/************************************************************************** * * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> */ #include "ttm/ttm_bo_driver.h" #include "ttm/ttm_placement.h" #include <linux/io.h> #include <linux/highmem.h> #include <linux/wait.h> #include <linux/vmalloc.h> #include <linux/module.h> void ttm_bo_free_old_node(struct ttm_buffer_object *bo) { struct ttm_mem_reg *old_mem = &bo->mem; if (old_mem->mm_node) { spin_lock(&bo->glob->lru_lock); drm_mm_put_block(old_mem->mm_node); spin_unlock(&bo->glob->lru_lock); } old_mem->mm_node = NULL; } int ttm_bo_move_ttm(struct ttm_buffer_object *bo, bool evict, bool no_wait, struct ttm_mem_reg *new_mem) { struct ttm_tt *ttm = bo->ttm; struct ttm_mem_reg *old_mem = &bo->mem; int ret; if (old_mem->mem_type != TTM_PL_SYSTEM) { ttm_tt_unbind(ttm); ttm_bo_free_old_node(bo); ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM, TTM_PL_MASK_MEM); old_mem->mem_type = TTM_PL_SYSTEM; } ret = ttm_tt_set_placement_caching(ttm, new_mem->placement); if (unlikely(ret != 0)) return ret; if (new_mem->mem_type != TTM_PL_SYSTEM) { ret = ttm_tt_bind(ttm, new_mem); if (unlikely(ret != 0)) return ret; } *old_mem = *new_mem; new_mem->mm_node = NULL; return 0; } EXPORT_SYMBOL(ttm_bo_move_ttm); int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, void **virtual) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; unsigned long bus_offset; unsigned long bus_size; unsigned long bus_base; int ret; void *addr; *virtual = NULL; ret = ttm_bo_pci_offset(bdev, mem, &bus_base, &bus_offset, &bus_size); if (ret || bus_size == 0) return ret; if (!(man->flags & TTM_MEMTYPE_FLAG_NEEDS_IOREMAP)) addr = (void *)(((u8 *) man->io_addr) + bus_offset); else { if (mem->placement & TTM_PL_FLAG_WC) addr = ioremap_wc(bus_base + bus_offset, bus_size); else addr = ioremap_nocache(bus_base + bus_offset, bus_size); if (!addr) return -ENOMEM; } *virtual = addr; return 0; } void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, void *virtual) { struct ttm_mem_type_manager *man; man = &bdev->man[mem->mem_type]; if (virtual && (man->flags & TTM_MEMTYPE_FLAG_NEEDS_IOREMAP)) iounmap(virtual); } static int ttm_copy_io_page(void *dst, void *src, unsigned long page) { uint32_t *dstP = (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); uint32_t *srcP = (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); int i; for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) iowrite32(ioread32(srcP++), dstP++); return 0; } static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, unsigned long page, pgprot_t prot) { struct page *d = ttm_tt_get_page(ttm, page); void *dst; if (!d) return -ENOMEM; src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); #ifdef CONFIG_X86 dst = kmap_atomic_prot(d, KM_USER0, prot); #else if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) dst = vmap(&d, 1, 0, prot); else dst = kmap(d); #endif if (!dst) return -ENOMEM; memcpy_fromio(dst, src, PAGE_SIZE); #ifdef CONFIG_X86 kunmap_atomic(dst, KM_USER0); #else if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) vunmap(dst); else kunmap(d); #endif return 0; } static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, unsigned long page, pgprot_t prot) { struct page *s = ttm_tt_get_page(ttm, page); void *src; if (!s) return -ENOMEM; dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); #ifdef CONFIG_X86 src = kmap_atomic_prot(s, KM_USER0, prot); #else if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) src = vmap(&s, 1, 0, prot); else src = kmap(s); #endif if (!src) return -ENOMEM; memcpy_toio(dst, src, PAGE_SIZE); #ifdef CONFIG_X86 kunmap_atomic(src, KM_USER0); #else if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) vunmap(src); else kunmap(s); #endif return 0; } int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, bool evict, bool no_wait, struct ttm_mem_reg *new_mem) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; struct ttm_tt *ttm = bo->ttm; struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_reg old_copy = *old_mem; void *old_iomap; void *new_iomap; int ret; unsigned long i; unsigned long page; unsigned long add = 0; int dir; ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap); if (ret) return ret; ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap); if (ret) goto out; if (old_iomap == NULL && new_iomap == NULL) goto out2; if (old_iomap == NULL && ttm == NULL) goto out2; add = 0; dir = 1; if ((old_mem->mem_type == new_mem->mem_type) && (new_mem->mm_node->start < old_mem->mm_node->start + old_mem->mm_node->size)) { dir = -1; add = new_mem->num_pages - 1; } for (i = 0; i < new_mem->num_pages; ++i) { page = i * dir + add; if (old_iomap == NULL) { pgprot_t prot = ttm_io_prot(old_mem->placement, PAGE_KERNEL); ret = ttm_copy_ttm_io_page(ttm, new_iomap, page, prot); } else if (new_iomap == NULL) { pgprot_t prot = ttm_io_prot(new_mem->placement, PAGE_KERNEL); ret = ttm_copy_io_ttm_page(ttm, old_iomap, page, prot); } else ret = ttm_copy_io_page(new_iomap, old_iomap, page); if (ret) goto out1; } mb(); out2: ttm_bo_free_old_node(bo); *old_mem = *new_mem; new_mem->mm_node = NULL; if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (ttm != NULL)) { ttm_tt_unbind(ttm); ttm_tt_destroy(ttm); bo->ttm = NULL; } out1: ttm_mem_reg_iounmap(bdev, new_mem, new_iomap); out: ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap); return ret; } EXPORT_SYMBOL(ttm_bo_move_memcpy); static void ttm_transfered_destroy(struct ttm_buffer_object *bo) { kfree(bo); } /** * ttm_buffer_object_transfer * * @bo: A pointer to a struct ttm_buffer_object. * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, * holding the data of @bo with the old placement. * * This is a utility function that may be called after an accelerated move * has been scheduled. A new buffer object is created as a placeholder for * the old data while it's being copied. When that buffer object is idle, * it can be destroyed, releasing the space of the old placement. * Returns: * !0: Failure. */ static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, struct ttm_buffer_object **new_obj) { struct ttm_buffer_object *fbo; struct ttm_bo_device *bdev = bo->bdev; struct ttm_bo_driver *driver = bdev->driver; fbo = kzalloc(sizeof(*fbo), GFP_KERNEL); if (!fbo) return -ENOMEM; *fbo = *bo; /** * Fix up members that we shouldn't copy directly: * TODO: Explicit member copy would probably be better here. */ spin_lock_init(&fbo->lock); init_waitqueue_head(&fbo->event_queue); INIT_LIST_HEAD(&fbo->ddestroy); INIT_LIST_HEAD(&fbo->lru); INIT_LIST_HEAD(&fbo->swap); fbo->vm_node = NULL; fbo->sync_obj = driver->sync_obj_ref(bo->sync_obj); if (fbo->mem.mm_node) fbo->mem.mm_node->private = (void *)fbo; kref_init(&fbo->list_kref); kref_init(&fbo->kref); fbo->destroy = &ttm_transfered_destroy; *new_obj = fbo; return 0; } pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) { #if defined(__i386__) || defined(__x86_64__) if (caching_flags & TTM_PL_FLAG_WC) tmp = pgprot_writecombine(tmp); else if (boot_cpu_data.x86 > 3) tmp = pgprot_noncached(tmp); #elif defined(__powerpc__) if (!(caching_flags & TTM_PL_FLAG_CACHED)) { pgprot_val(tmp) |= _PAGE_NO_CACHE; if (caching_flags & TTM_PL_FLAG_UNCACHED) pgprot_val(tmp) |= _PAGE_GUARDED; } #endif #if defined(__ia64__) if (caching_flags & TTM_PL_FLAG_WC) tmp = pgprot_writecombine(tmp); else tmp = pgprot_noncached(tmp); #endif #if defined(__sparc__) if (!(caching_flags & TTM_PL_FLAG_CACHED)) tmp = pgprot_noncached(tmp); #endif return tmp; } EXPORT_SYMBOL(ttm_io_prot); static int ttm_bo_ioremap(struct ttm_buffer_object *bo, unsigned long bus_base, unsigned long bus_offset, unsigned long bus_size, struct ttm_bo_kmap_obj *map) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_mem_reg *mem = &bo->mem; struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; if (!(man->flags & TTM_MEMTYPE_FLAG_NEEDS_IOREMAP)) { map->bo_kmap_type = ttm_bo_map_premapped; map->virtual = (void *)(((u8 *) man->io_addr) + bus_offset); } else { map->bo_kmap_type = ttm_bo_map_iomap; if (mem->placement & TTM_PL_FLAG_WC) map->virtual = ioremap_wc(bus_base + bus_offset, bus_size); else map->virtual = ioremap_nocache(bus_base + bus_offset, bus_size); } return (!map->virtual) ? -ENOMEM : 0; } static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, unsigned long start_page, unsigned long num_pages, struct ttm_bo_kmap_obj *map) { struct ttm_mem_reg *mem = &bo->mem; pgprot_t prot; struct ttm_tt *ttm = bo->ttm; struct page *d; int i; BUG_ON(!ttm); if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) { /* * We're mapping a single page, and the desired * page protection is consistent with the bo. */ map->bo_kmap_type = ttm_bo_map_kmap; map->page = ttm_tt_get_page(ttm, start_page); map->virtual = kmap(map->page); } else { /* * Populate the part we're mapping; */ for (i = start_page; i < start_page + num_pages; ++i) { d = ttm_tt_get_page(ttm, i); if (!d) return -ENOMEM; } /* * We need to use vmap to get the desired page protection * or to make the buffer object look contiguous. */ prot = (mem->placement & TTM_PL_FLAG_CACHED) ? PAGE_KERNEL : ttm_io_prot(mem->placement, PAGE_KERNEL); map->bo_kmap_type = ttm_bo_map_vmap; map->virtual = vmap(ttm->pages + start_page, num_pages, 0, prot); } return (!map->virtual) ? -ENOMEM : 0; } int ttm_bo_kmap(struct ttm_buffer_object *bo, unsigned long start_page, unsigned long num_pages, struct ttm_bo_kmap_obj *map) { int ret; unsigned long bus_base; unsigned long bus_offset; unsigned long bus_size; BUG_ON(!list_empty(&bo->swap)); map->virtual = NULL; if (num_pages > bo->num_pages) return -EINVAL; if (start_page > bo->num_pages) return -EINVAL; #if 0 if (num_pages > 1 && !DRM_SUSER(DRM_CURPROC)) return -EPERM; #endif ret = ttm_bo_pci_offset(bo->bdev, &bo->mem, &bus_base, &bus_offset, &bus_size); if (ret) return ret; if (bus_size == 0) { return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); } else { bus_offset += start_page << PAGE_SHIFT; bus_size = num_pages << PAGE_SHIFT; return ttm_bo_ioremap(bo, bus_base, bus_offset, bus_size, map); } } EXPORT_SYMBOL(ttm_bo_kmap); void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) { if (!map->virtual) return; switch (map->bo_kmap_type) { case ttm_bo_map_iomap: iounmap(map->virtual); break; case ttm_bo_map_vmap: vunmap(map->virtual); break; case ttm_bo_map_kmap: kunmap(map->page); break; case ttm_bo_map_premapped: break; default: BUG(); } map->virtual = NULL; map->page = NULL; } EXPORT_SYMBOL(ttm_bo_kunmap); int ttm_bo_pfn_prot(struct ttm_buffer_object *bo, unsigned long dst_offset, unsigned long *pfn, pgprot_t *prot) { struct ttm_mem_reg *mem = &bo->mem; struct ttm_bo_device *bdev = bo->bdev; unsigned long bus_offset; unsigned long bus_size; unsigned long bus_base; int ret; ret = ttm_bo_pci_offset(bdev, mem, &bus_base, &bus_offset, &bus_size); if (ret) return -EINVAL; if (bus_size != 0) *pfn = (bus_base + bus_offset + dst_offset) >> PAGE_SHIFT; else if (!bo->ttm) return -EINVAL; else *pfn = page_to_pfn(ttm_tt_get_page(bo->ttm, dst_offset >> PAGE_SHIFT)); *prot = (mem->placement & TTM_PL_FLAG_CACHED) ? PAGE_KERNEL : ttm_io_prot(mem->placement, PAGE_KERNEL); return 0; } int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, void *sync_obj, void *sync_obj_arg, bool evict, bool no_wait, struct ttm_mem_reg *new_mem) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_bo_driver *driver = bdev->driver; struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; struct ttm_mem_reg *old_mem = &bo->mem; int ret; struct ttm_buffer_object *ghost_obj; void *tmp_obj = NULL; spin_lock(&bo->lock); if (bo->sync_obj) { tmp_obj = bo->sync_obj; bo->sync_obj = NULL; } bo->sync_obj = driver->sync_obj_ref(sync_obj); bo->sync_obj_arg = sync_obj_arg; if (evict) { ret = ttm_bo_wait(bo, false, false, false); spin_unlock(&bo->lock); if (tmp_obj) driver->sync_obj_unref(&tmp_obj); if (ret) return ret; ttm_bo_free_old_node(bo); if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm != NULL)) { ttm_tt_unbind(bo->ttm); ttm_tt_destroy(bo->ttm); bo->ttm = NULL; } } else { /** * This should help pipeline ordinary buffer moves. * * Hang old buffer memory on a new buffer object, * and leave it to be released when the GPU * operation has completed. */ set_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags); spin_unlock(&bo->lock); if (tmp_obj) driver->sync_obj_unref(&tmp_obj); ret = ttm_buffer_object_transfer(bo, &ghost_obj); if (ret) return ret; /** * If we're not moving to fixed memory, the TTM object * needs to stay alive. Otherwhise hang it on the ghost * bo to be unbound and destroyed. */ if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) ghost_obj->ttm = NULL; else bo->ttm = NULL; ttm_bo_unreserve(ghost_obj); ttm_bo_unref(&ghost_obj); } *old_mem = *new_mem; new_mem->mm_node = NULL; return 0; } EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);