM_CMD_STARTSTOP, CAM_ARG_START_UNIT, NULL},
	{"stop", CAM_CMD_STARTSTOP, CAM_ARG_NONE, NULL},
	{"load", CAM_CMD_STARTSTOP, CAM_ARG_START_UNIT | CAM_ARG_EJECT, NULL},
	{"eject", CAM_CMD_STARTSTOP, CAM_ARG_EJECT, NULL},
#endif /* MINIMALISTIC */
	{"rescan", CAM_CMD_RESCAN, CAM_ARG_NONE, NULL},
	{"reset", CAM_CMD_RESET, CAM_ARG_NONE, NULL},
#ifndef MINIMALISTIC
	{"cmd", CAM_CMD_SCSI_CMD, CAM_ARG_NONE, scsicmd_opts},
	{"command", CAM_CMD_SCSI_CMD, CAM_ARG_NONE, scsicmd_opts},
	{"defects", CAM_CMD_READ_DEFECTS, CAM_ARG_NONE, readdefect_opts},
	{"defectlist", CAM_CMD_READ_DEFECTS, CAM_ARG_NONE, readdefect_opts},
#endif /* MINIMALISTIC */
	{"devlist", CAM_CMD_DEVTREE, CAM_ARG_NONE, NULL},
#ifndef MINIMALISTIC
	{"periphlist", CAM_CMD_DEVLIST, CAM_ARG_NONE, NULL},
	{"modepage", CAM_CMD_MODE_PAGE, CAM_ARG_NONE, "bdelm:P:"},
	{"tags", CAM_CMD_TAG, CAM_ARG_NONE, "N:q"},
	{"negotiate", CAM_CMD_RATE, CAM_ARG_NONE, negotiate_opts},
	{"rate", CAM_CMD_RATE, CAM_ARG_NONE, negotiate_opts},
	{"debug", CAM_CMD_DEBUG, CAM_ARG_NONE, "IPTSXc"},
	{"format", CAM_CMD_FORMAT, CAM_ARG_NONE, "qwy"},
#endif /* MINIMALISTIC */
	{"help", CAM_CMD_USAGE, CAM_ARG_NONE, NULL},
	{"-?", CAM_CMD_USAGE, CAM_ARG_NONE, NULL},
	{"-h", CAM_CMD_USAGE, CAM_ARG_NONE, NULL},
	{NULL, 0, 0, NULL}
};

typedef enum {
	CC_OR_NOT_FOUND,
	CC_OR_AMBIGUOUS,
	CC_OR_FOUND
} camcontrol_optret;

cam_cmdmask cmdlist;
cam_argmask arglist;


camcontrol_optret getoption(char *arg, cam_cmdmask *cmdnum, cam_argmask *argnum,
			    const char **subopt);
#ifndef MINIMALISTIC
static int getdevlist(struct cam_device *device);
#endif /* MINIMALISTIC */
static int getdevtree(void);
#ifndef MINIMALISTIC
static int testunitready(struct cam_device *device, int retry_count,
			 int timeout, int quiet);
static int scsistart(struct cam_device *device, int startstop, int loadeject,
		     int retry_count, int timeout);
static int scsidoinquiry(struct cam_device *device, int argc, char **argv,
			 char *combinedopt, int retry_count, int timeout);
static int scsiinquiry(struct cam_device *device, int retry_count, int timeout);
static int scsiserial(struct cam_device *device, int retry_count, int timeout);
static int scsixferrate(struct cam_device *device);
#endif /* MINIMALISTIC */
static int parse_btl(char *tstr, int *bus, int *target, int *lun,
		     cam_argmask *arglst);
static int dorescan_or_reset(int argc, char **argv, int rescan);
static int rescan_or_reset_bus(int bus, int rescan);
static int scanlun_or_reset_dev(int bus, int target, int lun, int scan);
#ifndef MINIMALISTIC
static int readdefects(struct cam_device *device, int argc, char **argv,
		       char *combinedopt, int retry_count, int timeout);
static void modepage(struct cam_device *device, int argc, char **argv,
		     char *combinedopt, int retry_count, int timeout);
static int scsicmd(struct cam_device *device, int argc, char **argv, 
		   char *combinedopt, int retry_count, int timeout);
static int tagcontrol(struct cam_device *device, int argc, char **argv,
		      char *combinedopt);
static void cts_print(struct cam_device *device,
		      struct ccb_trans_settings *cts);
static void cpi_print(struct ccb_pathinq *cpi);
static int get_cpi(struct cam_device *device, struct ccb_pathinq *cpi);
static int get_print_cts(struct cam_device *device, int user_settings,
			 int quiet, struct ccb_trans_settings *cts);
static int ratecontrol(struct cam_device *device, int retry_count,
		       int timeout, int argc, char **argv, char *combinedopt);
static int scsiformat(struct cam_device *device, int argc, char **argv,
		      char *combinedopt, int retry_count, int timeout);
#endif /* MINIMALISTIC */

camcontrol_optret
getoption(char *arg, cam_cmdmask *cmdnum, cam_argmask *argnum, 
	  const char **subopt)
{
	struct camcontrol_opts *opts;
	int num_matches = 0;

	for (opts = option_table; (opts != NULL) && (opts->optname != NULL);
	     opts++) {
		if (strncmp(opts->optname, arg, strlen(arg)) == 0) {
			*cmdnum = opts->cmdnum;
			*argnum = opts->argnum;
			*subopt = opts->subopt;
			if (++num_matches > 1)
				return(CC_OR_AMBIGUOUS);
		}
	}

	if (num_matches > 0)
		return(CC_OR_FOUND);
	else
		return(CC_OR_NOT_FOUND);
}

#ifndef MINIMALISTIC
static int
getdevlist(struct cam_device *device)
{
	union ccb *ccb;
	char status[32];
	int error = 0;

	ccb = cam_getccb(device);

	ccb->ccb_h.func_code = XPT_GDEVLIST;
	ccb->ccb_h.flags = CAM_DIR_NONE;
	ccb->ccb_h.retry_count = 1;
	ccb->cgdl.index = 0;
	ccb->cgdl.status = CAM_GDEVLIST_MORE_DEVS;
	while (ccb->cgdl.status == CAM_GDEVLIST_MORE_DEVS) {
		if (cam_send_ccb(device, ccb) < 0) {
			perror("error getting device list");
			cam_freeccb(ccb);
			return(1);
		}

		status[0] = '\0';

		switch (ccb->cgdl.status) {
			case CAM_GDEVLIST_MORE_DEVS:
				strcpy(status, "MORE");
				break;
			case CAM_GDEVLIST_LAST_DEVICE:
				strcpy(status, "LAST");
				break;
			case CAM_GDEVLIST_LIST_CHANGED:
				strcpy(status, "CHANGED");
				break;
			case CAM_GDEVLIST_ERROR:
				strcpy(status, "ERROR");
				error = 1;
				break;
		}

		fprintf(stdout, "%s%d:  generation: %d index: %d status: %s\n",
			ccb->cgdl.periph_name,
			ccb->cgdl.unit_number,
			ccb->cgdl.generation,
			ccb->cgdl.index,
			status);

		/*
		 * If the list has changed, we need to start over from the
		 * beginning.
		 */
		if (ccb->cgdl.status == CAM_GDEVLIST_LIST_CHANGED)
			ccb->cgdl.index = 0;
	}

	cam_freeccb(ccb);

	return(error);
}
#endif /* MINIMALISTIC */

static int
getdevtree(void)
{
	union ccb ccb;
	int bufsize, fd;
	unsigned int i;
	int need_close = 0;
	int error = 0;
	int skip_device = 0;

	if ((fd = open(XPT_DEVICE, O_RDWR)) == -1) {
		warn("couldn't open %s", XPT_DEVICE);
		return(1);
	}

	bzero(&ccb, sizeof(union ccb));

	ccb.ccb_h.path_id = CAM_XPT_PATH_ID;
	ccb.ccb_h.target_id = CAM_TARGET_WILDCARD;
	ccb.ccb_h.target_lun = CAM_LUN_WILDCARD;

	ccb.ccb_h.func_code = XPT_DEV_MATCH;
	bufsize = sizeof(struct dev_match_result) * 100;
	ccb.cdm.match_buf_len = bufsize;
	ccb.cdm.matches = (struct dev_match_result *)malloc(bufsize);
	if (ccb.cdm.matches == NULL) {
		warnx("can't malloc memory for matches");
		close(fd);
		return(1);
	}
	ccb.cdm.num_matches = 0;

	/*
	 * We fetch all nodes, since we display most of them in the default
	 * case, and all in the verbose case.
	 */
	ccb.cdm.num_patterns = 0;
	ccb.cdm.pattern_buf_len = 0;

	/*
	 * We do the ioctl multiple times if necessary, in case there are
	 * more than 100 nodes in the EDT.
	 */
	do {
		if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
			warn("error sending CAMIOCOMMAND ioctl");
			error = 1;
			break;
		}

		if ((ccb.ccb_h.status != CAM_REQ_CMP)
		 || ((ccb.cdm.status != CAM_DEV_MATCH_LAST)
		    && (ccb.cdm.status != CAM_DEV_MATCH_MORE))) {
			warnx("got CAM error %#x, CDM error %d\n",
			      ccb.ccb_h.status, ccb.cdm.status);
			error = 1;
			break;
		}

		for (i = 0; i < ccb.cdm.num_matches; i++) {
			switch (ccb.cdm.matches[i].type) {
			case DEV_MATCH_BUS: {
				struct bus_match_result *bus_result;

				/*
				 * Only print the bus information if the
				 * user turns on the verbose flag.
				 */
				if ((arglist & CAM_ARG_VERBOSE) == 0)
					break;

				bus_result =
					&ccb.cdm.matches[i].result.bus_result;

				if (need_close) {
					fprintf(stdout, ")\n");
					need_close = 0;
				}

				fprintf(stdout, "scbus%d on %s%d bus %d:\n",
					bus_result->path_id,
					bus_result->dev_name,
					bus_result->unit_number,
					bus_result->bus_id);
				break;
			}
			case DEV_MATCH_DEVICE: {
				struct device_match_result *dev_result;
				char vendor[16], product[48], revision[16];
				char tmpstr[256];

				dev_result =
				     &ccb.cdm.matches[i].result.device_result;

				if ((dev_result->flags
				     & DEV_RESULT_UNCONFIGURED)
				 && ((arglist & CAM_ARG_VERBOSE) == 0)) {
					skip_device = 1;
					break;
				} else
					skip_device = 0;

				cam_strvis(vendor, dev_result->inq_data.vendor,
					   sizeof(dev_result->inq_data.vendor),
					   sizeof(vendor));
				cam_strvis(product,
					   dev_result->inq_data.product,
					   sizeof(dev_result->inq_data.product),
					   sizeof(product));
				cam_strvis(revision,
					   dev_result->inq_data.revision,
					  sizeof(dev_result->inq_data.revision),
					   sizeof(revision));
				sprintf(tmpstr, "<%s %s %s>", vendor, product,
					revision);
				if (need_close) {
					fprintf(stdout, ")\n");
					need_close = 0;
				}

				fprintf(stdout, "%-33s  at scbus%d "
					"target %d lun %d (",
					tmpstr,
					dev_result->path_id,
					dev_result->target_id,
					dev_result->target_lun);

				need_close = 1;

				break;
			}
			case DEV_MATCH_PERIPH: {
				struct periph_match_result *periph_result;

				periph_result =
				      &ccb.cdm.matches[i].result.periph_result;

				if (skip_device != 0)
					break;

				if (need_close > 1)
					fprintf(stdout, ",");

				fprintf(stdout, "%s%d",
					periph_result->periph_name,
					periph_result->unit_number);

				need_close++;
				break;
			}
			default:
				fprintf(stdout, "unknown match type\n");
				break;
			}
		}

	} while ((ccb.ccb_h.status == CAM_REQ_CMP)
		&& (ccb.cdm.status == CAM_DEV_MATCH_MORE));

	if (need_close)
		fprintf(stdout, ")\n");

	close(fd);

	return(error);
}

#ifndef MINIMALISTIC
static int
testunitready(struct cam_device *device, int retry_count, int timeout,
	      int quiet)
{
	int error = 0;
	union ccb *ccb;

	ccb = cam_getccb(device);

	scsi_test_unit_ready(&ccb->csio,
			     /* retries */ retry_count,
			     /* cbfcnp */ NULL,
			     /* tag_action */ MSG_SIMPLE_Q_TAG,
			     /* sense_len */ SSD_FULL_SIZE,
			     /* timeout */ timeout ? timeout : 5000);

	/* Disable freezing the device queue */
	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

	if (arglist & CAM_ARG_ERR_RECOVER)
		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;

	if (cam_send_ccb(device, ccb) < 0) {
		if (quiet == 0)
			perror("error sending test unit ready");

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}

		cam_freeccb(ccb);
		return(1);
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
		if (quiet == 0)
			fprintf(stdout, "Unit is ready\n");
	} else {
		if (quiet == 0)
			fprintf(stdout, "Unit is not ready\n");
		error = 1;

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
	}

	cam_freeccb(ccb);

	return(error);
}

static int
scsistart(struct cam_device *device, int startstop, int loadeject,
	  int retry_count, int timeout)
{
	union ccb *ccb;
	int error = 0;

	ccb = cam_getccb(device);

	/*
	 * If we're stopping, send an ordered tag so the drive in question
	 * will finish any previously queued writes before stopping.  If
	 * the device isn't capable of tagged queueing, or if tagged
	 * queueing is turned off, the tag action is a no-op.
	 */
	scsi_start_stop(&ccb->csio,
			/* retries */ retry_count,
			/* cbfcnp */ NULL,
			/* tag_action */ startstop ? MSG_SIMPLE_Q_TAG :
						     MSG_ORDERED_Q_TAG,
			/* start/stop */ startstop,
			/* load_eject */ loadeject,
			/* immediate */ 0,
			/* sense_len */ SSD_FULL_SIZE,
			/* timeout */ timeout ? timeout : 120000);

	/* Disable freezing the device queue */
	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

	if (arglist & CAM_ARG_ERR_RECOVER)
		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;

	if (cam_send_ccb(device, ccb) < 0) {
		perror("error sending start unit");

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}

		cam_freeccb(ccb);
		return(1);
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
		if (startstop) {
			fprintf(stdout, "Unit started successfully");
			if (loadeject)
				fprintf(stdout,", Media loaded\n");
			else
				fprintf(stdout,"\n");
		} else {
			fprintf(stdout, "Unit stopped successfully");
			if (loadeject)
				fprintf(stdout, ", Media ejected\n");
			else
				fprintf(stdout, "\n");
		}
	else {
		error = 1;
		if (startstop)
			fprintf(stdout,
				"Error received from start unit command\n");
		else
			fprintf(stdout,
				"Error received from stop unit command\n");
			
		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
	}

	cam_freeccb(ccb);

	return(error);
}

static int
scsidoinquiry(struct cam_device *device, int argc, char **argv,
	      char *combinedopt, int retry_count, int timeout)
{
	int c;
	int error = 0;

	while ((c = getopt(argc, argv, combinedopt)) != -1) {
		switch(c) {
		case 'D':
			arglist |= CAM_ARG_GET_STDINQ;
			break;
		case 'R':
			arglist |= CAM_ARG_GET_XFERRATE;
			break;
		case 'S':
			arglist |= CAM_ARG_GET_SERIAL;
			break;
		default:
			break;
		}
	}

	/*
	 * If the user didn't specify any inquiry options, he wants all of
	 * them.
	 */
	if ((arglist & CAM_ARG_INQ_MASK) == 0)
		arglist |= CAM_ARG_INQ_MASK;

	if (arglist & CAM_ARG_GET_STDINQ)
		error = scsiinquiry(device, retry_count, timeout);

	if (error != 0)
		return(error);

	if (arglist & CAM_ARG_GET_SERIAL)
		scsiserial(device, retry_count, timeout);

	if (error != 0)
		return(error);

	if (arglist & CAM_ARG_GET_XFERRATE)
		error = scsixferrate(device);

	return(error);
}

static int
scsiinquiry(struct cam_device *device, int retry_count, int timeout)
{
	union ccb *ccb;
	struct scsi_inquiry_data *inq_buf;
	int error = 0;
	
	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("couldn't allocate CCB");
		return(1);
	}

	/* cam_getccb cleans up the header, caller has to zero the payload */
	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));

	inq_buf = (struct scsi_inquiry_data *)malloc(
		sizeof(struct scsi_inquiry_data));

	if (inq_buf == NULL) {
		cam_freeccb(ccb);
		warnx("can't malloc memory for inquiry\n");
		return(1);
	}
	bzero(inq_buf, sizeof(*inq_buf));

	/*
	 * Note that although the size of the inquiry buffer is the full
	 * 256 bytes specified in the SCSI spec, we only tell the device
	 * that we have allocated SHORT_INQUIRY_LENGTH bytes.  There are
	 * two reasons for this:
	 *
	 *  - The SCSI spec says that when a length field is only 1 byte,
	 *    a value of 0 will be interpreted as 256.  Therefore
	 *    scsi_inquiry() will convert an inq_len (which is passed in as
	 *    a u_int32_t, but the field in the CDB is only 1 byte) of 256
	 *    to 0.  Evidently, very few devices meet the spec in that
	 *    regard.  Some devices, like many Seagate disks, take the 0 as 
	 *    0, and don't return any data.  One Pioneer DVD-R drive
	 *    returns more data than the command asked for.
	 *
	 *    So, since there are numerous devices that just don't work
	 *    right with the full inquiry size, we don't send the full size.
	 * 
	 *  - The second reason not to use the full inquiry data length is
	 *    that we don't need it here.  The only reason we issue a
	 *    standard inquiry is to get the vendor name, device name,
	 *    and revision so scsi_print_inquiry() can print them.
	 *
	 * If, at some point in the future, more inquiry data is needed for
	 * some reason, this code should use a procedure similar to the
	 * probe code.  i.e., issue a short inquiry, and determine from
	 * the additional length passed back from the device how much
	 * inquiry data the device supports.  Once the amount the device
	 * supports is determined, issue an inquiry for that amount and no
	 * more.
	 *
	 * KDM, 2/18/2000
	 */
	scsi_inquiry(&ccb->csio,
		     /* retries */ retry_count,
		     /* cbfcnp */ NULL,
		     /* tag_action */ MSG_SIMPLE_Q_TAG,
		     /* inq_buf */ (u_int8_t *)inq_buf,
		     /* inq_len */ SHORT_INQUIRY_LENGTH,
		     /* evpd */ 0,
		     /* page_code */ 0,
		     /* sense_len */ SSD_FULL_SIZE,
		     /* timeout */ timeout ? timeout : 5000);

	/* Disable freezing the device queue */
	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

	if (arglist & CAM_ARG_ERR_RECOVER)
		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;

	if (cam_send_ccb(device, ccb) < 0) {
		perror("error sending SCSI inquiry");

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}

		cam_freeccb(ccb);
		return(1);
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
		error = 1;

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
	}

	cam_freeccb(ccb);

	if (error != 0) {
		free(inq_buf);
		return(error);
	}

	fprintf(stdout, "%s%d: ", device->device_name,
		device->dev_unit_num);
	scsi_print_inquiry(inq_buf);

	free(inq_buf);

	return(0);
}

static int
scsiserial(struct cam_device *device, int retry_count, int timeout)
{
	union ccb *ccb;
	struct scsi_vpd_unit_serial_number *serial_buf;
	char serial_num[SVPD_SERIAL_NUM_SIZE + 1];
	int error = 0;

	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("couldn't allocate CCB");
		return(1);
	}

	/* cam_getccb cleans up the header, caller has to zero the payload */
	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));

	serial_buf = (struct scsi_vpd_unit_serial_number *)
		malloc(sizeof(*serial_buf));

	if (serial_buf == NULL) {
		cam_freeccb(ccb);
		warnx("can't malloc memory for serial number");
		return(1);
	}

	scsi_inquiry(&ccb->csio,
		     /*retries*/ retry_count,
		     /*cbfcnp*/ NULL,
		     /* tag_action */ MSG_SIMPLE_Q_TAG,
		     /* inq_buf */ (u_int8_t *)serial_buf,
		     /* inq_len */ sizeof(*serial_buf),
		     /* evpd */ 1,
		     /* page_code */ SVPD_UNIT_SERIAL_NUMBER,
		     /* sense_len */ SSD_FULL_SIZE,
		     /* timeout */ timeout ? timeout : 5000);

	/* Disable freezing the device queue */
	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

	if (arglist & CAM_ARG_ERR_RECOVER)
		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;

	if (cam_send_ccb(device, ccb) < 0) {
		warn("error getting serial number");

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}

		cam_freeccb(ccb);
		free(serial_buf);
		return(1);
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
		error = 1;

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
	}

	cam_freeccb(ccb);

	if (error != 0) {
		free(serial_buf);
		return(error);
	}

	bcopy(serial_buf->serial_num, serial_num, serial_buf->length);
	serial_num[serial_buf->length] = '\0';

	if ((arglist & CAM_ARG_GET_STDINQ)
	 || (arglist & CAM_ARG_GET_XFERRATE))
		fprintf(stdout, "%s%d: Serial Number ",
			device->device_name, device->dev_unit_num);

	fprintf(stdout, "%.60s\n", serial_num);

	free(serial_buf);

	return(0);
}

static int
scsixferrate(struct cam_device *device)
{
	u_int32_t freq;
	u_int32_t speed;
	union ccb *ccb;
	u_int mb;
	int retval = 0;

	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("couldn't allocate CCB");
		return(1);
	}

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_trans_settings) - sizeof(struct ccb_hdr));

	ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;
	ccb->cts.flags = CCB_TRANS_CURRENT_SETTINGS;

	if (((retval = cam_send_ccb(device, ccb)) < 0)
	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
		const char error_string[] = "error getting transfer settings";

		if (retval < 0)
			warn(error_string);
		else
			warnx(error_string);

		if (arglist & CAM_ARG_VERBOSE)
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);

		retval = 1;

		goto xferrate_bailout;

	}

	if (((ccb->cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
	 && (ccb->cts.sync_offset != 0)) {
		freq = scsi_calc_syncsrate(ccb->cts.sync_period);
		speed = freq;
	} else {
		struct ccb_pathinq cpi;

		retval = get_cpi(device, &cpi);

		if (retval != 0)
			goto xferrate_bailout;

		speed = cpi.base_transfer_speed;
		freq = 0;
	}

	fprintf(stdout, "%s%d: ", device->device_name,
		device->dev_unit_num);

	if ((ccb->cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
		speed *= (0x01 << device->bus_width);

	mb = speed / 1000;

	if (mb > 0) 
		fprintf(stdout, "%d.%03dMB/s transfers ",
			mb, speed % 1000);
	else
		fprintf(stdout, "%dKB/s transfers ",
			speed);

	if (((ccb->cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
	 && (ccb->cts.sync_offset != 0))
                fprintf(stdout, "(%d.%03dMHz, offset %d", freq / 1000,
			freq % 1000, ccb->cts.sync_offset);

	if (((ccb->cts.valid & CCB_TRANS_BUS_WIDTH_VALID) != 0)
	 && (ccb->cts.bus_width > 0)) {
		if (((ccb->cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
		 && (ccb->cts.sync_offset != 0)) {
			fprintf(stdout, ", ");
		} else {
			fprintf(stdout, " (");
		}
		fprintf(stdout, "%dbit)", 8 * (0x01 << ccb->cts.bus_width));
	} else if (((ccb->cts.valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)
		&& (ccb->cts.sync_offset != 0)) {
		fprintf(stdout, ")");
	}

	if (((ccb->cts.valid & CCB_TRANS_TQ_VALID) != 0)
	 && (ccb->cts.flags & CCB_TRANS_TAG_ENB))
                fprintf(stdout, ", Tagged Queueing Enabled");
 
        fprintf(stdout, "\n");

xferrate_bailout:

	cam_freeccb(ccb);

	return(retval);
}
#endif /* MINIMALISTIC */

/*
 * Parse out a bus, or a bus, target and lun in the following
 * format:
 * bus
 * bus:target
 * bus:target:lun
 *
 * Returns the number of parsed components, or 0.
 */
static int
parse_btl(char *tstr, int *bus, int *target, int *lun, cam_argmask *arglst)
{
	char *tmpstr;
	int convs = 0;

	while (isspace(*tstr) && (*tstr != '\0'))
		tstr++;

	tmpstr = (char *)strtok(tstr, ":");
	if ((tmpstr != NULL) && (*tmpstr != '\0')) {
		*bus = strtol(tmpstr, NULL, 0);
		*arglst |= CAM_ARG_BUS;
		convs++;
		tmpstr = (char *)strtok(NULL, ":");
		if ((tmpstr != NULL) && (*tmpstr != '\0')) {
			*target = strtol(tmpstr, NULL, 0);
			*arglst |= CAM_ARG_TARGET;
			convs++;
			tmpstr = (char *)strtok(NULL, ":");
			if ((tmpstr != NULL) && (*tmpstr != '\0')) {
				*lun = strtol(tmpstr, NULL, 0);
				*arglst |= CAM_ARG_LUN;
				convs++;
			}
		}
	}

	return convs;
}

static int
dorescan_or_reset(int argc, char **argv, int rescan)
{
	static const char must[] =
		"you must specify \"all\", a bus, or a bus:target:lun to %s";
	int rv, error = 0;
	int bus = -1, target = -1, lun = -1;
	char *tstr;

	if (argc < 3) {
		warnx(must, rescan? "rescan" : "reset");
		return(1);
	}

	tstr = argv[optind];
	while (isspace(*tstr) && (*tstr != '\0'))
		tstr++;
	if (strncasecmp(tstr, "all", strlen("all")) == 0)
		arglist |= CAM_ARG_BUS;
	else {
		rv = parse_btl(argv[optind], &bus, &target, &lun, &arglist);
		if (rv != 1 && rv != 3) {
			warnx(must, rescan? "rescan" : "reset");
			return(1);
		}
	}

	if ((arglist & CAM_ARG_BUS)
	    && (arglist & CAM_ARG_TARGET)
	    && (arglist & CAM_ARG_LUN))
		error = scanlun_or_reset_dev(bus, target, lun, rescan);
	else
		error = rescan_or_reset_bus(bus, rescan);

	return(error);
}

static int
rescan_or_reset_bus(int bus, int rescan)
{
	union ccb ccb, matchccb;
	int fd, retval;
	int bufsize;

	retval = 0;

	if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
		warnx("error opening tranport layer device %s", XPT_DEVICE);
		warn("%s", XPT_DEVICE);
		return(1);
	}

	if (bus != -1) {
		ccb.ccb_h.func_code = rescan ? XPT_SCAN_BUS : XPT_RESET_BUS;
		ccb.ccb_h.path_id = bus;
		ccb.ccb_h.target_id = CAM_TARGET_WILDCARD;
		ccb.ccb_h.target_lun = CAM_LUN_WILDCARD;
		ccb.crcn.flags = CAM_FLAG_NONE;

		/* run this at a low priority */
		ccb.ccb_h.pinfo.priority = 5;

		if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
			warn("CAMIOCOMMAND ioctl failed");
			close(fd);
			return(1);
		}

		if ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP) {
			fprintf(stdout, "%s of bus %d was successful\n",
			    rescan ? "Re-scan" : "Reset", bus);
		} else {
			fprintf(stdout, "%s of bus %d returned error %#x\n",
				rescan ? "Re-scan" : "Reset", bus,
				ccb.ccb_h.status & CAM_STATUS_MASK);
			retval = 1;
		}

		close(fd);
		return(retval);

	}


	/*
	 * The right way to handle this is to modify the xpt so that it can
	 * handle a wildcarded bus in a rescan or reset CCB.  At the moment
	 * that isn't implemented, so instead we enumerate the busses and
	 * send the rescan or reset to those busses in the case where the
	 * given bus is -1 (wildcard).  We don't send a rescan or reset
	 * to the xpt bus; sending a rescan to the xpt bus is effectively a
	 * no-op, sending a rescan to the xpt bus would result in a status of
	 * CAM_REQ_INVALID.
	 */
	bzero(&(&matchccb.ccb_h)[1],
	      sizeof(struct ccb_dev_match) - sizeof(struct ccb_hdr));
	matchccb.ccb_h.func_code = XPT_DEV_MATCH;
	bufsize = sizeof(struct dev_match_result) * 20;
	matchccb.cdm.match_buf_len = bufsize;
	matchccb.cdm.matches=(struct dev_match_result *)malloc(bufsize);
	if (matchccb.cdm.matches == NULL) {
		warnx("can't malloc memory for matches");
		retval = 1;
		goto bailout;
	}
	matchccb.cdm.num_matches = 0;

	matchccb.cdm.num_patterns = 1;
	matchccb.cdm.pattern_buf_len = sizeof(struct dev_match_pattern);

	matchccb.cdm.patterns = (struct dev_match_pattern *)malloc(
		matchccb.cdm.pattern_buf_len);
	if (matchccb.cdm.patterns == NULL) {
		warnx("can't malloc memory for patterns");
		retval = 1;
		goto bailout;
	}
	matchccb.cdm.patterns[0].type = DEV_MATCH_BUS;
	matchccb.cdm.patterns[0].pattern.bus_pattern.flags = BUS_MATCH_ANY;

	do {
		unsigned int i;

		if (ioctl(fd, CAMIOCOMMAND, &matchccb) == -1) {
			warn("CAMIOCOMMAND ioctl failed");
			retval = 1;
			goto bailout;
		}

		if ((matchccb.ccb_h.status != CAM_REQ_CMP)
		 || ((matchccb.cdm.status != CAM_DEV_MATCH_LAST)
		   && (matchccb.cdm.status != CAM_DEV_MATCH_MORE))) {
			warnx("got CAM error %#x, CDM error %d\n",
			      matchccb.ccb_h.status, matchccb.cdm.status);
			retval = 1;
			goto bailout;
		}

		for (i = 0; i < matchccb.cdm.num_matches; i++) {
			struct bus_match_result *bus_result;

			/* This shouldn't happen. */
			if (matchccb.cdm.matches[i].type != DEV_MATCH_BUS)
				continue;

			bus_result = &matchccb.cdm.matches[i].result.bus_result;

			/*
			 * We don't want to rescan or reset the xpt bus.
			 * See above.
			 */
			if ((int)bus_result->path_id == -1)
				continue;

			ccb.ccb_h.func_code = rescan ? XPT_SCAN_BUS :
						       XPT_RESET_BUS;
			ccb.ccb_h.path_id = bus_result->path_id;
			ccb.ccb_h.target_id = CAM_TARGET_WILDCARD;
			ccb.ccb_h.target_lun = CAM_LUN_WILDCARD;
			ccb.crcn.flags = CAM_FLAG_NONE;

			/* run this at a low priority */
			ccb.ccb_h.pinfo.priority = 5;

			if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
				warn("CAMIOCOMMAND ioctl failed");
				retval = 1;
				goto bailout;
			}

			if ((ccb.ccb_h.status & CAM_STATUS_MASK) ==CAM_REQ_CMP){
				fprintf(stdout, "%s of bus %d was successful\n",
					rescan? "Re-scan" : "Reset",
					bus_result->path_id);
			} else {
				/*
				 * Don't bail out just yet, maybe the other
				 * rescan or reset commands will complete
				 * successfully.
				 */
				fprintf(stderr, "%s of bus %d returned error "
					"%#x\n", rescan? "Re-scan" : "Reset",
					bus_result->path_id,
					ccb.ccb_h.status & CAM_STATUS_MASK);
				retval = 1;
			}
		}
	} while ((matchccb.ccb_h.status == CAM_REQ_CMP)
		 && (matchccb.cdm.status == CAM_DEV_MATCH_MORE));

bailout:

	if (fd != -1)
		close(fd);

	if (matchccb.cdm.patterns != NULL)
		free(matchccb.cdm.patterns);
	if (matchccb.cdm.matches != NULL)
		free(matchccb.cdm.matches);

	return(retval);
}

static int
scanlun_or_reset_dev(int bus, int target, int lun, int scan)
{
	union ccb ccb;
	struct cam_device *device;
	int fd;

	device = NULL;

	if (bus < 0) {
		warnx("invalid bus number %d", bus);
		return(1);
	}

	if (target < 0) {
		warnx("invalid target number %d", target);
		return(1);
	}

	if (lun < 0) {
		warnx("invalid lun number %d", lun);
		return(1);
	}

	fd = -1;

	bzero(&ccb, sizeof(union ccb));

	if (scan) {
		if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
			warnx("error opening tranport layer device %s\n",
			    XPT_DEVICE);
			warn("%s", XPT_DEVICE);
			return(1);
		}
	} else {
		device = cam_open_btl(bus, target, lun, O_RDWR, NULL);
		if (device == NULL) {
			warnx("%s", cam_errbuf);
			return(1);
		}
	}

	ccb.ccb_h.func_code = (scan)? XPT_SCAN_LUN : XPT_RESET_DEV;
	ccb.ccb_h.path_id = bus;
	ccb.ccb_h.target_id = target;
	ccb.ccb_h.target_lun = lun;
	ccb.ccb_h.timeout = 5000;
	ccb.crcn.flags = CAM_FLAG_NONE;

	/* run this at a low priority */
	ccb.ccb_h.pinfo.priority = 5;

	if (scan) {
		if (ioctl(fd, CAMIOCOMMAND, &ccb) < 0) {
			warn("CAMIOCOMMAND ioctl failed");
			close(fd);
			return(1);
		}
	} else {
		if (cam_send_ccb(device, &ccb) < 0) {
			warn("error sending XPT_RESET_DEV CCB");
			cam_close_device(device);
			return(1);
		}
	}

	if (scan)
		close(fd);
	else
		cam_close_device(device);

	/*
	 * An error code of CAM_BDR_SENT is normal for a BDR request.
	 */
	if (((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
	 || ((!scan)
	  && ((ccb.ccb_h.status & CAM_STATUS_MASK) == CAM_BDR_SENT))) {
		fprintf(stdout, "%s of %d:%d:%d was successful\n",
		    scan? "Re-scan" : "Reset", bus, target, lun);
		return(0);
	} else {
		fprintf(stdout, "%s of %d:%d:%d returned error %#x\n",
		    scan? "Re-scan" : "Reset", bus, target, lun,
		    ccb.ccb_h.status & CAM_STATUS_MASK);
		return(1);
	}
}

#ifndef MINIMALISTIC
static int
readdefects(struct cam_device *device, int argc, char **argv,
	    char *combinedopt, int retry_count, int timeout)
{
	union ccb *ccb = NULL;
	struct scsi_read_defect_data_10 *rdd_cdb;
	u_int8_t *defect_list = NULL;
	u_int32_t dlist_length = 65000;
	u_int32_t returned_length = 0;
	u_int32_t num_returned = 0;
	u_int8_t returned_format;
	unsigned int i;
	int c, error = 0;
	int lists_specified = 0;

	while ((c = getopt(argc, argv, combinedopt)) != -1) {
		switch(c){
		case 'f':
		{
			char *tstr;
			tstr = optarg;
			while (isspace(*tstr) && (*tstr != '\0'))
				tstr++;
			if (strcmp(tstr, "block") == 0)
				arglist |= CAM_ARG_FORMAT_BLOCK;
			else if (strcmp(tstr, "bfi") == 0)
				arglist |= CAM_ARG_FORMAT_BFI;
			else if (strcmp(tstr, "phys") == 0)
				arglist |= CAM_ARG_FORMAT_PHYS;
			else {
				error = 1;
				warnx("invalid defect format %s", tstr);
				goto defect_bailout;
			}
			break;
		}
		case 'G':
			arglist |= CAM_ARG_GLIST;
			break;
		case 'P':
			arglist |= CAM_ARG_PLIST;
			break;
		default:
			break;
		}
	}

	ccb = cam_getccb(device);

	/*
	 * Hopefully 65000 bytes is enough to hold the defect list.  If it
	 * isn't, the disk is probably dead already.  We'd have to go with
	 * 12 byte command (i.e. alloc_length is 32 bits instead of 16)
	 * to hold them all.
	 */
	defect_list = malloc(dlist_length);
	if (defect_list == NULL) {
		warnx("can't malloc memory for defect list");
		error = 1;
		goto defect_bailout;
	}

	rdd_cdb =(struct scsi_read_defect_data_10 *)&ccb->csio.cdb_io.cdb_bytes;

	/*
	 * cam_getccb() zeros the CCB header only.  So we need to zero the
	 * payload portion of the ccb.
	 */
	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));

	cam_fill_csio(&ccb->csio,
		      /*retries*/ retry_count,
		      /*cbfcnp*/ NULL,
		      /*flags*/ CAM_DIR_IN | ((arglist & CAM_ARG_ERR_RECOVER) ?
					      CAM_PASS_ERR_RECOVER : 0),
		      /*tag_action*/ MSG_SIMPLE_Q_TAG,
		      /*data_ptr*/ defect_list,
		      /*dxfer_len*/ dlist_length,
		      /*sense_len*/ SSD_FULL_SIZE,
		      /*cdb_len*/ sizeof(struct scsi_read_defect_data_10),
		      /*timeout*/ timeout ? timeout : 5000);

	rdd_cdb->opcode = READ_DEFECT_DATA_10;
	if (arglist & CAM_ARG_FORMAT_BLOCK)
		rdd_cdb->format = SRDD10_BLOCK_FORMAT;
	else if (arglist & CAM_ARG_FORMAT_BFI)
		rdd_cdb->format = SRDD10_BYTES_FROM_INDEX_FORMAT;
	else if (arglist & CAM_ARG_FORMAT_PHYS)
		rdd_cdb->format = SRDD10_PHYSICAL_SECTOR_FORMAT;
	else {
		error = 1;
		warnx("no defect list format specified");
		goto defect_bailout;
	}
	if (arglist & CAM_ARG_PLIST) {
		rdd_cdb->format |= SRDD10_PLIST;
		lists_specified++;
	}

	if (arglist & CAM_ARG_GLIST) {
		rdd_cdb->format |= SRDD10_GLIST;
		lists_specified++;
	}

	scsi_ulto2b(dlist_length, rdd_cdb->alloc_length);

	/* Disable freezing the device queue */
	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

	if (cam_send_ccb(device, ccb) < 0) {
		perror("error reading defect list");

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}

		error = 1;
		goto defect_bailout;
	}

	returned_length = scsi_2btoul(((struct
		scsi_read_defect_data_hdr_10 *)defect_list)->length);

	returned_format = ((struct scsi_read_defect_data_hdr_10 *)
			defect_list)->format;

	if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR)
	 && (ccb->csio.scsi_status == SCSI_STATUS_CHECK_COND)
	 && ((ccb->ccb_h.status & CAM_AUTOSNS_VALID) != 0)) {
		struct scsi_sense_data *sense;
		int error_code, sense_key, asc, ascq;

		sense = &ccb->csio.sense_data;
		scsi_extract_sense(sense, &error_code, &sense_key, &asc, &ascq);

		/*
		 * According to the SCSI spec, if the disk doesn't support
		 * the requested format, it will generally return a sense
		 * key of RECOVERED ERROR, and an additional sense code
		 * of "DEFECT LIST NOT FOUND".  So, we check for that, and
		 * also check to make sure that the returned length is
		 * greater than 0, and then print out whatever format the
		 * disk gave us.
		 */
		if ((sense_key == SSD_KEY_RECOVERED_ERROR)
		 && (asc == 0x1c) && (ascq == 0x00)
		 && (returned_length > 0)) {
			warnx("requested defect format not available");
			switch(returned_format & SRDDH10_DLIST_FORMAT_MASK) {
			case SRDD10_BLOCK_FORMAT:
				warnx("Device returned block format");
				break;
			case SRDD10_BYTES_FROM_INDEX_FORMAT:
				warnx("Device returned bytes from index"
				      " format");
				break;
			case SRDD10_PHYSICAL_SECTOR_FORMAT:
				warnx("Device returned physical sector format");
				break;
			default:
				error = 1;
				warnx("Device returned unknown defect"
				     " data format %#x", returned_format);
				goto defect_bailout;
				break; /* NOTREACHED */
			}
		} else {
			error = 1;
			warnx("Error returned from read defect data command");
			if (arglist & CAM_ARG_VERBOSE)
				cam_error_print(device, ccb, CAM_ESF_ALL,
						CAM_EPF_ALL, stderr);
			goto defect_bailout;
		}
	} else if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
		error = 1;
		warnx("Error returned from read defect data command");
		if (arglist & CAM_ARG_VERBOSE)
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		goto defect_bailout;
	}

	/*
	 * XXX KDM  I should probably clean up the printout format for the
	 * disk defects. 
	 */
	switch (returned_format & SRDDH10_DLIST_FORMAT_MASK){
		case SRDDH10_PHYSICAL_SECTOR_FORMAT:
		{
			struct scsi_defect_desc_phys_sector *dlist;

			dlist = (struct scsi_defect_desc_phys_sector *)
				(defect_list +
				sizeof(struct scsi_read_defect_data_hdr_10));

			num_returned = returned_length /
				sizeof(struct scsi_defect_desc_phys_sector);

			fprintf(stderr, "Got %d defect", num_returned);

			if ((lists_specified == 0) || (num_returned == 0)) {
				fprintf(stderr, "s.\n");
				break;
			} else if (num_returned == 1)
				fprintf(stderr, ":\n");
			else
				fprintf(stderr, "s:\n");

			for (i = 0; i < num_returned; i++) {
				fprintf(stdout, "%d:%d:%d\n",
					scsi_3btoul(dlist[i].cylinder),
					dlist[i].head,
					scsi_4btoul(dlist[i].sector));
			}
			break;
		}
		case SRDDH10_BYTES_FROM_INDEX_FORMAT:
		{
			struct scsi_defect_desc_bytes_from_index *dlist;

			dlist = (struct scsi_defect_desc_bytes_from_index *)
				(defect_list +
				sizeof(struct scsi_read_defect_data_hdr_10));

			num_returned = returned_length /
			      sizeof(struct scsi_defect_desc_bytes_from_index);

			fprintf(stderr, "Got %d defect", num_returned);

			if ((lists_specified == 0) || (num_returned == 0)) {
				fprintf(stderr, "s.\n");
				break;
			} else if (num_returned == 1)
				fprintf(stderr, ":\n");
			else
				fprintf(stderr, "s:\n");

			for (i = 0; i < num_returned; i++) {
				fprintf(stdout, "%d:%d:%d\n",
					scsi_3btoul(dlist[i].cylinder),
					dlist[i].head,
					scsi_4btoul(dlist[i].bytes_from_index));
			}
			break;
		}
		case SRDDH10_BLOCK_FORMAT:
		{
			struct scsi_defect_desc_block *dlist;

			dlist = (struct scsi_defect_desc_block *)(defect_list +
				sizeof(struct scsi_read_defect_data_hdr_10));

			num_returned = returned_length /
			      sizeof(struct scsi_defect_desc_block);

			fprintf(stderr, "Got %d defect", num_returned);

			if ((lists_specified == 0) || (num_returned == 0)) {
				fprintf(stderr, "s.\n");
				break;
			} else if (num_returned == 1)
				fprintf(stderr, ":\n");
			else
				fprintf(stderr, "s:\n");

			for (i = 0; i < num_returned; i++)
				fprintf(stdout, "%u\n",
					scsi_4btoul(dlist[i].address));
			break;
		}
		default:
			fprintf(stderr, "Unknown defect format %d\n",
				returned_format & SRDDH10_DLIST_FORMAT_MASK);
			error = 1;
			break;
	}
defect_bailout:

	if (defect_list != NULL)
		free(defect_list);

	if (ccb != NULL)
		cam_freeccb(ccb);

	return(error);
}
#endif /* MINIMALISTIC */

#if 0
void
reassignblocks(struct cam_device *device, u_int32_t *blocks, int num_blocks)
{
	union ccb *ccb;
	
	ccb = cam_getccb(device);

	cam_freeccb(ccb);
}
#endif

#ifndef MINIMALISTIC
void
mode_sense(struct cam_device *device, int mode_page, int page_control,
	   int dbd, int retry_count, int timeout, u_int8_t *data, int datalen)
{
	union ccb *ccb;
	int retval;

	ccb = cam_getccb(device);

	if (ccb == NULL)
		errx(1, "mode_sense: couldn't allocate CCB");

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));

	scsi_mode_sense(&ccb->csio,
			/* retries */ retry_count,
			/* cbfcnp */ NULL,
			/* tag_action */ MSG_SIMPLE_Q_TAG,
			/* dbd */ dbd,
			/* page_code */ page_control << 6,
			/* page */ mode_page,
			/* param_buf */ data,
			/* param_len */ datalen,
			/* sense_len */ SSD_FULL_SIZE,
			/* timeout */ timeout ? timeout : 5000);

	if (arglist & CAM_ARG_ERR_RECOVER)
		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;

	/* Disable freezing the device queue */
	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

	if (((retval = cam_send_ccb(device, ccb)) < 0)
	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
		cam_freeccb(ccb);
		cam_close_device(device);
		if (retval < 0)
			err(1, "error sending mode sense command");
		else
			errx(1, "error sending mode sense command");
	}

	cam_freeccb(ccb);
}

void
mode_select(struct cam_device *device, int save_pages, int retry_count,
	   int timeout, u_int8_t *data, int datalen)
{
	union ccb *ccb;
	int retval;

	ccb = cam_getccb(device);

	if (ccb == NULL)
		errx(1, "mode_select: couldn't allocate CCB");

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));

	scsi_mode_select(&ccb->csio,
			 /* retries */ retry_count,
			 /* cbfcnp */ NULL,
			 /* tag_action */ MSG_SIMPLE_Q_TAG,
			 /* scsi_page_fmt */ 1,
			 /* save_pages */ save_pages,
			 /* param_buf */ data,
			 /* param_len */ datalen,
			 /* sense_len */ SSD_FULL_SIZE,
			 /* timeout */ timeout ? timeout : 5000);

	if (arglist & CAM_ARG_ERR_RECOVER)
		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;

	/* Disable freezing the device queue */
	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

	if (((retval = cam_send_ccb(device, ccb)) < 0)
	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
		cam_freeccb(ccb);
		cam_close_device(device);

		if (retval < 0)
			err(1, "error sending mode select command");
		else
			errx(1, "error sending mode select command");
		
	}

	cam_freeccb(ccb);
}

void
modepage(struct cam_device *device, int argc, char **argv, char *combinedopt,
	 int retry_count, int timeout)
{
	int c, mode_page = -1, page_control = 0;
	int binary = 0, list = 0;

	while ((c = getopt(argc, argv, combinedopt)) != -1) {
		switch(c) {
		case 'b':
			binary = 1;
			break;
		case 'd':
			arglist |= CAM_ARG_DBD;
			break;
		case 'e':
			arglist |= CAM_ARG_MODE_EDIT;
			break;
		case 'l':
			list = 1;
			break;
		case 'm':
			mode_page = strtol(optarg, NULL, 0);
			if (mode_page < 0)
				errx(1, "invalid mode page %d", mode_page);
			break;
		case 'P':
			page_control = strtol(optarg, NULL, 0);
			if ((page_control < 0) || (page_control > 3))
				errx(1, "invalid page control field %d",
				     page_control);
			arglist |= CAM_ARG_PAGE_CNTL;
			break;
		default:
			break;
		}
	}

	if (mode_page == -1 && list == 0)
		errx(1, "you must specify a mode page!");

	if (list) {
		mode_list(device, page_control, arglist & CAM_ARG_DBD,
		    retry_count, timeout);
	} else {
		mode_edit(device, mode_page, page_control,
		    arglist & CAM_ARG_DBD, arglist & CAM_ARG_MODE_EDIT, binary,
		    retry_count, timeout);
	}
}

static int
scsicmd(struct cam_device *device, int argc, char **argv, char *combinedopt,
	int retry_count, int timeout)
{
	union ccb *ccb;
	u_int32_t flags = CAM_DIR_NONE;
	u_int8_t *data_ptr = NULL;
	u_int8_t cdb[20];
	struct get_hook hook;
	int c, data_bytes = 0;
	int cdb_len = 0;
	char *datastr = NULL, *tstr;
	int error = 0;
	int fd_data = 0;
	int retval;

	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("scsicmd: error allocating ccb");
		return(1);
	}

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));

	while ((c = getopt(argc, argv, combinedopt)) != -1) {
		switch(c) {
		case 'c':
			tstr = optarg;
			while (isspace(*tstr) && (*tstr != '\0'))
				tstr++;
			hook.argc = argc - optind;
			hook.argv = argv + optind;
			hook.got = 0;
			cdb_len = buff_encode_visit(cdb, sizeof(cdb), tstr,
						    iget, &hook);
			/*
			 * Increment optind by the number of arguments the
			 * encoding routine processed.  After each call to
			 * getopt(3), optind points to the argument that
			 * getopt should process _next_.  In this case,
			 * that means it points to the first command string
			 * argument, if there is one.  Once we increment
			 * this, it should point to either the next command
			 * line argument, or it should be past the end of
			 * the list.
			 */
			optind += hook.got;
			break;
		case 'i':
			if (arglist & CAM_ARG_CMD_OUT) {
				warnx("command must either be "
				      "read or write, not both");
				error = 1;
				goto scsicmd_bailout;
			}
			arglist |= CAM_ARG_CMD_IN;
			flags = CAM_DIR_IN;
			data_bytes = strtol(optarg, NULL, 0);
			if (data_bytes <= 0) {
				warnx("invalid number of input bytes %d",
				      data_bytes);
				error = 1;
				goto scsicmd_bailout;
			}
			hook.argc = argc - optind;
			hook.argv = argv + optind;
			hook.got = 0;
			optind++;
			datastr = cget(&hook, NULL);
			/*
			 * If the user supplied "-" instead of a format, he
			 * wants the data to be written to stdout.
			 */
			if ((datastr != NULL)
			 && (datastr[0] == '-'))
				fd_data = 1;

			data_ptr = (u_int8_t *)malloc(data_bytes);
			if (data_ptr == NULL) {
				warnx("can't malloc memory for data_ptr");
				error = 1;
				goto scsicmd_bailout;
			}
			break;
		case 'o':
			if (arglist & CAM_ARG_CMD_IN) {
				warnx("command must either be "
				      "read or write, not both");
				error = 1;	
				goto scsicmd_bailout;
			}
			arglist |= CAM_ARG_CMD_OUT;
			flags = CAM_DIR_OUT;
			data_bytes = strtol(optarg, NULL, 0);
			if (data_bytes <= 0) {
				warnx("invalid number of output bytes %d",
				      data_bytes);
				error = 1;
				goto scsicmd_bailout;
			}
			hook.argc = argc - optind;
			hook.argv = argv + optind;
			hook.got = 0;
			datastr = cget(&hook, NULL);
			data_ptr = (u_int8_t *)malloc(data_bytes);
			if (data_ptr == NULL) {
				warnx("can't malloc memory for data_ptr");
				error = 1;
				goto scsicmd_bailout;
			}
			/*
			 * If the user supplied "-" instead of a format, he
			 * wants the data to be read from stdin.
			 */
			if ((datastr != NULL)
			 && (datastr[0] == '-'))
				fd_data = 1;
			else
				buff_encode_visit(data_ptr, data_bytes, datastr,
						  iget, &hook);
			optind += hook.got;
			break;
		default:
			break;
		}
	}

	/*
	 * If fd_data is set, and we're writing to the device, we need to
	 * read the data the user wants written from stdin.
	 */
	if ((fd_data == 1) && (arglist & CAM_ARG_CMD_OUT)) {
		ssize_t amt_read;
		int amt_to_read = data_bytes;
		u_int8_t *buf_ptr = data_ptr;

		for (amt_read = 0; amt_to_read > 0;
		     amt_read = read(STDIN_FILENO, buf_ptr, amt_to_read)) {
			if (amt_read == -1) {
				warn("error reading data from stdin");
				error = 1;
				goto scsicmd_bailout;
			}
			amt_to_read -= amt_read;
			buf_ptr += amt_read;
		}
	}

	if (arglist & CAM_ARG_ERR_RECOVER)
		flags |= CAM_PASS_ERR_RECOVER;

	/* Disable freezing the device queue */
	flags |= CAM_DEV_QFRZDIS;

	/*
	 * This is taken from the SCSI-3 draft spec.
	 * (T10/1157D revision 0.3)
	 * The top 3 bits of an opcode are the group code.  The next 5 bits
	 * are the command code.
	 * Group 0:  six byte commands
	 * Group 1:  ten byte commands
	 * Group 2:  ten byte commands
	 * Group 3:  reserved
	 * Group 4:  sixteen byte commands
	 * Group 5:  twelve byte commands
	 * Group 6:  vendor specific
	 * Group 7:  vendor specific
	 */
	switch((cdb[0] >> 5) & 0x7) {
		case 0:
			cdb_len = 6;
			break;
		case 1:
		case 2:
			cdb_len = 10;
			break;
		case 3:
		case 6:
		case 7:
		        /* computed by buff_encode_visit */
			break;
		case 4:
			cdb_len = 16;
			break;
		case 5:
			cdb_len = 12;
			break;
	}

	/*
	 * We should probably use csio_build_visit or something like that
	 * here, but it's easier to encode arguments as you go.  The
	 * alternative would be skipping the CDB argument and then encoding
	 * it here, since we've got the data buffer argument by now.
	 */
	bcopy(cdb, &ccb->csio.cdb_io.cdb_bytes, cdb_len);

	cam_fill_csio(&ccb->csio,
		      /*retries*/ retry_count,
		      /*cbfcnp*/ NULL,
		      /*flags*/ flags,
		      /*tag_action*/ MSG_SIMPLE_Q_TAG,
		      /*data_ptr*/ data_ptr,
		      /*dxfer_len*/ data_bytes,
		      /*sense_len*/ SSD_FULL_SIZE,
		      /*cdb_len*/ cdb_len,
		      /*timeout*/ timeout ? timeout : 5000);

	if (((retval = cam_send_ccb(device, ccb)) < 0)
	 || ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP)) {
		if (retval < 0)
			warn("error sending command");
		else
			warnx("error sending command");

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}

		error = 1;
		goto scsicmd_bailout;
	}


	if (((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP)
	 && (arglist & CAM_ARG_CMD_IN)
	 && (data_bytes > 0)) {
		if (fd_data == 0) {
			buff_decode_visit(data_ptr, data_bytes, datastr,
					  arg_put, NULL);
			fprintf(stdout, "\n");
		} else {
			ssize_t amt_written;
			int amt_to_write = data_bytes;
			u_int8_t *buf_ptr = data_ptr;

			for (amt_written = 0; (amt_to_write > 0) &&
			     (amt_written =write(1, buf_ptr,amt_to_write))> 0;){
				amt_to_write -= amt_written;
				buf_ptr += amt_written;
			}
			if (amt_written == -1) {
				warn("error writing data to stdout");
				error = 1;
				goto scsicmd_bailout;
			} else if ((amt_written == 0)
				&& (amt_to_write > 0)) {
				warnx("only wrote %u bytes out of %u",
				      data_bytes - amt_to_write, data_bytes);
			}
		}
	}

scsicmd_bailout:

	if ((data_bytes > 0) && (data_ptr != NULL))
		free(data_ptr);

	cam_freeccb(ccb);

	return(error);
}

static int
camdebug(int argc, char **argv, char *combinedopt)
{
	int c, fd;
	int bus = -1, target = -1, lun = -1;
	char *tstr, *tmpstr = NULL;
	union ccb ccb;
	int error = 0;

	bzero(&ccb, sizeof(union ccb));

	while ((c = getopt(argc, argv, combinedopt)) != -1) {
		switch(c) {
		case 'I':
			arglist |= CAM_ARG_DEBUG_INFO;
			ccb.cdbg.flags |= CAM_DEBUG_INFO;
			break;
		case 'P':
			arglist |= CAM_ARG_DEBUG_PERIPH;
			ccb.cdbg.flags |= CAM_DEBUG_PERIPH;
			break;
		case 'S':
			arglist |= CAM_ARG_DEBUG_SUBTRACE;
			ccb.cdbg.flags |= CAM_DEBUG_SUBTRACE;
			break;
		case 'T':
			arglist |= CAM_ARG_DEBUG_TRACE;
			ccb.cdbg.flags |= CAM_DEBUG_TRACE;
			break;
		case 'X':
			arglist |= CAM_ARG_DEBUG_XPT;
			ccb.cdbg.flags |= CAM_DEBUG_XPT;
			break;
		case 'c':
			arglist |= CAM_ARG_DEBUG_CDB;
			ccb.cdbg.flags |= CAM_DEBUG_CDB;
			break;
		default:
			break;
		}
	}

	if ((fd = open(XPT_DEVICE, O_RDWR)) < 0) {
		warnx("error opening transport layer device %s", XPT_DEVICE);
		warn("%s", XPT_DEVICE);
		return(1);
	}
	argc -= optind;
	argv += optind;

	if (argc <= 0) {
		warnx("you must specify \"off\", \"all\" or a bus,");
		warnx("bus:target, or bus:target:lun");
		close(fd);
		return(1);
	}

	tstr = *argv;

	while (isspace(*tstr) && (*tstr != '\0'))
		tstr++;

	if (strncmp(tstr, "off", 3) == 0) {
		ccb.cdbg.flags = CAM_DEBUG_NONE;
		arglist &= ~(CAM_ARG_DEBUG_INFO|CAM_ARG_DEBUG_PERIPH|
			     CAM_ARG_DEBUG_TRACE|CAM_ARG_DEBUG_SUBTRACE|
			     CAM_ARG_DEBUG_XPT);
	} else if (strncmp(tstr, "all", 3) != 0) {
		tmpstr = (char *)strtok(tstr, ":");
		if ((tmpstr != NULL) && (*tmpstr != '\0')){
			bus = strtol(tmpstr, NULL, 0);
			arglist |= CAM_ARG_BUS;
			tmpstr = (char *)strtok(NULL, ":");
			if ((tmpstr != NULL) && (*tmpstr != '\0')){
				target = strtol(tmpstr, NULL, 0);
				arglist |= CAM_ARG_TARGET;
				tmpstr = (char *)strtok(NULL, ":");
				if ((tmpstr != NULL) && (*tmpstr != '\0')){
					lun = strtol(tmpstr, NULL, 0);
					arglist |= CAM_ARG_LUN;
				}
			}
		} else {
			error = 1;
			warnx("you must specify \"all\", \"off\", or a bus,");
			warnx("bus:target, or bus:target:lun to debug");
		}
	}
	
	if (error == 0) {

		ccb.ccb_h.func_code = XPT_DEBUG;
		ccb.ccb_h.path_id = bus;
		ccb.ccb_h.target_id = target;
		ccb.ccb_h.target_lun = lun;

		if (ioctl(fd, CAMIOCOMMAND, &ccb) == -1) {
			warn("CAMIOCOMMAND ioctl failed");
			error = 1;
		}

		if (error == 0) {
			if ((ccb.ccb_h.status & CAM_STATUS_MASK) ==
			     CAM_FUNC_NOTAVAIL) {
				warnx("CAM debugging not available");
				warnx("you need to put options CAMDEBUG in"
				      " your kernel config file!");
				error = 1;
			} else if ((ccb.ccb_h.status & CAM_STATUS_MASK) !=
				    CAM_REQ_CMP) {
				warnx("XPT_DEBUG CCB failed with status %#x",
				      ccb.ccb_h.status);
				error = 1;
			} else {
				if (ccb.cdbg.flags == CAM_DEBUG_NONE) {
					fprintf(stderr,
						"Debugging turned off\n");
				} else {
					fprintf(stderr,
						"Debugging enabled for "
						"%d:%d:%d\n",
						bus, target, lun);
				}
			}
		}
		close(fd);
	}

	return(error);
}

static int
tagcontrol(struct cam_device *device, int argc, char **argv,
	   char *combinedopt)
{
	int c;
	union ccb *ccb;
	int numtags = -1;
	int retval = 0;
	int quiet = 0;
	char pathstr[1024];

	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("tagcontrol: error allocating ccb");
		return(1);
	}

	while ((c = getopt(argc, argv, combinedopt)) != -1) {
		switch(c) {
		case 'N':
			numtags = strtol(optarg, NULL, 0);
			if (numtags < 0) {
				warnx("tag count %d is < 0", numtags);
				retval = 1;
				goto tagcontrol_bailout;
			}
			break;
		case 'q':
			quiet++;
			break;
		default:
			break;
		}
	}

	cam_path_string(device, pathstr, sizeof(pathstr));

	if (numtags >= 0) {
		bzero(&(&ccb->ccb_h)[1],
		      sizeof(struct ccb_relsim) - sizeof(struct ccb_hdr));
		ccb->ccb_h.func_code = XPT_REL_SIMQ;
		ccb->crs.release_flags = RELSIM_ADJUST_OPENINGS;
		ccb->crs.openings = numtags;


		if (cam_send_ccb(device, ccb) < 0) {
			perror("error sending XPT_REL_SIMQ CCB");
			retval = 1;
			goto tagcontrol_bailout;
		}

		if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
			warnx("XPT_REL_SIMQ CCB failed");
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
			retval = 1;
			goto tagcontrol_bailout;
		}


		if (quiet == 0)
			fprintf(stdout, "%stagged openings now %d\n",
				pathstr, ccb->crs.openings);
	}

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_getdevstats) - sizeof(struct ccb_hdr));

	ccb->ccb_h.func_code = XPT_GDEV_STATS;

	if (cam_send_ccb(device, ccb) < 0) {
		perror("error sending XPT_GDEV_STATS CCB");
		retval = 1;
		goto tagcontrol_bailout;
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
		warnx("XPT_GDEV_STATS CCB failed");
		cam_error_print(device, ccb, CAM_ESF_ALL,
				CAM_EPF_ALL, stderr);
		retval = 1;
		goto tagcontrol_bailout;
	}

	if (arglist & CAM_ARG_VERBOSE) {
		fprintf(stdout, "%s", pathstr);
		fprintf(stdout, "dev_openings  %d\n", ccb->cgds.dev_openings);
		fprintf(stdout, "%s", pathstr);
		fprintf(stdout, "dev_active    %d\n", ccb->cgds.dev_active);
		fprintf(stdout, "%s", pathstr);
		fprintf(stdout, "devq_openings %d\n", ccb->cgds.devq_openings);
		fprintf(stdout, "%s", pathstr);
		fprintf(stdout, "devq_queued   %d\n", ccb->cgds.devq_queued);
		fprintf(stdout, "%s", pathstr);
		fprintf(stdout, "held          %d\n", ccb->cgds.held);
		fprintf(stdout, "%s", pathstr);
		fprintf(stdout, "mintags       %d\n", ccb->cgds.mintags);
		fprintf(stdout, "%s", pathstr);
		fprintf(stdout, "maxtags       %d\n", ccb->cgds.maxtags);
	} else {
		if (quiet == 0) {
			fprintf(stdout, "%s", pathstr);
			fprintf(stdout, "device openings: ");
		}
		fprintf(stdout, "%d\n", ccb->cgds.dev_openings +
			ccb->cgds.dev_active);
	}

tagcontrol_bailout:

	cam_freeccb(ccb);
	return(retval);
}

static void
cts_print(struct cam_device *device, struct ccb_trans_settings *cts)
{
	char pathstr[1024];

	cam_path_string(device, pathstr, sizeof(pathstr));

	if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0) {

		fprintf(stdout, "%ssync parameter: %d\n", pathstr,
			cts->sync_period);

		if (cts->sync_offset != 0) {
			u_int freq;

			freq = scsi_calc_syncsrate(cts->sync_period);
			fprintf(stdout, "%sfrequency: %d.%03dMHz\n", pathstr,
				freq / 1000, freq % 1000);
		}
	}

	if (cts->valid & CCB_TRANS_SYNC_OFFSET_VALID)
		fprintf(stdout, "%soffset: %d\n", pathstr, cts->sync_offset);

	if (cts->valid & CCB_TRANS_BUS_WIDTH_VALID)
		fprintf(stdout, "%sbus width: %d bits\n", pathstr,
			(0x01 << cts->bus_width) * 8);

	if (cts->valid & CCB_TRANS_DISC_VALID)
		fprintf(stdout, "%sdisconnection is %s\n", pathstr,
			(cts->flags & CCB_TRANS_DISC_ENB) ? "enabled" :
			"disabled");

	if (cts->valid & CCB_TRANS_TQ_VALID)
		fprintf(stdout, "%stagged queueing is %s\n", pathstr,
			(cts->flags & CCB_TRANS_TAG_ENB) ? "enabled" :
			"disabled");

}

/*
 * Get a path inquiry CCB for the specified device.  
 */
static int
get_cpi(struct cam_device *device, struct ccb_pathinq *cpi)
{
	union ccb *ccb;
	int retval = 0;

	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("get_cpi: couldn't allocate CCB");
		return(1);
	}

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_pathinq) - sizeof(struct ccb_hdr));

	ccb->ccb_h.func_code = XPT_PATH_INQ;

	if (cam_send_ccb(device, ccb) < 0) {
		warn("get_cpi: error sending Path Inquiry CCB");

		if (arglist & CAM_ARG_VERBOSE)
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);

		retval = 1;

		goto get_cpi_bailout;
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {

		if (arglist & CAM_ARG_VERBOSE)
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);

		retval = 1;

		goto get_cpi_bailout;
	}

	bcopy(&ccb->cpi, cpi, sizeof(struct ccb_pathinq));

get_cpi_bailout:

	cam_freeccb(ccb);

	return(retval);
}

static void
cpi_print(struct ccb_pathinq *cpi)
{
	char adapter_str[1024];
	int i;

	snprintf(adapter_str, sizeof(adapter_str),
		 "%s%d:", cpi->dev_name, cpi->unit_number);

	fprintf(stdout, "%s SIM/HBA version: %d\n", adapter_str,
		cpi->version_num);

	for (i = 1; i < 0xff; i = i << 1) {
		const char *str;

		if ((i & cpi->hba_inquiry) == 0)
			continue;

		fprintf(stdout, "%s supports ", adapter_str);

		switch(i) {
		case PI_MDP_ABLE:
			str = "MDP message";
			break;
		case PI_WIDE_32:
			str = "32 bit wide SCSI";
			break;
		case PI_WIDE_16:
			str = "16 bit wide SCSI";
			break;
		case PI_SDTR_ABLE:
			str = "SDTR message";
			break;
		case PI_LINKED_CDB:
			str = "linked CDBs";
			break;
		case PI_TAG_ABLE:
			str = "tag queue messages";
			break;
		case PI_SOFT_RST:
			str = "soft reset alternative";
			break;
		default:
			str = "unknown PI bit set";
			break;
		}
		fprintf(stdout, "%s\n", str);
	}

	for (i = 1; i < 0xff; i = i << 1) {
		const char *str;

		if ((i & cpi->hba_misc) == 0)
			continue;

		fprintf(stdout, "%s ", adapter_str);

		switch(i) {
		case PIM_SCANHILO:
			str = "bus scans from high ID to low ID";
			break;
		case PIM_NOREMOVE:
			str = "removable devices not included in scan";
			break;
		case PIM_NOINITIATOR:
			str = "initiator role not supported";
			break;
		case PIM_NOBUSRESET:
			str = "user has disabled initial BUS RESET or"
			      " controller is in target/mixed mode";
			break;
		default:
			str = "unknown PIM bit set";
			break;
		}
		fprintf(stdout, "%s\n", str);
	}

	for (i = 1; i < 0xff; i = i << 1) {
		const char *str;

		if ((i & cpi->target_sprt) == 0)
			continue;

		fprintf(stdout, "%s supports ", adapter_str);
		switch(i) {
		case PIT_PROCESSOR:
			str = "target mode processor mode";
			break;
		case PIT_PHASE:
			str = "target mode phase cog. mode";
			break;
		case PIT_DISCONNECT:
			str = "disconnects in target mode";
			break;
		case PIT_TERM_IO:
			str = "terminate I/O message in target mode";
			break;
		case PIT_GRP_6:
			str = "group 6 commands in target mode";
			break;
		case PIT_GRP_7:
			str = "group 7 commands in target mode";
			break;
		default:
			str = "unknown PIT bit set";
			break;
		}

		fprintf(stdout, "%s\n", str);
	}
	fprintf(stdout, "%s HBA engine count: %d\n", adapter_str,
		cpi->hba_eng_cnt);
	fprintf(stdout, "%s maximum target: %d\n", adapter_str,
		cpi->max_target);
	fprintf(stdout, "%s maximum LUN: %d\n", adapter_str,
		cpi->max_lun);
	fprintf(stdout, "%s highest path ID in subsystem: %d\n",
		adapter_str, cpi->hpath_id);
	fprintf(stdout, "%s initiator ID: %d\n", adapter_str,
		cpi->initiator_id);
	fprintf(stdout, "%s SIM vendor: %s\n", adapter_str, cpi->sim_vid);
	fprintf(stdout, "%s HBA vendor: %s\n", adapter_str, cpi->hba_vid);
	fprintf(stdout, "%s bus ID: %d\n", adapter_str, cpi->bus_id);
	fprintf(stdout, "%s base transfer speed: ", adapter_str);
	if (cpi->base_transfer_speed > 1000)
		fprintf(stdout, "%d.%03dMB/sec\n",
			cpi->base_transfer_speed / 1000,
			cpi->base_transfer_speed % 1000);
	else
		fprintf(stdout, "%dKB/sec\n",
			(cpi->base_transfer_speed % 1000) * 1000);
}

static int
get_print_cts(struct cam_device *device, int user_settings, int quiet,
	      struct ccb_trans_settings *cts)
{
	int retval;
	union ccb *ccb;

	retval = 0;
	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("get_print_cts: error allocating ccb");
		return(1);
	}

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_trans_settings) - sizeof(struct ccb_hdr));

	ccb->ccb_h.func_code = XPT_GET_TRAN_SETTINGS;

	if (user_settings == 0)
		ccb->cts.flags = CCB_TRANS_CURRENT_SETTINGS;
	else
		ccb->cts.flags = CCB_TRANS_USER_SETTINGS;

	if (cam_send_ccb(device, ccb) < 0) {
		perror("error sending XPT_GET_TRAN_SETTINGS CCB");
		if (arglist & CAM_ARG_VERBOSE)
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		retval = 1;
		goto get_print_cts_bailout;
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
		warnx("XPT_GET_TRANS_SETTINGS CCB failed");
		if (arglist & CAM_ARG_VERBOSE)
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		retval = 1;
		goto get_print_cts_bailout;
	}

	if (quiet == 0)
		cts_print(device, &ccb->cts);

	if (cts != NULL)
		bcopy(&ccb->cts, cts, sizeof(struct ccb_trans_settings));

get_print_cts_bailout:

	cam_freeccb(ccb);

	return(retval);
}

static int
ratecontrol(struct cam_device *device, int retry_count, int timeout,
	    int argc, char **argv, char *combinedopt)
{
	int c;
	union ccb *ccb;
	int user_settings = 0;
	int retval = 0;
	int disc_enable = -1, tag_enable = -1;
	int offset = -1;
	double syncrate = -1;
	int bus_width = -1;
	int quiet = 0;
	int change_settings = 0, send_tur = 0;
	struct ccb_pathinq cpi;

	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("ratecontrol: error allocating ccb");
		return(1);
	}

	while ((c = getopt(argc, argv, combinedopt)) != -1) {
		switch(c){
		case 'a':
			send_tur = 1;
			break;
		case 'c':
			user_settings = 0;
			break;
		case 'D':
			if (strncasecmp(optarg, "enable", 6) == 0)
				disc_enable = 1;
			else if (strncasecmp(optarg, "disable", 7) == 0)
				disc_enable = 0;
			else {
				warnx("-D argument \"%s\" is unknown", optarg);
				retval = 1;
				goto ratecontrol_bailout;
			}
			change_settings = 1;
			break;
		case 'O':
			offset = strtol(optarg, NULL, 0);
			if (offset < 0) {
				warnx("offset value %d is < 0", offset);
				retval = 1;
				goto ratecontrol_bailout;
			}
			change_settings = 1;
			break;
		case 'q':
			quiet++;
			break;
		case 'R':
			syncrate = atof(optarg);

			if (syncrate < 0) {
				warnx("sync rate %f is < 0", syncrate);
				retval = 1;
				goto ratecontrol_bailout;
			}
			change_settings = 1;
			break;
		case 'T':
			if (strncasecmp(optarg, "enable", 6) == 0)
				tag_enable = 1;
			else if (strncasecmp(optarg, "disable", 7) == 0)
				tag_enable = 0;
			else {
				warnx("-T argument \"%s\" is unknown", optarg);
				retval = 1;
				goto ratecontrol_bailout;
			}
			change_settings = 1;
			break;
		case 'U':
			user_settings = 1;
			break;
		case 'W':
			bus_width = strtol(optarg, NULL, 0);
			if (bus_width < 0) {
				warnx("bus width %d is < 0", bus_width);
				retval = 1;
				goto ratecontrol_bailout;
			}
			change_settings = 1;
			break;
		default:
			break;
		}
	}

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_pathinq) - sizeof(struct ccb_hdr));

	/*
	 * Grab path inquiry information, so we can determine whether
	 * or not the initiator is capable of the things that the user
	 * requests.
	 */
	ccb->ccb_h.func_code = XPT_PATH_INQ;

	if (cam_send_ccb(device, ccb) < 0) {
		perror("error sending XPT_PATH_INQ CCB");
		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
		retval = 1;
		goto ratecontrol_bailout;
	}

	if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
		warnx("XPT_PATH_INQ CCB failed");
		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
		retval = 1;
		goto ratecontrol_bailout;
	}

	bcopy(&ccb->cpi, &cpi, sizeof(struct ccb_pathinq));

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_trans_settings) - sizeof(struct ccb_hdr));

	if (quiet == 0)
		fprintf(stdout, "Current Parameters:\n");

	retval = get_print_cts(device, user_settings, quiet, &ccb->cts);

	if (retval != 0)
		goto ratecontrol_bailout;

	if (arglist & CAM_ARG_VERBOSE)
		cpi_print(&cpi);

	if (change_settings) {
		if (disc_enable != -1) {
			ccb->cts.valid |= CCB_TRANS_DISC_VALID;
			if (disc_enable == 0)
				ccb->cts.flags &= ~CCB_TRANS_DISC_ENB;
			else
				ccb->cts.flags |= CCB_TRANS_DISC_ENB;
		} else
			ccb->cts.valid &= ~CCB_TRANS_DISC_VALID;

		if (tag_enable != -1) {
			if ((cpi.hba_inquiry & PI_TAG_ABLE) == 0) {
				warnx("HBA does not support tagged queueing, "
				      "so you cannot modify tag settings");
				retval = 1;
				goto ratecontrol_bailout;
			}

			ccb->cts.valid |= CCB_TRANS_TQ_VALID;

			if (tag_enable == 0)
				ccb->cts.flags &= ~CCB_TRANS_TAG_ENB;
			else
				ccb->cts.flags |= CCB_TRANS_TAG_ENB;
		} else
			ccb->cts.valid &= ~CCB_TRANS_TQ_VALID;

		if (offset != -1) {
			if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
				warnx("HBA at %s%d is not cable of changing "
				      "offset", cpi.dev_name,
				      cpi.unit_number);
				retval = 1;
				goto ratecontrol_bailout;
			}
			ccb->cts.valid |= CCB_TRANS_SYNC_OFFSET_VALID;
			ccb->cts.sync_offset = offset;
		} else
			ccb->cts.valid &= ~CCB_TRANS_SYNC_OFFSET_VALID;

		if (syncrate != -1) {
			int prelim_sync_period;
			u_int freq;

			if ((cpi.hba_inquiry & PI_SDTR_ABLE) == 0) {
				warnx("HBA at %s%d is not cable of changing "
				      "transfer rates", cpi.dev_name,
				      cpi.unit_number);
				retval = 1;
				goto ratecontrol_bailout;
			}

			ccb->cts.valid |= CCB_TRANS_SYNC_RATE_VALID;

			/*
			 * The sync rate the user gives us is in MHz.
			 * We need to translate it into KHz for this
			 * calculation.
			 */
			syncrate *= 1000;

			/*
			 * Next, we calculate a "preliminary" sync period
			 * in tenths of a nanosecond.
			 */
			if (syncrate == 0)
				prelim_sync_period = 0;
			else
				prelim_sync_period = 10000000 / syncrate;

			ccb->cts.sync_period =
				scsi_calc_syncparam(prelim_sync_period);

			freq = scsi_calc_syncsrate(ccb->cts.sync_period);
		} else
			ccb->cts.valid &= ~CCB_TRANS_SYNC_RATE_VALID;

		/*
		 * The bus_width argument goes like this:
		 * 0 == 8 bit
		 * 1 == 16 bit
		 * 2 == 32 bit
		 * Therefore, if you shift the number of bits given on the
		 * command line right by 4, you should get the correct
		 * number.
		 */
		if (bus_width != -1) {

			/*
			 * We might as well validate things here with a
			 * decipherable error message, rather than what
			 * will probably be an indecipherable error message
			 * by the time it gets back to us.
			 */
			if ((bus_width == 16)
			 && ((cpi.hba_inquiry & PI_WIDE_16) == 0)) {
				warnx("HBA does not support 16 bit bus width");
				retval = 1;
				goto ratecontrol_bailout;
			} else if ((bus_width == 32)
				&& ((cpi.hba_inquiry & PI_WIDE_32) == 0)) {
				warnx("HBA does not support 32 bit bus width");
				retval = 1;
				goto ratecontrol_bailout;
			} else if ((bus_width != 8)
				&& (bus_width != 16)
				&& (bus_width != 32)) {
				warnx("Invalid bus width %d", bus_width);
				retval = 1;
				goto ratecontrol_bailout;
			}

			ccb->cts.valid |= CCB_TRANS_BUS_WIDTH_VALID;
			ccb->cts.bus_width = bus_width >> 4;
		} else
			ccb->cts.valid &= ~CCB_TRANS_BUS_WIDTH_VALID;

		ccb->ccb_h.func_code = XPT_SET_TRAN_SETTINGS;

		if (cam_send_ccb(device, ccb) < 0) {
			perror("error sending XPT_SET_TRAN_SETTINGS CCB");
			if (arglist & CAM_ARG_VERBOSE) {
				cam_error_print(device, ccb, CAM_ESF_ALL,
						CAM_EPF_ALL, stderr);
			}
			retval = 1;
			goto ratecontrol_bailout;
		}

		if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
			warnx("XPT_SET_TRANS_SETTINGS CCB failed");
			if (arglist & CAM_ARG_VERBOSE) {
				cam_error_print(device, ccb, CAM_ESF_ALL,
						CAM_EPF_ALL, stderr);
			}
			retval = 1;
			goto ratecontrol_bailout;
		}
	}

	if (send_tur) {
		retval = testunitready(device, retry_count, timeout,
				       (arglist & CAM_ARG_VERBOSE) ? 0 : 1);

		/*
		 * If the TUR didn't succeed, just bail.
		 */
		if (retval != 0) {
			if (quiet == 0)
				fprintf(stderr, "Test Unit Ready failed\n");
			goto ratecontrol_bailout;
		}

		/*
		 * If the user wants things quiet, there's no sense in
		 * getting the transfer settings, if we're not going
		 * to print them.
		 */
		if (quiet != 0)
			goto ratecontrol_bailout;

		fprintf(stdout, "New Parameters:\n");
		retval = get_print_cts(device, user_settings, 0, NULL);
	}

ratecontrol_bailout:

	cam_freeccb(ccb);
	return(retval);
}

static int
scsiformat(struct cam_device *device, int argc, char **argv,
	   char *combinedopt, int retry_count, int timeout)
{
	union ccb *ccb;
	int c;
	int ycount = 0, quiet = 0;
	int error = 0, response = 0, retval = 0;
	int use_timeout = 10800 * 1000;
	int immediate = 1;
	struct format_defect_list_header fh;
	u_int8_t *data_ptr = NULL;
	u_int32_t dxfer_len = 0;
	u_int8_t byte2 = 0;
	int num_warnings = 0;

	ccb = cam_getccb(device);

	if (ccb == NULL) {
		warnx("scsiformat: error allocating ccb");
		return(1);
	}

	bzero(&(&ccb->ccb_h)[1],
	      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));

	while ((c = getopt(argc, argv, combinedopt)) != -1) {
		switch(c) {
		case 'q':
			quiet++;
			break;
		case 'w':
			immediate = 0;
			break;
		case 'y':
			ycount++;
			break;
		}
	}

	if (quiet == 0) {
		fprintf(stdout, "You are about to REMOVE ALL DATA from the "
			"following device:\n");

		error = scsidoinquiry(device, argc, argv, combinedopt,
				      retry_count, timeout);

		if (error != 0) {
			warnx("scsiformat: error sending inquiry");
			goto scsiformat_bailout;
		}
	}

	if (ycount == 0) {

		do {
			char str[1024];

			fprintf(stdout, "Are you SURE you want to do "
				"this? (yes/no) ");

			if (fgets(str, sizeof(str), stdin) != NULL) {

				if (strncasecmp(str, "yes", 3) == 0)
					response = 1;
				else if (strncasecmp(str, "no", 2) == 0)
					response = -1;
				else {
					fprintf(stdout, "Please answer"
						" \"yes\" or \"no\"\n");
				}
			}
		} while (response == 0);

		if (response == -1) {
			error = 1;
			goto scsiformat_bailout;
		}
	}

	if (timeout != 0)
		use_timeout = timeout;

	if (quiet == 0) {
		fprintf(stdout, "Current format timeout is %d seconds\n",
			use_timeout / 1000);
	}

	/*
	 * If the user hasn't disabled questions and didn't specify a
	 * timeout on the command line, ask them if they want the current
	 * timeout.
	 */
	if ((ycount == 0)
	 && (timeout == 0)) {
		char str[1024];
		int new_timeout = 0;

		fprintf(stdout, "Enter new timeout in seconds or press\n"
			"return to keep the current timeout [%d] ",
			use_timeout / 1000);

		if (fgets(str, sizeof(str), stdin) != NULL) {
			if (str[0] != '\0')
				new_timeout = atoi(str);
		}

		if (new_timeout != 0) {
			use_timeout = new_timeout * 1000;
			fprintf(stdout, "Using new timeout value %d\n",
				use_timeout / 1000);
		}
	}

	/*
	 * Keep this outside the if block below to silence any unused
	 * variable warnings.
	 */
	bzero(&fh, sizeof(fh));

	/*
	 * If we're in immediate mode, we've got to include the format
	 * header
	 */
	if (immediate != 0) {
		fh.byte2 = FU_DLH_IMMED;
		data_ptr = (u_int8_t *)&fh;
		dxfer_len = sizeof(fh);
		byte2 = FU_FMT_DATA;
	} else if (quiet == 0) {
		fprintf(stdout, "Formatting...");
		fflush(stdout);
	}

	scsi_format_unit(&ccb->csio,
			 /* retries */ retry_count,
			 /* cbfcnp */ NULL,
			 /* tag_action */ MSG_SIMPLE_Q_TAG,
			 /* byte2 */ byte2,
			 /* ileave */ 0,
			 /* data_ptr */ data_ptr,
			 /* dxfer_len */ dxfer_len,
			 /* sense_len */ SSD_FULL_SIZE,
			 /* timeout */ use_timeout);

	/* Disable freezing the device queue */
	ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

	if (arglist & CAM_ARG_ERR_RECOVER)
		ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;

	if (((retval = cam_send_ccb(device, ccb)) < 0)
	 || ((immediate == 0)
	   && ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP))) {
		const char errstr[] = "error sending format command";

		if (retval < 0)
			warn(errstr);
		else
			warnx(errstr);

		if (arglist & CAM_ARG_VERBOSE) {
			cam_error_print(device, ccb, CAM_ESF_ALL,
					CAM_EPF_ALL, stderr);
		}
		error = 1;
		goto scsiformat_bailout;
	}

	/*
	 * If we ran in non-immediate mode, we already checked for errors
	 * above and printed out any necessary information.  If we're in
	 * immediate mode, we need to loop through and get status
	 * information periodically.
	 */
	if (immediate == 0) {
		if (quiet == 0) {
			fprintf(stdout, "Format Complete\n");
		}
		goto scsiformat_bailout;
	}

	do {
		cam_status status;

		bzero(&(&ccb->ccb_h)[1],
		      sizeof(struct ccb_scsiio) - sizeof(struct ccb_hdr));

		/*
		 * There's really no need to do error recovery or
		 * retries here, since we're just going to sit in a
		 * loop and wait for the device to finish formatting.
		 */
		scsi_test_unit_ready(&ccb->csio,
				     /* retries */ 0,
				     /* cbfcnp */ NULL,
				     /* tag_action */ MSG_SIMPLE_Q_TAG,
				     /* sense_len */ SSD_FULL_SIZE,
				     /* timeout */ 5000);

		/* Disable freezing the device queue */
		ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;

		retval = cam_send_ccb(device, ccb);

		/*
		 * If we get an error from the ioctl, bail out.  SCSI
		 * errors are expected.
		 */
		if (retval < 0) {
			warn("error sending CAMIOCOMMAND ioctl");
			if (arglist & CAM_ARG_VERBOSE) {
				cam_error_print(device, ccb, CAM_ESF_ALL,
						CAM_EPF_ALL, stderr);
			}
			error = 1;
			goto scsiformat_bailout;
		}

		status = ccb->ccb_h.status & CAM_STATUS_MASK;

		if ((status != CAM_REQ_CMP)
		 && (status == CAM_SCSI_STATUS_ERROR)
		 && ((status & CAM_AUTOSNS_VALID) != 0)) {
			struct scsi_sense_data *sense;
			int error_code, sense_key, asc, ascq;

			sense = &ccb->csio.sense_data;
			scsi_extract_sense(sense, &error_code, &sense_key,
					   &asc, &ascq);

			/*
			 * According to the SCSI-2 and SCSI-3 specs, a
			 * drive that is in the middle of a format should
			 * return NOT READY with an ASC of "logical unit
			 * not ready, format in progress".  The sense key
			 * specific bytes will then be a progress indicator.
			 */
			if ((sense_key == SSD_KEY_NOT_READY)
			 && (asc == 0x04) && (ascq == 0x04)) {
				if ((sense->extra_len >= 10)
				 && ((sense->sense_key_spec[0] &
				      SSD_SCS_VALID) != 0)
				 && (quiet == 0)) {
					int val;
					u_int64_t percentage;

					val = scsi_2btoul(
						&sense->sense_key_spec[1]);
					percentage = 10000 * val;

					fprintf(stdout,
						"\rFormatting:  %ju.%02u %% "
						"(%d/%d) done",
						(uintmax_t)(percentage / 
						(0x10000 * 100)),
						(unsigned)((percentage / 
						0x10000) % 100),
						val, 0x10000);
					fflush(stdout);
				} else if ((quiet == 0)
					&& (++num_warnings <= 1)) {
					warnx("Unexpected SCSI Sense Key "
					      "Specific value returned "
					      "during format:");
					scsi_sense_print(device, &ccb->csio,
							 stderr);
					warnx("Unable to print status "
					      "information, but format will "
					      "proceed.");
					warnx("will exit when format is "
					      "complete");
				}
				sleep(1);
			} else {
				warnx("Unexpected SCSI error during format");
				cam_error_print(device, ccb, CAM_ESF_ALL,
						CAM_EPF_ALL, stderr);
				error = 1;
				goto scsiformat_bailout;
			}

		} else if (status != CAM_REQ_CMP) {
			warnx("Unexpected CAM status %#x", status);
			if (arglist & CAM_ARG_VERBOSE)
				cam_error_print(device, ccb, CAM_ESF_ALL,
						CAM_EPF_ALL, stderr);
			error = 1;
			goto scsiformat_bailout;
		}

	} while((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP);

	if (quiet == 0)
		fprintf(stdout, "\nFormat Complete\n");

scsiformat_bailout:

	cam_freeccb(ccb);

	return(error);
}
#endif /* MINIMALISTIC */

void 
usage(int verbose)
{
	fprintf(verbose ? stdout : stderr,
"usage:  camcontrol <command>  [device id][generic args][command args]\n"
"        camcontrol devlist    [-v]\n"
#ifndef MINIMALISTIC
"        camcontrol periphlist [dev_id][-n dev_name] [-u unit]\n"
"        camcontrol tur        [dev_id][generic args]\n"
"        camcontrol inquiry    [dev_id][generic args] [-D] [-S] [-R]\n"
"        camcontrol start      [dev_id][generic args]\n"
"        camcontrol stop       [dev_id][generic args]\n"
"        camcontrol load       [dev_id][generic args]\n"
"        camcontrol eject      [dev_id][generic args]\n"
#endif /* MINIMALISTIC */
"        camcontrol rescan     <all | bus[:target:lun]>\n"
"        camcontrol reset      <all | bus[:target:lun]>\n"
#ifndef MINIMALISTIC
"        camcontrol defects    [dev_id][generic args] <-f format> [-P][-G]\n"
"        camcontrol modepage   [dev_id][generic args] <-m page | -l>\n"
"                              [-P pagectl][-e | -b][-d]\n"
"        camcontrol cmd        [dev_id][generic args] <-c cmd [args]>\n"
"                              [-i len fmt|-o len fmt [args]]\n"
"        camcontrol debug      [-I][-P][-T][-S][-X][-c]\n"
"                              <all|bus[:target[:lun]]|off>\n"
"        camcontrol tags       [dev_id][generic args] [-N tags] [-q] [-v]\n"
"        camcontrol negotiate  [dev_id][generic args] [-a][-c]\n"
"                              [-D <enable|disable>][-O offset][-q]\n"
"                              [-R syncrate][-v][-T <enable|disable>]\n"
"                              [-U][-W bus_width]\n"
"        camcontrol format     [dev_id][generic args][-q][-w][-y]\n"
#endif /* MINIMALISTIC */
"        camcontrol help\n");
	if (!verbose)
		return;
#ifndef MINIMALISTIC
	fprintf(stdout,
"Specify one of the following options:\n"
"devlist     list all CAM devices\n"
"periphlist  list all CAM peripheral drivers attached to a device\n"
"tur         send a test unit ready to the named device\n"
"inquiry     send a SCSI inquiry command to the named device\n"
"start       send a Start Unit command to the device\n"
"stop        send a Stop Unit command to the device\n"
"load        send a Start Unit command to the device with the load bit set\n"
"eject       send a Stop Unit command to the device with the eject bit set\n"
"rescan      rescan all busses, the given bus, or bus:target:lun\n"
"reset       reset all busses, the given bus, or bus:target:lun\n"
"defects     read the defect list of the specified device\n"
"modepage    display or edit (-e) the given mode page\n"
"cmd         send the given scsi command, may need -i or -o as well\n"
"debug       turn debugging on/off for a bus, target, or lun, or all devices\n"
"tags        report or set the number of transaction slots for a device\n"
"negotiate   report or set device negotiation parameters\n"
"format      send the SCSI FORMAT UNIT command to the named device\n"
"help        this message\n"
"Device Identifiers:\n"
"bus:target        specify the bus and target, lun defaults to 0\n"
"bus:target:lun    specify the bus, target and lun\n"
"deviceUNIT        specify the device name, like \"da4\" or \"cd2\"\n"
"Generic arguments:\n"
"-v                be verbose, print out sense information\n"
"-t timeout        command timeout in seconds, overrides default timeout\n"
"-n dev_name       specify device name, e.g. \"da\", \"cd\"\n"
"-u unit           specify unit number, e.g. \"0\", \"5\"\n"
"-E                have the kernel attempt to perform SCSI error recovery\n"
"-C count          specify the SCSI command retry count (needs -E to work)\n"
"modepage arguments:\n"
"-l                list all available mode pages\n"
"-m page           specify the mode page to view or edit\n"
"-e                edit the specified mode page\n"
"-b                force view to binary mode\n"
"-d                disable block descriptors for mode sense\n"
"-P pgctl          page control field 0-3\n"
"defects arguments:\n"
"-f format         specify defect list format (block, bfi or phys)\n"
"-G                get the grown defect list\n"
"-P                get the permanant defect list\n"
"inquiry arguments:\n"
"-D                get the standard inquiry data\n"
"-S                get the serial number\n"
"-R                get the transfer rate, etc.\n"
"cmd arguments:\n"
"-c cdb [args]     specify the SCSI CDB\n"
"-i len fmt        specify input data and input data format\n"
"-o len fmt [args] specify output data and output data fmt\n"
"debug arguments:\n"
"-I                CAM_DEBUG_INFO -- scsi commands, errors, data\n"
"-T                CAM_DEBUG_TRACE -- routine flow tracking\n"
"-S                CAM_DEBUG_SUBTRACE -- internal routine command flow\n"
"-c                CAM_DEBUG_CDB -- print out SCSI CDBs only\n"
"tags arguments:\n"
"-N tags           specify the number of tags to use for this device\n"
"-q                be quiet, don't report the number of tags\n"
"-v                report a number of tag-related parameters\n"
"negotiate arguments:\n"
"-a                send a test unit ready after negotiation\n"
"-c                report/set current negotiation settings\n"
"-D <arg>          \"enable\" or \"disable\" disconnection\n"
"-O offset         set command delay offset\n"
"-q                be quiet, don't report anything\n"
"-R syncrate       synchronization rate in MHz\n"
"-T <arg>          \"enable\" or \"disable\" tagged queueing\n"
"-U                report/set user negotiation settings\n"
"-W bus_width      set the bus width in bits (8, 16 or 32)\n"
"-v                also print a Path Inquiry CCB for the controller\n"
"format arguments:\n"
"-q                be quiet, don't print status messages\n"
"-w                don't send immediate format command\n"
"-y                don't ask any questions\n");
#endif /* MINIMALISTIC */
}

int 
main(int argc, char **argv)
{
	int c;
	char *device = NULL;
	int unit = 0;
	struct cam_device *cam_dev = NULL;
	int timeout = 0, retry_count = 1;
	camcontrol_optret optreturn;
	char *tstr;
	const char *mainopt = "C:En:t:u:v";
	const char *subopt = NULL;
	char combinedopt[256];
	int error = 0, optstart = 2;
	int devopen = 1;
#ifndef MINIMALISTIC
	int bus, target, lun;
#endif /* MINIMALISTIC */

	cmdlist = CAM_CMD_NONE;
	arglist = CAM_ARG_NONE;

	if (argc < 2) {
		usage(0);
		exit(1);
	}

	/*
	 * Get the base option.
	 */
	optreturn = getoption(argv[1], &cmdlist, &arglist, &subopt);

	if (optreturn == CC_OR_AMBIGUOUS) {
		warnx("ambiguous option %s", argv[1]);
		usage(0);
		exit(1);
	} else if (optreturn == CC_OR_NOT_FOUND) {
		warnx("option %s not found", argv[1]);
		usage(0);
		exit(1);
	}

	/*
	 * Ahh, getopt(3) is a pain.
	 *
	 * This is a gross hack.  There really aren't many other good
	 * options (excuse the pun) for parsing options in a situation like
	 * this.  getopt is kinda braindead, so you end up having to run
	 * through the options twice, and give each invocation of getopt
	 * the option string for the other invocation.
	 * 
	 * You would think that you could just have two groups of options.
	 * The first group would get parsed by the first invocation of
	 * getopt, and the second group would get parsed by the second
	 * invocation of getopt.  It doesn't quite work out that way.  When
	 * the first invocation of getopt finishes, it leaves optind pointing
	 * to the argument _after_ the first argument in the second group.
	 * So when the second invocation of getopt comes around, it doesn't
	 * recognize the first argument it gets and then bails out.
	 * 
	 * A nice alternative would be to have a flag for getopt that says
	 * "just keep parsing arguments even when you encounter an unknown
	 * argument", but there isn't one.  So there's no real clean way to
	 * easily parse two sets of arguments without having one invocation
	 * of getopt know about the other.
	 * 
	 * Without this hack, the first invocation of getopt would work as
	 * long as the generic arguments are first, but the second invocation
	 * (in the subfunction) would fail in one of two ways.  In the case
	 * where you don't set optreset, it would fail because optind may be
	 * pointing to the argument after the one it should be pointing at.
	 * In the case where you do set optreset, and reset optind, it would
	 * fail because getopt would run into the first set of options, which
	 * it doesn't understand.
	 *
	 * All of this would "sort of" work if you could somehow figure out
	 * whether optind had been incremented one option too far.  The
	 * mechanics of that, however, are more daunting than just giving
	 * both invocations all of the expect options for either invocation.
	 * 
	 * Needless to say, I wouldn't mind if someone invented a better
	 * (non-GPL!) command line parsing interface than getopt.  I
	 * wouldn't mind if someone added more knobs to getopt to make it
	 * work better.  Who knows, I may talk myself into doing it someday,
	 * if the standards weenies let me.  As it is, it just leads to
	 * hackery like this and causes people to avoid it in some cases.
	 * 
	 * KDM, September 8th, 1998
	 */
	if (subopt != NULL)
		sprintf(combinedopt, "%s%s", mainopt, subopt);
	else
		sprintf(combinedopt, "%s", mainopt);

	/*
	 * For these options we do not parse optional device arguments and
	 * we do not open a passthrough device.
	 */
	if ((cmdlist == CAM_CMD_RESCAN)
	 || (cmdlist == CAM_CMD_RESET)
	 || (cmdlist == CAM_CMD_DEVTREE)
	 || (cmdlist == CAM_CMD_USAGE)
	 || (cmdlist == CAM_CMD_DEBUG))
		devopen = 0;

#ifndef MINIMALISTIC
	if ((devopen == 1)
	 && (argc > 2 && argv[2][0] != '-')) {
		char name[30];
		int rv;

		/*
		 * First catch people who try to do things like:
		 * camcontrol tur /dev/da0 
		 * camcontrol doesn't take device nodes as arguments.
		 */
		if (argv[2][0] == '/') {
			warnx("%s is not a valid device identifier", argv[2]);
			errx(1, "please read the camcontrol(8) man page");
		} else if (isdigit(argv[2][0])) {
			/* device specified as bus:target[:lun] */
			rv = parse_btl(argv[2], &bus, &target, &lun, &arglist);
			if (rv < 2)
				errx(1, "numeric device specification must "
				     "be either bus:target, or "
				     "bus:target:lun");
			/* default to 0 if lun was not specified */
			if ((arglist & CAM_ARG_LUN) == 0) {
				lun = 0;
				arglist |= CAM_ARG_LUN;
			}
			optstart++;
		} else {
			if (cam_get_device(argv[2], name, sizeof name, &unit)
			    == -1)
				errx(1, "%s", cam_errbuf);
			device = strdup(name);
			arglist |= CAM_ARG_DEVICE | CAM_ARG_UNIT;
			optstart++;
		}
	}
#endif /* MINIMALISTIC */
	/*
	 * Start getopt processing at argv[2/3], since we've already
	 * accepted argv[1..2] as the command name, and as a possible
	 * device name.
	 */
	optind = optstart;

	/*
	 * Now we run through the argument list looking for generic
	 * options, and ignoring options that possibly belong to
	 * subfunctions.
	 */
	while ((c = getopt(argc, argv, combinedopt))!= -1){
		switch(c) {
			case 'C':
				retry_count = strtol(optarg, NULL, 0);
				if (retry_count < 0)
					errx(1, "retry count %d is < 0",
					     retry_count);
				arglist |= CAM_ARG_RETRIES;
				break;
			case 'E':
				arglist |= CAM_ARG_ERR_RECOVER;
				break;
			case 'n':
				arglist |= CAM_ARG_DEVICE;
				tstr = optarg;
				while (isspace(*tstr) && (*tstr != '\0'))
					tstr++;
				device = (char *)strdup(tstr);
				break;
			case 't':
				timeout = strtol(optarg, NULL, 0);
				if (timeout < 0)
					errx(1, "invalid timeout %d", timeout);
				/* Convert the timeout from seconds to ms */
				timeout *= 1000;
				arglist |= CAM_ARG_TIMEOUT;
				break;
			case 'u':
				arglist |= CAM_ARG_UNIT;
				unit = strtol(optarg, NULL, 0);
				break;
			case 'v':
				arglist |= CAM_ARG_VERBOSE;
				break;
			default:
				break;
		}
	}

#ifndef MINIMALISTIC
	/*
	 * For most commands we'll want to open the passthrough device
	 * associated with the specified device.  In the case of the rescan
	 * commands, we don't use a passthrough device at all, just the
	 * transport layer device.
	 */
	if (devopen == 1) {
		if (((arglist & (CAM_ARG_BUS|CAM_ARG_TARGET)) == 0)
		 && (((arglist & CAM_ARG_DEVICE) == 0)
		  || ((arglist & CAM_ARG_UNIT) == 0))) {
			errx(1, "subcommand \"%s\" requires a valid device "
			     "identifier", argv[1]);
		}

		if ((cam_dev = ((arglist & (CAM_ARG_BUS | CAM_ARG_TARGET))?
				cam_open_btl(bus, target, lun, O_RDWR, NULL) :
				cam_open_spec_device(device,unit,O_RDWR,NULL)))
		     == NULL)
			errx(1,"%s", cam_errbuf);
	}
#endif /* MINIMALISTIC */

	/*
	 * Reset optind to 2, and reset getopt, so these routines can parse
	 * the arguments again.
	 */
	optind = optstart;
	optreset = 1;

	switch(cmdlist) {
#ifndef MINIMALISTIC
		case CAM_CMD_DEVLIST:
			error = getdevlist(cam_dev);
			break;
#endif /* MINIMALISTIC */
		case CAM_CMD_DEVTREE:
			error = getdevtree();
			break;
#ifndef MINIMALISTIC
		case CAM_CMD_TUR:
			error = testunitready(cam_dev, retry_count, timeout, 0);
			break;
		case CAM_CMD_INQUIRY:
			error = scsidoinquiry(cam_dev, argc, argv, combinedopt,
					      retry_count, timeout);
			break;
		case CAM_CMD_STARTSTOP:
			error = scsistart(cam_dev, arglist & CAM_ARG_START_UNIT,
					  arglist & CAM_ARG_EJECT, retry_count,
					  timeout);
			break;
#endif /* MINIMALISTIC */
		case CAM_CMD_RESCAN:
			error = dorescan_or_reset(argc, argv, 1);
			break;
		case CAM_CMD_RESET:
			error = dorescan_or_reset(argc, argv, 0);
			break;
#ifndef MINIMALISTIC
		case CAM_CMD_READ_DEFECTS:
			error = readdefects(cam_dev, argc, argv, combinedopt,
					    retry_count, timeout);
			break;
		case CAM_CMD_MODE_PAGE:
			modepage(cam_dev, argc, argv, combinedopt,
				 retry_count, timeout);
			break;
		case CAM_CMD_SCSI_CMD:
			error = scsicmd(cam_dev, argc, argv, combinedopt,
					retry_count, timeout);
			break;
		case CAM_CMD_DEBUG:
			error = camdebug(argc, argv, combinedopt);
			break;
		case CAM_CMD_TAG:
			error = tagcontrol(cam_dev, argc, argv, combinedopt);
			break;
		case CAM_CMD_RATE:
			error = ratecontrol(cam_dev, retry_count, timeout,
					    argc, argv, combinedopt);
			break;
		case CAM_CMD_FORMAT:
			error = scsiformat(cam_dev, argc, argv,
					   combinedopt, retry_count, timeout);
			break;
#endif /* MINIMALISTIC */
		case CAM_CMD_USAGE:
			usage(1);
			break;
		default:
			usage(0);
			error = 1;
			break;
	}

	if (cam_dev != NULL)
		cam_close_device(cam_dev);

	exit(error);
}