FreeBSD-5.3/usr.bin/top/machine.c

Compare this file to the similar file:
Show the results in this format:

/*
 * top - a top users display for Unix
 *
 * SYNOPSIS:  For FreeBSD-2.x and later
 *
 * DESCRIPTION:
 * Originally written for BSD4.4 system by Christos Zoulas.
 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
 * Order support hacked in from top-3.5beta6/machine/m_aix41.c
 *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
 *
 * This is the machine-dependent module for FreeBSD 2.2
 * Works for:
 *	FreeBSD 2.2.x, 3.x, 4.x, and probably FreeBSD 2.1.x
 *
 * LIBS: -lkvm
 *
 * AUTHOR:  Christos Zoulas <christos@ee.cornell.edu>
 *          Steven Wallace  <swallace@freebsd.org>
 *          Wolfram Schneider <wosch@FreeBSD.org>
 *          Thomas Moestl <tmoestl@gmx.net>
 *
 * $FreeBSD: src/usr.bin/top/machine.c,v 1.68 2004/08/16 07:51:22 alfred Exp $
 */

#include <sys/param.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/rtprio.h>
#include <sys/signal.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/user.h>
#include <sys/vmmeter.h>

#include <kvm.h>
#include <math.h>
#include <nlist.h>
#include <paths.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include "top.h"
#include "machine.h"
#include "screen.h"
#include "utils.h"

static void getsysctl(char *, void *, size_t);

#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))

extern char* printable(char *);
int swapmode(int *retavail, int *retfree);
static int smpmode;
enum displaymodes displaymode;
static int namelength;
static int cmdlengthdelta;

/* Prototypes for top internals */
void quit(int);
int compare_pid(const void *a, const void *b);

/* get_process_info passes back a handle.  This is what it looks like: */

struct handle
{
	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
	int remaining;			/* number of pointers remaining */
};

/* declarations for load_avg */
#include "loadavg.h"

/* define what weighted cpu is.  */
#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
			 ((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))

/* what we consider to be process size: */
#define PROCSIZE(pp) ((pp)->ki_size / 1024)

#define RU(pp)	(&(pp)->ki_rusage)
#define RUTOT(pp) \
	(RU(pp)->ru_inblock + RU(pp)->ru_oublock + RU(pp)->ru_majflt)


/* definitions for indices in the nlist array */

/*
 *  These definitions control the format of the per-process area
 */

static char io_header[] =
	"  PID %-*.*s   VCSW  IVCSW   READ  WRITE  FAULT  TOTAL PERCENT COMMAND";

#define io_Proc_format \
	"%5d %-*.*s %6ld %6ld %6ld %6ld %6ld %6ld %6.2f%% %.*s"

static char smp_header[] =
	"  PID %-*.*s PRI NICE   SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";

#define smp_Proc_format \
	"%5d %-*.*s %3d %4d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"

static char up_header[] =
	"  PID %-*.*s PRI NICE   SIZE    RES STATE    TIME   WCPU    CPU COMMAND";

#define up_Proc_format \
	"%5d %-*.*s %3d %4d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"



/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
   the processor number when needed */

char *state_abbrev[] =
{
	"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
};


static kvm_t *kd;

/* values that we stash away in _init and use in later routines */

static double logcpu;

/* these are retrieved from the kernel in _init */

static load_avg  ccpu;

/* these are used in the get_ functions */

static int lastpid;

/* these are for calculating cpu state percentages */

static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];

/* these are for detailing the process states */

int process_states[8];
char *procstatenames[] = {
	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
	" zombie, ", " waiting, ", " lock, ",
	NULL
};

/* these are for detailing the cpu states */

int cpu_states[CPUSTATES];
char *cpustatenames[] = {
	"user", "nice", "system", "interrupt", "idle", NULL
};

/* these are for detailing the memory statistics */

int memory_stats[7];
char *memorynames[] = {
	/* 0             1            2            3            4          5 */
	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
	NULL
};

int swap_stats[7];
char *swapnames[] = {
	/* 0            1           2           3            4         5 */
	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
	NULL
};


/* these are for keeping track of the proc array */

static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
static struct kinfo_proc *previous_procs;
static struct kinfo_proc **previous_pref;
static int previous_proc_count = 0;
static int previous_proc_count_max = 0;

/* total number of io operations */
static long total_inblock;
static long total_oublock;
static long total_majflt;

/* these are for getting the memory statistics */

static int pageshift;		/* log base 2 of the pagesize */

/* define pagetok in terms of pageshift */

#define pagetok(size) ((size) << pageshift)

/* useful externals */
long percentages();

#ifdef ORDER
/*
 * Sorting orders.  One vector per display mode.
 * The first element is the default for each mode.
 */
char *ordernames[] = {
	"cpu", "size", "res", "time", "pri", 
	"total", "read", "write", "fault", "vcsw", "ivcsw", NULL
};
#endif

int
machine_init(struct statics *statics)
{
	int pagesize;
	size_t modelen;
	struct passwd *pw;

	modelen = sizeof(smpmode);
	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
		sysctlbyname("kern.smp.active", &smpmode, &modelen, NULL, 0) < 0) ||
	    modelen != sizeof(smpmode))
		smpmode = 0;

	while ((pw = getpwent()) != NULL) {
		if (strlen(pw->pw_name) > namelength)
			namelength = strlen(pw->pw_name);
	}
	if (namelength < 8)
		namelength = 8;
	if (smpmode && namelength > 13)
		namelength = 13;
	else if (namelength > 15)
		namelength = 15;

	kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
	if (kd == NULL)
		return (-1);

	GETSYSCTL("kern.ccpu", ccpu);

	/* this is used in calculating WCPU -- calculate it ahead of time */
	logcpu = log(loaddouble(ccpu));

	pbase = NULL;
	pref = NULL;
	nproc = 0;
	onproc = -1;
	/* get the page size with "getpagesize" and calculate pageshift from it */
	pagesize = getpagesize();
	pageshift = 0;
	while (pagesize > 1) {
		pageshift++;
		pagesize >>= 1;
	}

	/* we only need the amount of log(2)1024 for our conversion */
	pageshift -= LOG1024;

	/* fill in the statics information */
	statics->procstate_names = procstatenames;
	statics->cpustate_names = cpustatenames;
	statics->memory_names = memorynames;
	statics->swap_names = swapnames;
#ifdef ORDER
	statics->order_names = ordernames;
#endif

	/* all done! */
	return (0);
}

char *
format_header(char *uname_field)
{
	static char Header[128];
	const char *prehead;

	switch (displaymode) {
	case DISP_CPU:
		prehead = smpmode ? smp_header : up_header;
		break;
	case DISP_IO:
		prehead = io_header;
		break;
	}

	snprintf(Header, sizeof(Header), prehead,
	    namelength, namelength, uname_field);

	cmdlengthdelta = strlen(Header) - 7;

	return (Header);
}

static int swappgsin = -1;
static int swappgsout = -1;
extern struct timeval timeout;

void
get_system_info(struct system_info *si)
{
	long total;
	struct loadavg sysload;
	int mib[2];
	struct timeval boottime;
	size_t bt_size;
	int i;

	/* get the cp_time array */
	GETSYSCTL("kern.cp_time", cp_time);
	GETSYSCTL("vm.loadavg", sysload);
	GETSYSCTL("kern.lastpid", lastpid);

	/* convert load averages to doubles */
	for (i = 0; i < 3; i++)
		si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;

	/* convert cp_time counts to percentages */
	total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);

	/* sum memory & swap statistics */
	{
		static unsigned int swap_delay = 0;
		static int swapavail = 0;
		static int swapfree = 0;
		static int bufspace = 0;
		static int nspgsin, nspgsout;

		GETSYSCTL("vfs.bufspace", bufspace);
		GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
		GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
		GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[2]);
		GETSYSCTL("vm.stats.vm.v_cache_count", memory_stats[3]);
		GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
		GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
		GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
		/* convert memory stats to Kbytes */
		memory_stats[0] = pagetok(memory_stats[0]);
		memory_stats[1] = pagetok(memory_stats[1]);
		memory_stats[2] = pagetok(memory_stats[2]);
		memory_stats[3] = pagetok(memory_stats[3]);
		memory_stats[4] = bufspace / 1024;
		memory_stats[5] = pagetok(memory_stats[5]);
		memory_stats[6] = -1;

		/* first interval */
		if (swappgsin < 0) {
			swap_stats[4] = 0;
			swap_stats[5] = 0;
		}

		/* compute differences between old and new swap statistic */
		else {
			swap_stats[4] = pagetok(((nspgsin - swappgsin)));
			swap_stats[5] = pagetok(((nspgsout - swappgsout)));
		}

		swappgsin = nspgsin;
		swappgsout = nspgsout;

		/* call CPU heavy swapmode() only for changes */
		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
			swap_stats[3] = swapmode(&swapavail, &swapfree);
			swap_stats[0] = swapavail;
			swap_stats[1] = swapavail - swapfree;
			swap_stats[2] = swapfree;
		}
		swap_delay = 1;
		swap_stats[6] = -1;
	}

	/* set arrays and strings */
	si->cpustates = cpu_states;
	si->memory = memory_stats;
	si->swap = swap_stats;


	if (lastpid > 0) {
		si->last_pid = lastpid;
	} else {
		si->last_pid = -1;
	}

	/*
	 * Print how long system has been up.
	 * (Found by looking getting "boottime" from the kernel)
	 */
	mib[0] = CTL_KERN;
	mib[1] = KERN_BOOTTIME;
	bt_size = sizeof(boottime);
	if (sysctl(mib, 2, &boottime, &bt_size, NULL, 0) != -1 &&
	    boottime.tv_sec != 0) {
		si->boottime = boottime;
	} else {
		si->boottime.tv_sec = -1;
	}
}

#define NOPROC	((void *)-1)

/*
 * We need to compare data from the old process entry with the new
 * process entry.
 * To facilitate doing this quickly we stash a pointer in the kinfo_proc
 * structure to cache the mapping.  We also use a negative cache pointer
 * of NOPROC to avoid duplicate lookups.
 * XXX: this could be done when the actual processes are fetched, we do
 * it here out of laziness.
 */
const struct kinfo_proc *
get_old_proc(struct kinfo_proc *pp)
{
	struct kinfo_proc **oldpp, *oldp;

	/*
	 * If this is the first fetch of the kinfo_procs then we don't have
	 * any previous entries.
	 */
	if (previous_proc_count == 0)
		return (NULL);
	/* negative cache? */
	if (pp->ki_udata == NOPROC)
		return (NULL);
	/* cached? */
	if (pp->ki_udata != NULL)
		return (pp->ki_udata);
	/*
	 * Not cached,
	 * 1) look up based on pid.
	 * 2) compare process start.
	 * If we fail here, then setup a negative cache entry, otherwise
	 * cache it.
	 */
	oldpp = bsearch(&pp, previous_pref, previous_proc_count,
	    sizeof(*previous_pref), compare_pid);
	if (oldpp == NULL) {
		pp->ki_udata = NOPROC;
		return (NULL);
	}
	oldp = *oldpp;
	if (bcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
		pp->ki_udata = NOPROC;
		return (NULL);
	}
	pp->ki_udata = oldp;
	return (oldp);
}

/*
 * Return the total amount of IO done in blocks in/out and faults.
 * store the values individually in the pointers passed in.
 */
long
get_io_stats(struct kinfo_proc *pp, long *inp, long *oup, long *flp, long *vcsw, long *ivcsw)
{
	const struct kinfo_proc *oldp;
	static struct kinfo_proc dummy;
	long ret;

	oldp = get_old_proc(pp);
	if (oldp == NULL) {
		bzero(&dummy, sizeof(dummy));
		oldp = &dummy;
	}

	*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
	*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
	*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
	*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
	*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
	ret =
	    (RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
	    (RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
	    (RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
	return (ret);
}

/*
 * Return the total number of block in/out and faults by a process.
 */
long
get_io_total(struct kinfo_proc *pp)
{
	long dummy;

	return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
}

static struct handle handle;

caddr_t
get_process_info(struct system_info *si, struct process_select *sel,
    int (*compare)(const void *, const void *))
{
	int i;
	int total_procs;
	long p_io;
	long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
	int active_procs;
	struct kinfo_proc **prefp;
	struct kinfo_proc *pp;
	struct kinfo_proc *prev_pp = NULL;

	/* these are copied out of sel for speed */
	int show_idle;
	int show_self;
	int show_system;
	int show_uid;
	int show_command;

	/*
	 * Save the previous process info.
	 */
	if (previous_proc_count_max < nproc) {
		free(previous_procs);
		previous_procs = malloc(nproc * sizeof(*previous_procs));
		free(previous_pref);
		previous_pref = malloc(nproc * sizeof(*previous_pref));
		if (previous_procs == NULL || previous_pref == NULL) {
			(void) fprintf(stderr, "top: Out of memory.\n");
			quit(23);
		}
		previous_proc_count_max = nproc;
	}
	if (nproc) {
		for (i = 0; i < nproc; i++)
			previous_pref[i] = &previous_procs[i];
		bcopy(pbase, previous_procs, nproc * sizeof(*previous_procs));
		qsort(previous_pref, nproc, sizeof(*previous_pref), compare_pid);
	}
	previous_proc_count = nproc;

	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
	if (nproc > onproc)
		pref = realloc(pref, sizeof(*pref) * (onproc = nproc));
	if (pref == NULL || pbase == NULL) {
		(void) fprintf(stderr, "top: Out of memory.\n");
		quit(23);
	}
	/* get a pointer to the states summary array */
	si->procstates = process_states;

	/* set up flags which define what we are going to select */
	show_idle = sel->idle;
	show_self = sel->self == -1;
	show_system = sel->system;
	show_uid = sel->uid != -1;
	show_command = sel->command != NULL;

	/* count up process states and get pointers to interesting procs */
	total_procs = 0;
	active_procs = 0;
	total_inblock = 0;
	total_oublock = 0;
	total_majflt = 0;
	memset((char *)process_states, 0, sizeof(process_states));
	prefp = pref;
	for (pp = pbase, i = 0; i < nproc; pp++, i++) {

		if (pp->ki_stat == 0)
			/* not in use */
			continue;

		if (!show_self && pp->ki_pid == sel->self)
			/* skip self */
			continue;

		if (!show_system && (pp->ki_flag & P_SYSTEM))
			/* skip system process */
			continue;

		p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt, &p_vcsw, &p_ivcsw);
		total_inblock += p_inblock;
		total_oublock += p_oublock;
		total_majflt += p_majflt;
		total_procs++;
		process_states[pp->ki_stat]++;

		if (pp->ki_stat == SZOMB)
			/* skip zombies */
			continue;

		if (displaymode == DISP_CPU && !show_idle &&
		    (pp->ki_pctcpu == 0 || pp->ki_stat != SRUN))
			/* skip idle or non-running processes */
			continue;

		if (displaymode == DISP_IO && !show_idle && p_io == 0)
			/* skip processes that aren't doing I/O */
			continue;

		if (show_uid && pp->ki_ruid != (uid_t)sel->uid)
			/* skip processes which don't belong to the selected UID */
			continue;

		/*
		 * When not showing threads, take the first thread
		 * for output and add the fields that we can from
		 * the rest of the process's threads rather than
		 * using the system's mostly-broken KERN_PROC_PROC.
		 */
		if (sel->thread || prev_pp == NULL ||
		    prev_pp->ki_pid != pp->ki_pid) {
			*prefp++ = pp;
			active_procs++;
			prev_pp = pp;
		} else {
			prev_pp->ki_pctcpu += pp->ki_pctcpu;
		}
	}

	/* if requested, sort the "interesting" processes */
	if (compare != NULL)
		qsort(pref, active_procs, sizeof(*pref), compare);

	/* remember active and total counts */
	si->p_total = total_procs;
	si->p_active = pref_len = active_procs;

	/* pass back a handle */
	handle.next_proc = pref;
	handle.remaining = active_procs;
	return ((caddr_t)&handle);
}

static char fmt[128];	/* static area where result is built */

char *
format_next_process(caddr_t handle, char *(*get_userid)(int))
{
	struct kinfo_proc *pp;
	const struct kinfo_proc *oldp;
	long cputime;
	double pct;
	struct handle *hp;
	char status[16];
	int state;
	struct rusage ru, *rup;
	long p_tot, s_tot;

	/* find and remember the next proc structure */
	hp = (struct handle *)handle;
	pp = *(hp->next_proc++);
	hp->remaining--;

	/* get the process's command name */
	if ((pp->ki_sflag & PS_INMEM) == 0) {
		/*
		 * Print swapped processes as <pname>
		 */
		size_t len = strlen(pp->ki_comm);
		if (len > sizeof(pp->ki_comm) - 3)
			len = sizeof(pp->ki_comm) - 3;
		memmove(pp->ki_comm + 1, pp->ki_comm, len);
		pp->ki_comm[0] = '<';
		pp->ki_comm[len + 1] = '>';
		pp->ki_comm[len + 2] = '\0';
	}

	/*
	 * Convert the process's runtime from microseconds to seconds.  This
	 * time includes the interrupt time although that is not wanted here.
	 * ps(1) is similarly sloppy.
	 */
	cputime = (pp->ki_runtime + 500000) / 1000000;

	/* calculate the base for cpu percentages */
	pct = pctdouble(pp->ki_pctcpu);

	/* generate "STATE" field */
	switch (state = pp->ki_stat) {
	case SRUN:
		if (smpmode && pp->ki_oncpu != 0xff)
			sprintf(status, "CPU%d", pp->ki_oncpu);
		else
			strcpy(status, "RUN");
		break;
	case SLOCK:
		if (pp->ki_kiflag & KI_LOCKBLOCK) {
			sprintf(status, "*%.6s", pp->ki_lockname);
			break;
		}
		/* fall through */
	case SSLEEP:
		if (pp->ki_wmesg != NULL) {
			sprintf(status, "%.6s", pp->ki_wmesg);
			break;
		}
		/* FALLTHROUGH */
	default:

		if (state >= 0 &&
		    state < sizeof(state_abbrev) / sizeof(*state_abbrev))
			sprintf(status, "%.6s", state_abbrev[state]);
		else
			sprintf(status, "?%5d", state);
		break;
	}

	if (displaymode == DISP_IO) {
		oldp = get_old_proc(pp);
		if (oldp != NULL) {
			ru.ru_inblock = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
			ru.ru_oublock = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
			ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
			ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
			ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
			rup = &ru;
		} else {
			rup = RU(pp);
		}
		p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
		s_tot = total_inblock + total_oublock + total_majflt;

		sprintf(fmt, io_Proc_format,
		    pp->ki_pid,
		    namelength, namelength,
		    (*get_userid)(pp->ki_ruid),
		    rup->ru_nvcsw,
		    rup->ru_nivcsw,
		    rup->ru_inblock,
		    rup->ru_oublock,
		    rup->ru_majflt,
		    p_tot,
		    s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot),
		    screen_width > cmdlengthdelta ?
		    screen_width - cmdlengthdelta : 0,
		    printable(pp->ki_comm));
		return (fmt);
	}
	/* format this entry */
	sprintf(fmt,
	    smpmode ? smp_Proc_format : up_Proc_format,
	    pp->ki_pid,
	    namelength, namelength,
	    (*get_userid)(pp->ki_ruid),
	    pp->ki_pri.pri_level - PZERO,

	    /*
	     * normal time      -> nice value -20 - +20
	     * real time 0 - 31 -> nice value -52 - -21
	     * idle time 0 - 31 -> nice value +21 - +52
	     */
	    (pp->ki_pri.pri_class ==  PRI_TIMESHARE ?
		pp->ki_nice - NZERO :
		(PRI_IS_REALTIME(pp->ki_pri.pri_class) ?
		    (PRIO_MIN - 1 - (PRI_MAX_REALTIME - pp->ki_pri.pri_level)) :
		    (PRIO_MAX + 1 + pp->ki_pri.pri_level - PRI_MIN_IDLE))),
	    format_k2(PROCSIZE(pp)),
	    format_k2(pagetok(pp->ki_rssize)),
	    status,
	    smpmode ? pp->ki_lastcpu : 0,
	    format_time(cputime),
	    100.0 * weighted_cpu(pct, pp),
	    100.0 * pct,
	    screen_width > cmdlengthdelta ?
	    screen_width - cmdlengthdelta :
	    0,
	    printable(pp->ki_comm));

	/* return the result */
	return (fmt);
}

static void
getsysctl(char *name, void *ptr, size_t len)
{
	size_t nlen = len;

	if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
		fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
		    strerror(errno));
		quit(23);
	}
	if (nlen != len) {
		fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n", name,
		    (unsigned long)len, (unsigned long)nlen);
		quit(23);
	}
}

/* comparison routines for qsort */

int
compare_pid(const void *p1, const void *p2)
{
	const struct kinfo_proc * const *pp1 = p1;
	const struct kinfo_proc * const *pp2 = p2;

	if ((*pp2)->ki_pid < 0 || (*pp1)->ki_pid < 0)
		abort();

	return ((*pp1)->ki_pid - (*pp2)->ki_pid);
}

/*
 *  proc_compare - comparison function for "qsort"
 *	Compares the resource consumption of two processes using five
 *	distinct keys.  The keys (in descending order of importance) are:
 *	percent cpu, cpu ticks, state, resident set size, total virtual
 *	memory usage.  The process states are ordered as follows (from least
 *	to most important):  WAIT, zombie, sleep, stop, start, run.  The
 *	array declaration below maps a process state index into a number
 *	that reflects this ordering.
 */

static int sorted_state[] =
{
	0,	/* not used		*/
	3,	/* sleep		*/
	1,	/* ABANDONED (WAIT)	*/
	6,	/* run			*/
	5,	/* start		*/
	2,	/* zombie		*/
	4	/* stop			*/
};


#define ORDERKEY_PCTCPU(a, b) do { \
	long diff = (long)(b)->ki_pctcpu - (long)(a)->ki_pctcpu; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_CPTICKS(a, b) do { \
	int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_STATE(a, b) do { \
	int diff = sorted_state[(b)->ki_stat] - sorted_state[(a)->ki_stat]; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_PRIO(a, b) do { \
	int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_RSSIZE(a, b) do { \
	long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

#define ORDERKEY_MEM(a, b) do { \
	long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
	if (diff != 0) \
		return (diff > 0 ? 1 : -1); \
} while (0)

/* compare_cpu - the comparison function for sorting by cpu percentage */

int
#ifdef ORDER
compare_cpu(void *arg1, void *arg2)
#else
proc_compare(void *arg1, void *arg2)
#endif
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}

#ifdef ORDER
/* compare routines */
int compare_size(), compare_res(), compare_time(), compare_prio();
/* io compare routines */
int compare_iototal(), compare_ioread(), compare_iowrite(), compare_iofault(), compare_vcsw(), compare_ivcsw();

int (*compares[])() = {
	compare_cpu,
	compare_size,
	compare_res,
	compare_time,
	compare_prio,
	compare_iototal,
	compare_ioread,
	compare_iowrite,
	compare_iofault,
	compare_vcsw,
	compare_ivcsw,
	NULL
};

/* compare_size - the comparison function for sorting by total memory usage */

int
compare_size(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_MEM(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);

	return (0);
}

/* compare_res - the comparison function for sorting by resident set size */

int
compare_res(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);

	return (0);
}

/* compare_time - the comparison function for sorting by total cpu time */

int
compare_time(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}

/* compare_prio - the comparison function for sorting by priority */

int
compare_prio(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	ORDERKEY_PRIO(p1, p2);
	ORDERKEY_CPTICKS(p1, p2);
	ORDERKEY_PCTCPU(p1, p2);
	ORDERKEY_STATE(p1, p2);
	ORDERKEY_RSSIZE(p1, p2);
	ORDERKEY_MEM(p1, p2);

	return (0);
}
#endif

/* compare_io - the comparison function for sorting by total io */

int
#ifdef ORDER
compare_iototal(void *arg1, void *arg2)
#else
io_compare(void *arg1, void *arg2)
#endif
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;

	return (get_io_total(p2) - get_io_total(p1));
}

#ifdef ORDER

int
compare_ioread(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, inp1, inp2;

	(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
	(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);

	return (inp2 - inp1);
}

int
compare_iowrite(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, oup1, oup2;

	(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
	(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);

	return (oup2 - oup1);
}

int
compare_iofault(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, flp1, flp2;

	(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
	(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);

	return (flp2 - flp1);
}

int
compare_vcsw(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, flp1, flp2;

	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);

	return (flp2 - flp1);
}

int
compare_ivcsw(void *arg1, void *arg2)
{
	struct kinfo_proc *p1 = *(struct kinfo_proc **)arg1;
	struct kinfo_proc *p2 = *(struct kinfo_proc **)arg2;
	long dummy, flp1, flp2;

	(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
	(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);

	return (flp2 - flp1);
}

#endif /* ORDER */

/*
 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
 *		the process does not exist.
 *		It is EXTREMLY IMPORTANT that this function work correctly.
 *		If top runs setuid root (as in SVR4), then this function
 *		is the only thing that stands in the way of a serious
 *		security problem.  It validates requests for the "kill"
 *		and "renice" commands.
 */

int
proc_owner(int pid)
{
	int cnt;
	struct kinfo_proc **prefp;
	struct kinfo_proc *pp;

	prefp = pref;
	cnt = pref_len;
	while (--cnt >= 0) {
		pp = *prefp++;
		if (pp->ki_pid == (pid_t)pid)
			return ((int)pp->ki_ruid);
	}
	return (-1);
}

int
swapmode(int *retavail, int *retfree)
{
	int n;
	int pagesize = getpagesize();
	struct kvm_swap swapary[1];

	*retavail = 0;
	*retfree = 0;

#define CONVERT(v)	((quad_t)(v) * pagesize / 1024)

	n = kvm_getswapinfo(kd, swapary, 1, 0);
	if (n < 0 || swapary[0].ksw_total == 0)
		return (0);

	*retavail = CONVERT(swapary[0].ksw_total);
	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);

	n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
	return (n);
}