Linux-2.6.33.2/drivers/staging/comedi/drivers/ni_tio.c

/*
  comedi/drivers/ni_tio.c
  Support for NI general purpose counters

  Copyright (C) 2006 Frank Mori Hess <fmhess@users.sourceforge.net>

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

/*
Driver: ni_tio
Description: National Instruments general purpose counters
Devices:
Author: J.P. Mellor <jpmellor@rose-hulman.edu>,
	Herman.Bruyninckx@mech.kuleuven.ac.be,
	Wim.Meeussen@mech.kuleuven.ac.be,
	Klaas.Gadeyne@mech.kuleuven.ac.be,
	Frank Mori Hess <fmhess@users.sourceforge.net>
Updated: Thu Nov 16 09:50:32 EST 2006
Status: works

This module is not used directly by end-users.  Rather, it
is used by other drivers (for example ni_660x and ni_pcimio)
to provide support for NI's general purpose counters.  It was
originally based on the counter code from ni_660x.c and
ni_mio_common.c.

References:
DAQ 660x Register-Level Programmer Manual  (NI 370505A-01)
DAQ 6601/6602 User Manual (NI 322137B-01)
340934b.pdf  DAQ-STC reference manual

*/
/*
TODO:
	Support use of both banks X and Y
*/

#include "ni_tio_internal.h"

static uint64_t ni_tio_clock_period_ps(const struct ni_gpct *counter,
				       unsigned generic_clock_source);
static unsigned ni_tio_generic_clock_src_select(const struct ni_gpct *counter);

MODULE_AUTHOR("Comedi <comedi@comedi.org>");
MODULE_DESCRIPTION("Comedi support for NI general-purpose counters");
MODULE_LICENSE("GPL");

static inline enum Gi_Counting_Mode_Reg_Bits Gi_Alternate_Sync_Bit(enum
								   ni_gpct_variant
								   variant)
{
	switch (variant) {
	case ni_gpct_variant_e_series:
		return 0;
		break;
	case ni_gpct_variant_m_series:
		return Gi_M_Series_Alternate_Sync_Bit;
		break;
	case ni_gpct_variant_660x:
		return Gi_660x_Alternate_Sync_Bit;
		break;
	default:
		BUG();
		break;
	}
	return 0;
}

static inline enum Gi_Counting_Mode_Reg_Bits Gi_Prescale_X2_Bit(enum
								ni_gpct_variant
								variant)
{
	switch (variant) {
	case ni_gpct_variant_e_series:
		return 0;
		break;
	case ni_gpct_variant_m_series:
		return Gi_M_Series_Prescale_X2_Bit;
		break;
	case ni_gpct_variant_660x:
		return Gi_660x_Prescale_X2_Bit;
		break;
	default:
		BUG();
		break;
	}
	return 0;
}

static inline enum Gi_Counting_Mode_Reg_Bits Gi_Prescale_X8_Bit(enum
								ni_gpct_variant
								variant)
{
	switch (variant) {
	case ni_gpct_variant_e_series:
		return 0;
		break;
	case ni_gpct_variant_m_series:
		return Gi_M_Series_Prescale_X8_Bit;
		break;
	case ni_gpct_variant_660x:
		return Gi_660x_Prescale_X8_Bit;
		break;
	default:
		BUG();
		break;
	}
	return 0;
}

static inline enum Gi_Counting_Mode_Reg_Bits Gi_HW_Arm_Select_Mask(enum
								   ni_gpct_variant
								   variant)
{
	switch (variant) {
	case ni_gpct_variant_e_series:
		return 0;
		break;
	case ni_gpct_variant_m_series:
		return Gi_M_Series_HW_Arm_Select_Mask;
		break;
	case ni_gpct_variant_660x:
		return Gi_660x_HW_Arm_Select_Mask;
		break;
	default:
		BUG();
		break;
	}
	return 0;
}

/* clock sources for ni_660x boards, get bits with Gi_Source_Select_Bits() */
enum ni_660x_clock_source {
	NI_660x_Timebase_1_Clock = 0x0,	/* 20MHz */
	NI_660x_Source_Pin_i_Clock = 0x1,
	NI_660x_Next_Gate_Clock = 0xa,
	NI_660x_Timebase_2_Clock = 0x12,	/* 100KHz */
	NI_660x_Next_TC_Clock = 0x13,
	NI_660x_Timebase_3_Clock = 0x1e,	/* 80MHz */
	NI_660x_Logic_Low_Clock = 0x1f,
};
static const unsigned ni_660x_max_rtsi_channel = 6;
static inline unsigned NI_660x_RTSI_Clock(unsigned n)
{
	BUG_ON(n > ni_660x_max_rtsi_channel);
	return 0xb + n;
}

static const unsigned ni_660x_max_source_pin = 7;
static inline unsigned NI_660x_Source_Pin_Clock(unsigned n)
{
	BUG_ON(n > ni_660x_max_source_pin);
	return 0x2 + n;
}

/* clock sources for ni e and m series boards, get bits with Gi_Source_Select_Bits() */
enum ni_m_series_clock_source {
	NI_M_Series_Timebase_1_Clock = 0x0,	/* 20MHz */
	NI_M_Series_Timebase_2_Clock = 0x12,	/* 100KHz */
	NI_M_Series_Next_TC_Clock = 0x13,
	NI_M_Series_Next_Gate_Clock = 0x14,	/* when Gi_Src_SubSelect = 0 */
	NI_M_Series_PXI_Star_Trigger_Clock = 0x14,	/* when Gi_Src_SubSelect = 1 */
	NI_M_Series_PXI10_Clock = 0x1d,
	NI_M_Series_Timebase_3_Clock = 0x1e,	/* 80MHz, when Gi_Src_SubSelect = 0 */
	NI_M_Series_Analog_Trigger_Out_Clock = 0x1e,	/* when Gi_Src_SubSelect = 1 */
	NI_M_Series_Logic_Low_Clock = 0x1f,
};
static const unsigned ni_m_series_max_pfi_channel = 15;
static inline unsigned NI_M_Series_PFI_Clock(unsigned n)
{
	BUG_ON(n > ni_m_series_max_pfi_channel);
	if (n < 10)
		return 1 + n;
	else
		return 0xb + n;
}

static const unsigned ni_m_series_max_rtsi_channel = 7;
static inline unsigned NI_M_Series_RTSI_Clock(unsigned n)
{
	BUG_ON(n > ni_m_series_max_rtsi_channel);
	if (n == 7)
		return 0x1b;
	else
		return 0xb + n;
}

enum ni_660x_gate_select {
	NI_660x_Source_Pin_i_Gate_Select = 0x0,
	NI_660x_Gate_Pin_i_Gate_Select = 0x1,
	NI_660x_Next_SRC_Gate_Select = 0xa,
	NI_660x_Next_Out_Gate_Select = 0x14,
	NI_660x_Logic_Low_Gate_Select = 0x1f,
};
static const unsigned ni_660x_max_gate_pin = 7;
static inline unsigned NI_660x_Gate_Pin_Gate_Select(unsigned n)
{
	BUG_ON(n > ni_660x_max_gate_pin);
	return 0x2 + n;
}

static inline unsigned NI_660x_RTSI_Gate_Select(unsigned n)
{
	BUG_ON(n > ni_660x_max_rtsi_channel);
	return 0xb + n;
}

enum ni_m_series_gate_select {
	NI_M_Series_Timestamp_Mux_Gate_Select = 0x0,
	NI_M_Series_AI_START2_Gate_Select = 0x12,
	NI_M_Series_PXI_Star_Trigger_Gate_Select = 0x13,
	NI_M_Series_Next_Out_Gate_Select = 0x14,
	NI_M_Series_AI_START1_Gate_Select = 0x1c,
	NI_M_Series_Next_SRC_Gate_Select = 0x1d,
	NI_M_Series_Analog_Trigger_Out_Gate_Select = 0x1e,
	NI_M_Series_Logic_Low_Gate_Select = 0x1f,
};
static inline unsigned NI_M_Series_RTSI_Gate_Select(unsigned n)
{
	BUG_ON(n > ni_m_series_max_rtsi_channel);
	if (n == 7)
		return 0x1b;
	return 0xb + n;
}

static inline unsigned NI_M_Series_PFI_Gate_Select(unsigned n)
{
	BUG_ON(n > ni_m_series_max_pfi_channel);
	if (n < 10)
		return 1 + n;
	return 0xb + n;
}

static inline unsigned Gi_Source_Select_Bits(unsigned source)
{
	return (source << Gi_Source_Select_Shift) & Gi_Source_Select_Mask;
}

static inline unsigned Gi_Gate_Select_Bits(unsigned gate_select)
{
	return (gate_select << Gi_Gate_Select_Shift) & Gi_Gate_Select_Mask;
}

enum ni_660x_second_gate_select {
	NI_660x_Source_Pin_i_Second_Gate_Select = 0x0,
	NI_660x_Up_Down_Pin_i_Second_Gate_Select = 0x1,
	NI_660x_Next_SRC_Second_Gate_Select = 0xa,
	NI_660x_Next_Out_Second_Gate_Select = 0x14,
	NI_660x_Selected_Gate_Second_Gate_Select = 0x1e,
	NI_660x_Logic_Low_Second_Gate_Select = 0x1f,
};
static const unsigned ni_660x_max_up_down_pin = 7;
static inline unsigned NI_660x_Up_Down_Pin_Second_Gate_Select(unsigned n)
{
	BUG_ON(n > ni_660x_max_up_down_pin);
	return 0x2 + n;
}

static inline unsigned NI_660x_RTSI_Second_Gate_Select(unsigned n)
{
	BUG_ON(n > ni_660x_max_rtsi_channel);
	return 0xb + n;
}

static const unsigned int counter_status_mask =
    COMEDI_COUNTER_ARMED | COMEDI_COUNTER_COUNTING;

static int __init ni_tio_init_module(void)
{
	return 0;
}

module_init(ni_tio_init_module);

static void __exit ni_tio_cleanup_module(void)
{
}

module_exit(ni_tio_cleanup_module);

struct ni_gpct_device *ni_gpct_device_construct(struct comedi_device *dev,
						void (*write_register) (struct
									ni_gpct
									*
									counter,
									unsigned
									bits,
									enum
									ni_gpct_register
									reg),
						unsigned (*read_register)
						(struct ni_gpct * counter,
						 enum ni_gpct_register reg),
						enum ni_gpct_variant variant,
						unsigned num_counters)
{
	unsigned i;

	struct ni_gpct_device *counter_dev =
	    kzalloc(sizeof(struct ni_gpct_device), GFP_KERNEL);
	if (counter_dev == NULL)
		return NULL;
	counter_dev->dev = dev;
	counter_dev->write_register = write_register;
	counter_dev->read_register = read_register;
	counter_dev->variant = variant;
	spin_lock_init(&counter_dev->regs_lock);
	BUG_ON(num_counters == 0);
	counter_dev->counters =
	    kzalloc(sizeof(struct ni_gpct) * num_counters, GFP_KERNEL);
	if (counter_dev->counters == NULL) {
		kfree(counter_dev);
		return NULL;
	}
	for (i = 0; i < num_counters; ++i) {
		counter_dev->counters[i].counter_dev = counter_dev;
		spin_lock_init(&counter_dev->counters[i].lock);
	}
	counter_dev->num_counters = num_counters;
	return counter_dev;
}

void ni_gpct_device_destroy(struct ni_gpct_device *counter_dev)
{
	if (counter_dev->counters == NULL)
		return;
	kfree(counter_dev->counters);
	kfree(counter_dev);
}

static int ni_tio_second_gate_registers_present(const struct ni_gpct_device
						*counter_dev)
{
	switch (counter_dev->variant) {
	case ni_gpct_variant_e_series:
		return 0;
		break;
	case ni_gpct_variant_m_series:
	case ni_gpct_variant_660x:
		return 1;
		break;
	default:
		BUG();
		break;
	}
	return 0;
}

static void ni_tio_reset_count_and_disarm(struct ni_gpct *counter)
{
	write_register(counter, Gi_Reset_Bit(counter->counter_index),
		       NITIO_Gxx_Joint_Reset_Reg(counter->counter_index));
}

void ni_tio_init_counter(struct ni_gpct *counter)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;

	ni_tio_reset_count_and_disarm(counter);
	/* initialize counter registers */
	counter_dev->regs[NITIO_Gi_Autoincrement_Reg(counter->counter_index)] =
	    0x0;
	write_register(counter,
		       counter_dev->
		       regs[NITIO_Gi_Autoincrement_Reg(counter->counter_index)],
		       NITIO_Gi_Autoincrement_Reg(counter->counter_index));
	ni_tio_set_bits(counter, NITIO_Gi_Command_Reg(counter->counter_index),
			~0, Gi_Synchronize_Gate_Bit);
	ni_tio_set_bits(counter, NITIO_Gi_Mode_Reg(counter->counter_index), ~0,
			0);
	counter_dev->regs[NITIO_Gi_LoadA_Reg(counter->counter_index)] = 0x0;
	write_register(counter,
		       counter_dev->
		       regs[NITIO_Gi_LoadA_Reg(counter->counter_index)],
		       NITIO_Gi_LoadA_Reg(counter->counter_index));
	counter_dev->regs[NITIO_Gi_LoadB_Reg(counter->counter_index)] = 0x0;
	write_register(counter,
		       counter_dev->
		       regs[NITIO_Gi_LoadB_Reg(counter->counter_index)],
		       NITIO_Gi_LoadB_Reg(counter->counter_index));
	ni_tio_set_bits(counter,
			NITIO_Gi_Input_Select_Reg(counter->counter_index), ~0,
			0);
	if (ni_tio_counting_mode_registers_present(counter_dev)) {
		ni_tio_set_bits(counter,
				NITIO_Gi_Counting_Mode_Reg(counter->
							   counter_index), ~0,
				0);
	}
	if (ni_tio_second_gate_registers_present(counter_dev)) {
		counter_dev->
		    regs[NITIO_Gi_Second_Gate_Reg(counter->counter_index)] =
		    0x0;
		write_register(counter,
			       counter_dev->
			       regs[NITIO_Gi_Second_Gate_Reg
				    (counter->counter_index)],
			       NITIO_Gi_Second_Gate_Reg(counter->
							counter_index));
	}
	ni_tio_set_bits(counter,
			NITIO_Gi_DMA_Config_Reg(counter->counter_index), ~0,
			0x0);
	ni_tio_set_bits(counter,
			NITIO_Gi_Interrupt_Enable_Reg(counter->counter_index),
			~0, 0x0);
}

static unsigned int ni_tio_counter_status(struct ni_gpct *counter)
{
	unsigned int status = 0;
	const unsigned bits = read_register(counter,
					    NITIO_Gxx_Status_Reg(counter->
								 counter_index));
	if (bits & Gi_Armed_Bit(counter->counter_index)) {
		status |= COMEDI_COUNTER_ARMED;
		if (bits & Gi_Counting_Bit(counter->counter_index))
			status |= COMEDI_COUNTER_COUNTING;
	}
	return status;
}

static void ni_tio_set_sync_mode(struct ni_gpct *counter, int force_alt_sync)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned counting_mode_reg =
	    NITIO_Gi_Counting_Mode_Reg(counter->counter_index);
	static const uint64_t min_normal_sync_period_ps = 25000;
	const uint64_t clock_period_ps = ni_tio_clock_period_ps(counter,
								ni_tio_generic_clock_src_select
								(counter));

	if (ni_tio_counting_mode_registers_present(counter_dev) == 0)
		return;

	switch (ni_tio_get_soft_copy(counter,
				     counting_mode_reg) & Gi_Counting_Mode_Mask)
	{
	case Gi_Counting_Mode_QuadratureX1_Bits:
	case Gi_Counting_Mode_QuadratureX2_Bits:
	case Gi_Counting_Mode_QuadratureX4_Bits:
	case Gi_Counting_Mode_Sync_Source_Bits:
		force_alt_sync = 1;
		break;
	default:
		break;
	}
	/* It's not clear what we should do if clock_period is unknown, so we are not
	   using the alt sync bit in that case, but allow the caller to decide by using the
	   force_alt_sync parameter. */
	if (force_alt_sync ||
	    (clock_period_ps && clock_period_ps < min_normal_sync_period_ps)) {
		ni_tio_set_bits(counter, counting_mode_reg,
				Gi_Alternate_Sync_Bit(counter_dev->variant),
				Gi_Alternate_Sync_Bit(counter_dev->variant));
	} else {
		ni_tio_set_bits(counter, counting_mode_reg,
				Gi_Alternate_Sync_Bit(counter_dev->variant),
				0x0);
	}
}

static int ni_tio_set_counter_mode(struct ni_gpct *counter, unsigned mode)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	unsigned mode_reg_mask;
	unsigned mode_reg_values;
	unsigned input_select_bits = 0;
	/* these bits map directly on to the mode register */
	static const unsigned mode_reg_direct_mask =
	    NI_GPCT_GATE_ON_BOTH_EDGES_BIT | NI_GPCT_EDGE_GATE_MODE_MASK |
	    NI_GPCT_STOP_MODE_MASK | NI_GPCT_OUTPUT_MODE_MASK |
	    NI_GPCT_HARDWARE_DISARM_MASK | NI_GPCT_LOADING_ON_TC_BIT |
	    NI_GPCT_LOADING_ON_GATE_BIT | NI_GPCT_LOAD_B_SELECT_BIT;

	mode_reg_mask = mode_reg_direct_mask | Gi_Reload_Source_Switching_Bit;
	mode_reg_values = mode & mode_reg_direct_mask;
	switch (mode & NI_GPCT_RELOAD_SOURCE_MASK) {
	case NI_GPCT_RELOAD_SOURCE_FIXED_BITS:
		break;
	case NI_GPCT_RELOAD_SOURCE_SWITCHING_BITS:
		mode_reg_values |= Gi_Reload_Source_Switching_Bit;
		break;
	case NI_GPCT_RELOAD_SOURCE_GATE_SELECT_BITS:
		input_select_bits |= Gi_Gate_Select_Load_Source_Bit;
		mode_reg_mask |= Gi_Gating_Mode_Mask;
		mode_reg_values |= Gi_Level_Gating_Bits;
		break;
	default:
		break;
	}
	ni_tio_set_bits(counter, NITIO_Gi_Mode_Reg(counter->counter_index),
			mode_reg_mask, mode_reg_values);

	if (ni_tio_counting_mode_registers_present(counter_dev)) {
		unsigned counting_mode_bits = 0;
		counting_mode_bits |=
		    (mode >> NI_GPCT_COUNTING_MODE_SHIFT) &
		    Gi_Counting_Mode_Mask;
		counting_mode_bits |=
		    ((mode >> NI_GPCT_INDEX_PHASE_BITSHIFT) <<
		     Gi_Index_Phase_Bitshift) & Gi_Index_Phase_Mask;
		if (mode & NI_GPCT_INDEX_ENABLE_BIT) {
			counting_mode_bits |= Gi_Index_Mode_Bit;
		}
		ni_tio_set_bits(counter,
				NITIO_Gi_Counting_Mode_Reg(counter->
							   counter_index),
				Gi_Counting_Mode_Mask | Gi_Index_Phase_Mask |
				Gi_Index_Mode_Bit, counting_mode_bits);
		ni_tio_set_sync_mode(counter, 0);
	}

	ni_tio_set_bits(counter, NITIO_Gi_Command_Reg(counter->counter_index),
			Gi_Up_Down_Mask,
			(mode >> NI_GPCT_COUNTING_DIRECTION_SHIFT) <<
			Gi_Up_Down_Shift);

	if (mode & NI_GPCT_OR_GATE_BIT) {
		input_select_bits |= Gi_Or_Gate_Bit;
	}
	if (mode & NI_GPCT_INVERT_OUTPUT_BIT) {
		input_select_bits |= Gi_Output_Polarity_Bit;
	}
	ni_tio_set_bits(counter,
			NITIO_Gi_Input_Select_Reg(counter->counter_index),
			Gi_Gate_Select_Load_Source_Bit | Gi_Or_Gate_Bit |
			Gi_Output_Polarity_Bit, input_select_bits);

	return 0;
}

int ni_tio_arm(struct ni_gpct *counter, int arm, unsigned start_trigger)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;

	unsigned command_transient_bits = 0;

	if (arm) {
		switch (start_trigger) {
		case NI_GPCT_ARM_IMMEDIATE:
			command_transient_bits |= Gi_Arm_Bit;
			break;
		case NI_GPCT_ARM_PAIRED_IMMEDIATE:
			command_transient_bits |= Gi_Arm_Bit | Gi_Arm_Copy_Bit;
			break;
		default:
			break;
		}
		if (ni_tio_counting_mode_registers_present(counter_dev)) {
			unsigned counting_mode_bits = 0;

			switch (start_trigger) {
			case NI_GPCT_ARM_IMMEDIATE:
			case NI_GPCT_ARM_PAIRED_IMMEDIATE:
				break;
			default:
				if (start_trigger & NI_GPCT_ARM_UNKNOWN) {
					/* pass-through the least significant bits so we can figure out what select later */
					unsigned hw_arm_select_bits =
					    (start_trigger <<
					     Gi_HW_Arm_Select_Shift) &
					    Gi_HW_Arm_Select_Mask
					    (counter_dev->variant);

					counting_mode_bits |=
					    Gi_HW_Arm_Enable_Bit |
					    hw_arm_select_bits;
				} else {
					return -EINVAL;
				}
				break;
			}
			ni_tio_set_bits(counter,
					NITIO_Gi_Counting_Mode_Reg
					(counter->counter_index),
					Gi_HW_Arm_Select_Mask
					(counter_dev->variant) |
					Gi_HW_Arm_Enable_Bit,
					counting_mode_bits);
		}
	} else {
		command_transient_bits |= Gi_Disarm_Bit;
	}
	ni_tio_set_bits_transient(counter,
				  NITIO_Gi_Command_Reg(counter->counter_index),
				  0, 0, command_transient_bits);
	return 0;
}

static unsigned ni_660x_source_select_bits(unsigned int clock_source)
{
	unsigned ni_660x_clock;
	unsigned i;
	const unsigned clock_select_bits =
	    clock_source & NI_GPCT_CLOCK_SRC_SELECT_MASK;

	switch (clock_select_bits) {
	case NI_GPCT_TIMEBASE_1_CLOCK_SRC_BITS:
		ni_660x_clock = NI_660x_Timebase_1_Clock;
		break;
	case NI_GPCT_TIMEBASE_2_CLOCK_SRC_BITS:
		ni_660x_clock = NI_660x_Timebase_2_Clock;
		break;
	case NI_GPCT_TIMEBASE_3_CLOCK_SRC_BITS:
		ni_660x_clock = NI_660x_Timebase_3_Clock;
		break;
	case NI_GPCT_LOGIC_LOW_CLOCK_SRC_BITS:
		ni_660x_clock = NI_660x_Logic_Low_Clock;
		break;
	case NI_GPCT_SOURCE_PIN_i_CLOCK_SRC_BITS:
		ni_660x_clock = NI_660x_Source_Pin_i_Clock;
		break;
	case NI_GPCT_NEXT_GATE_CLOCK_SRC_BITS:
		ni_660x_clock = NI_660x_Next_Gate_Clock;
		break;
	case NI_GPCT_NEXT_TC_CLOCK_SRC_BITS:
		ni_660x_clock = NI_660x_Next_TC_Clock;
		break;
	default:
		for (i = 0; i <= ni_660x_max_rtsi_channel; ++i) {
			if (clock_select_bits == NI_GPCT_RTSI_CLOCK_SRC_BITS(i)) {
				ni_660x_clock = NI_660x_RTSI_Clock(i);
				break;
			}
		}
		if (i <= ni_660x_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_660x_max_source_pin; ++i) {
			if (clock_select_bits ==
			    NI_GPCT_SOURCE_PIN_CLOCK_SRC_BITS(i)) {
				ni_660x_clock = NI_660x_Source_Pin_Clock(i);
				break;
			}
		}
		if (i <= ni_660x_max_source_pin)
			break;
		ni_660x_clock = 0;
		BUG();
		break;
	}
	return Gi_Source_Select_Bits(ni_660x_clock);
}

static unsigned ni_m_series_source_select_bits(unsigned int clock_source)
{
	unsigned ni_m_series_clock;
	unsigned i;
	const unsigned clock_select_bits =
	    clock_source & NI_GPCT_CLOCK_SRC_SELECT_MASK;
	switch (clock_select_bits) {
	case NI_GPCT_TIMEBASE_1_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_Timebase_1_Clock;
		break;
	case NI_GPCT_TIMEBASE_2_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_Timebase_2_Clock;
		break;
	case NI_GPCT_TIMEBASE_3_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_Timebase_3_Clock;
		break;
	case NI_GPCT_LOGIC_LOW_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_Logic_Low_Clock;
		break;
	case NI_GPCT_NEXT_GATE_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_Next_Gate_Clock;
		break;
	case NI_GPCT_NEXT_TC_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_Next_TC_Clock;
		break;
	case NI_GPCT_PXI10_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_PXI10_Clock;
		break;
	case NI_GPCT_PXI_STAR_TRIGGER_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_PXI_Star_Trigger_Clock;
		break;
	case NI_GPCT_ANALOG_TRIGGER_OUT_CLOCK_SRC_BITS:
		ni_m_series_clock = NI_M_Series_Analog_Trigger_Out_Clock;
		break;
	default:
		for (i = 0; i <= ni_m_series_max_rtsi_channel; ++i) {
			if (clock_select_bits == NI_GPCT_RTSI_CLOCK_SRC_BITS(i)) {
				ni_m_series_clock = NI_M_Series_RTSI_Clock(i);
				break;
			}
		}
		if (i <= ni_m_series_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_m_series_max_pfi_channel; ++i) {
			if (clock_select_bits == NI_GPCT_PFI_CLOCK_SRC_BITS(i)) {
				ni_m_series_clock = NI_M_Series_PFI_Clock(i);
				break;
			}
		}
		if (i <= ni_m_series_max_pfi_channel)
			break;
		printk("invalid clock source 0x%lx\n",
		       (unsigned long)clock_source);
		BUG();
		ni_m_series_clock = 0;
		break;
	}
	return Gi_Source_Select_Bits(ni_m_series_clock);
};

static void ni_tio_set_source_subselect(struct ni_gpct *counter,
					unsigned int clock_source)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned second_gate_reg =
	    NITIO_Gi_Second_Gate_Reg(counter->counter_index);

	if (counter_dev->variant != ni_gpct_variant_m_series)
		return;
	switch (clock_source & NI_GPCT_CLOCK_SRC_SELECT_MASK) {
		/* Gi_Source_Subselect is zero */
	case NI_GPCT_NEXT_GATE_CLOCK_SRC_BITS:
	case NI_GPCT_TIMEBASE_3_CLOCK_SRC_BITS:
		counter_dev->regs[second_gate_reg] &= ~Gi_Source_Subselect_Bit;
		break;
		/* Gi_Source_Subselect is one */
	case NI_GPCT_ANALOG_TRIGGER_OUT_CLOCK_SRC_BITS:
	case NI_GPCT_PXI_STAR_TRIGGER_CLOCK_SRC_BITS:
		counter_dev->regs[second_gate_reg] |= Gi_Source_Subselect_Bit;
		break;
		/* Gi_Source_Subselect doesn't matter */
	default:
		return;
		break;
	}
	write_register(counter, counter_dev->regs[second_gate_reg],
		       second_gate_reg);
}

static int ni_tio_set_clock_src(struct ni_gpct *counter,
				unsigned int clock_source,
				unsigned int period_ns)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	unsigned input_select_bits = 0;
	static const uint64_t pico_per_nano = 1000;

/*FIXME: validate clock source */
	switch (counter_dev->variant) {
	case ni_gpct_variant_660x:
		input_select_bits |= ni_660x_source_select_bits(clock_source);
		break;
	case ni_gpct_variant_e_series:
	case ni_gpct_variant_m_series:
		input_select_bits |=
		    ni_m_series_source_select_bits(clock_source);
		break;
	default:
		BUG();
		break;
	}
	if (clock_source & NI_GPCT_INVERT_CLOCK_SRC_BIT)
		input_select_bits |= Gi_Source_Polarity_Bit;
	ni_tio_set_bits(counter,
			NITIO_Gi_Input_Select_Reg(counter->counter_index),
			Gi_Source_Select_Mask | Gi_Source_Polarity_Bit,
			input_select_bits);
	ni_tio_set_source_subselect(counter, clock_source);
	if (ni_tio_counting_mode_registers_present(counter_dev)) {
		const unsigned prescaling_mode =
		    clock_source & NI_GPCT_PRESCALE_MODE_CLOCK_SRC_MASK;
		unsigned counting_mode_bits = 0;

		switch (prescaling_mode) {
		case NI_GPCT_NO_PRESCALE_CLOCK_SRC_BITS:
			break;
		case NI_GPCT_PRESCALE_X2_CLOCK_SRC_BITS:
			counting_mode_bits |=
			    Gi_Prescale_X2_Bit(counter_dev->variant);
			break;
		case NI_GPCT_PRESCALE_X8_CLOCK_SRC_BITS:
			counting_mode_bits |=
			    Gi_Prescale_X8_Bit(counter_dev->variant);
			break;
		default:
			return -EINVAL;
			break;
		}
		ni_tio_set_bits(counter,
				NITIO_Gi_Counting_Mode_Reg(counter->
							   counter_index),
				Gi_Prescale_X2_Bit(counter_dev->variant) |
				Gi_Prescale_X8_Bit(counter_dev->variant),
				counting_mode_bits);
	}
	counter->clock_period_ps = pico_per_nano * period_ns;
	ni_tio_set_sync_mode(counter, 0);
	return 0;
}

static unsigned ni_tio_clock_src_modifiers(const struct ni_gpct *counter)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned counting_mode_bits = ni_tio_get_soft_copy(counter,
								 NITIO_Gi_Counting_Mode_Reg
								 (counter->
								  counter_index));
	unsigned bits = 0;

	if (ni_tio_get_soft_copy(counter,
				 NITIO_Gi_Input_Select_Reg
				 (counter->counter_index)) &
	    Gi_Source_Polarity_Bit)
		bits |= NI_GPCT_INVERT_CLOCK_SRC_BIT;
	if (counting_mode_bits & Gi_Prescale_X2_Bit(counter_dev->variant))
		bits |= NI_GPCT_PRESCALE_X2_CLOCK_SRC_BITS;
	if (counting_mode_bits & Gi_Prescale_X8_Bit(counter_dev->variant))
		bits |= NI_GPCT_PRESCALE_X8_CLOCK_SRC_BITS;
	return bits;
}

static unsigned ni_m_series_clock_src_select(const struct ni_gpct *counter)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned second_gate_reg =
	    NITIO_Gi_Second_Gate_Reg(counter->counter_index);
	unsigned clock_source = 0;
	unsigned i;
	const unsigned input_select = (ni_tio_get_soft_copy(counter,
							    NITIO_Gi_Input_Select_Reg
							    (counter->counter_index))
				       & Gi_Source_Select_Mask) >>
	    Gi_Source_Select_Shift;

	switch (input_select) {
	case NI_M_Series_Timebase_1_Clock:
		clock_source = NI_GPCT_TIMEBASE_1_CLOCK_SRC_BITS;
		break;
	case NI_M_Series_Timebase_2_Clock:
		clock_source = NI_GPCT_TIMEBASE_2_CLOCK_SRC_BITS;
		break;
	case NI_M_Series_Timebase_3_Clock:
		if (counter_dev->regs[second_gate_reg] &
		    Gi_Source_Subselect_Bit)
			clock_source =
			    NI_GPCT_ANALOG_TRIGGER_OUT_CLOCK_SRC_BITS;
		else
			clock_source = NI_GPCT_TIMEBASE_3_CLOCK_SRC_BITS;
		break;
	case NI_M_Series_Logic_Low_Clock:
		clock_source = NI_GPCT_LOGIC_LOW_CLOCK_SRC_BITS;
		break;
	case NI_M_Series_Next_Gate_Clock:
		if (counter_dev->regs[second_gate_reg] &
		    Gi_Source_Subselect_Bit)
			clock_source = NI_GPCT_PXI_STAR_TRIGGER_CLOCK_SRC_BITS;
		else
			clock_source = NI_GPCT_NEXT_GATE_CLOCK_SRC_BITS;
		break;
	case NI_M_Series_PXI10_Clock:
		clock_source = NI_GPCT_PXI10_CLOCK_SRC_BITS;
		break;
	case NI_M_Series_Next_TC_Clock:
		clock_source = NI_GPCT_NEXT_TC_CLOCK_SRC_BITS;
		break;
	default:
		for (i = 0; i <= ni_m_series_max_rtsi_channel; ++i) {
			if (input_select == NI_M_Series_RTSI_Clock(i)) {
				clock_source = NI_GPCT_RTSI_CLOCK_SRC_BITS(i);
				break;
			}
		}
		if (i <= ni_m_series_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_m_series_max_pfi_channel; ++i) {
			if (input_select == NI_M_Series_PFI_Clock(i)) {
				clock_source = NI_GPCT_PFI_CLOCK_SRC_BITS(i);
				break;
			}
		}
		if (i <= ni_m_series_max_pfi_channel)
			break;
		BUG();
		break;
	}
	clock_source |= ni_tio_clock_src_modifiers(counter);
	return clock_source;
}

static unsigned ni_660x_clock_src_select(const struct ni_gpct *counter)
{
	unsigned clock_source = 0;
	unsigned i;
	const unsigned input_select = (ni_tio_get_soft_copy(counter,
							    NITIO_Gi_Input_Select_Reg
							    (counter->counter_index))
				       & Gi_Source_Select_Mask) >>
	    Gi_Source_Select_Shift;

	switch (input_select) {
	case NI_660x_Timebase_1_Clock:
		clock_source = NI_GPCT_TIMEBASE_1_CLOCK_SRC_BITS;
		break;
	case NI_660x_Timebase_2_Clock:
		clock_source = NI_GPCT_TIMEBASE_2_CLOCK_SRC_BITS;
		break;
	case NI_660x_Timebase_3_Clock:
		clock_source = NI_GPCT_TIMEBASE_3_CLOCK_SRC_BITS;
		break;
	case NI_660x_Logic_Low_Clock:
		clock_source = NI_GPCT_LOGIC_LOW_CLOCK_SRC_BITS;
		break;
	case NI_660x_Source_Pin_i_Clock:
		clock_source = NI_GPCT_SOURCE_PIN_i_CLOCK_SRC_BITS;
		break;
	case NI_660x_Next_Gate_Clock:
		clock_source = NI_GPCT_NEXT_GATE_CLOCK_SRC_BITS;
		break;
	case NI_660x_Next_TC_Clock:
		clock_source = NI_GPCT_NEXT_TC_CLOCK_SRC_BITS;
		break;
	default:
		for (i = 0; i <= ni_660x_max_rtsi_channel; ++i) {
			if (input_select == NI_660x_RTSI_Clock(i)) {
				clock_source = NI_GPCT_RTSI_CLOCK_SRC_BITS(i);
				break;
			}
		}
		if (i <= ni_660x_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_660x_max_source_pin; ++i) {
			if (input_select == NI_660x_Source_Pin_Clock(i)) {
				clock_source =
				    NI_GPCT_SOURCE_PIN_CLOCK_SRC_BITS(i);
				break;
			}
		}
		if (i <= ni_660x_max_source_pin)
			break;
		BUG();
		break;
	}
	clock_source |= ni_tio_clock_src_modifiers(counter);
	return clock_source;
}

static unsigned ni_tio_generic_clock_src_select(const struct ni_gpct *counter)
{
	switch (counter->counter_dev->variant) {
	case ni_gpct_variant_e_series:
	case ni_gpct_variant_m_series:
		return ni_m_series_clock_src_select(counter);
		break;
	case ni_gpct_variant_660x:
		return ni_660x_clock_src_select(counter);
		break;
	default:
		BUG();
		break;
	}
	return 0;
}

static uint64_t ni_tio_clock_period_ps(const struct ni_gpct *counter,
				       unsigned generic_clock_source)
{
	uint64_t clock_period_ps;

	switch (generic_clock_source & NI_GPCT_CLOCK_SRC_SELECT_MASK) {
	case NI_GPCT_TIMEBASE_1_CLOCK_SRC_BITS:
		clock_period_ps = 50000;
		break;
	case NI_GPCT_TIMEBASE_2_CLOCK_SRC_BITS:
		clock_period_ps = 10000000;
		break;
	case NI_GPCT_TIMEBASE_3_CLOCK_SRC_BITS:
		clock_period_ps = 12500;
		break;
	case NI_GPCT_PXI10_CLOCK_SRC_BITS:
		clock_period_ps = 100000;
		break;
	default:
		/* clock period is specified by user with prescaling already taken into account. */
		return counter->clock_period_ps;
		break;
	}

	switch (generic_clock_source & NI_GPCT_PRESCALE_MODE_CLOCK_SRC_MASK) {
	case NI_GPCT_NO_PRESCALE_CLOCK_SRC_BITS:
		break;
	case NI_GPCT_PRESCALE_X2_CLOCK_SRC_BITS:
		clock_period_ps *= 2;
		break;
	case NI_GPCT_PRESCALE_X8_CLOCK_SRC_BITS:
		clock_period_ps *= 8;
		break;
	default:
		BUG();
		break;
	}
	return clock_period_ps;
}

static void ni_tio_get_clock_src(struct ni_gpct *counter,
				 unsigned int *clock_source,
				 unsigned int *period_ns)
{
	static const unsigned pico_per_nano = 1000;
	uint64_t temp64;
	*clock_source = ni_tio_generic_clock_src_select(counter);
	temp64 = ni_tio_clock_period_ps(counter, *clock_source);
	do_div(temp64, pico_per_nano);
	*period_ns = temp64;
}

static void ni_tio_set_first_gate_modifiers(struct ni_gpct *counter,
					    unsigned int gate_source)
{
	const unsigned mode_mask = Gi_Gate_Polarity_Bit | Gi_Gating_Mode_Mask;
	unsigned mode_values = 0;

	if (gate_source & CR_INVERT) {
		mode_values |= Gi_Gate_Polarity_Bit;
	}
	if (gate_source & CR_EDGE) {
		mode_values |= Gi_Rising_Edge_Gating_Bits;
	} else {
		mode_values |= Gi_Level_Gating_Bits;
	}
	ni_tio_set_bits(counter, NITIO_Gi_Mode_Reg(counter->counter_index),
			mode_mask, mode_values);
}

static int ni_660x_set_first_gate(struct ni_gpct *counter,
				  unsigned int gate_source)
{
	const unsigned selected_gate = CR_CHAN(gate_source);
	/* bits of selected_gate that may be meaningful to input select register */
	const unsigned selected_gate_mask = 0x1f;
	unsigned ni_660x_gate_select;
	unsigned i;

	switch (selected_gate) {
	case NI_GPCT_NEXT_SOURCE_GATE_SELECT:
		ni_660x_gate_select = NI_660x_Next_SRC_Gate_Select;
		break;
	case NI_GPCT_NEXT_OUT_GATE_SELECT:
	case NI_GPCT_LOGIC_LOW_GATE_SELECT:
	case NI_GPCT_SOURCE_PIN_i_GATE_SELECT:
	case NI_GPCT_GATE_PIN_i_GATE_SELECT:
		ni_660x_gate_select = selected_gate & selected_gate_mask;
		break;
	default:
		for (i = 0; i <= ni_660x_max_rtsi_channel; ++i) {
			if (selected_gate == NI_GPCT_RTSI_GATE_SELECT(i)) {
				ni_660x_gate_select =
				    selected_gate & selected_gate_mask;
				break;
			}
		}
		if (i <= ni_660x_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_660x_max_gate_pin; ++i) {
			if (selected_gate == NI_GPCT_GATE_PIN_GATE_SELECT(i)) {
				ni_660x_gate_select =
				    selected_gate & selected_gate_mask;
				break;
			}
		}
		if (i <= ni_660x_max_gate_pin)
			break;
		return -EINVAL;
		break;
	}
	ni_tio_set_bits(counter,
			NITIO_Gi_Input_Select_Reg(counter->counter_index),
			Gi_Gate_Select_Mask,
			Gi_Gate_Select_Bits(ni_660x_gate_select));
	return 0;
}

static int ni_m_series_set_first_gate(struct ni_gpct *counter,
				      unsigned int gate_source)
{
	const unsigned selected_gate = CR_CHAN(gate_source);
	/* bits of selected_gate that may be meaningful to input select register */
	const unsigned selected_gate_mask = 0x1f;
	unsigned ni_m_series_gate_select;
	unsigned i;

	switch (selected_gate) {
	case NI_GPCT_TIMESTAMP_MUX_GATE_SELECT:
	case NI_GPCT_AI_START2_GATE_SELECT:
	case NI_GPCT_PXI_STAR_TRIGGER_GATE_SELECT:
	case NI_GPCT_NEXT_OUT_GATE_SELECT:
	case NI_GPCT_AI_START1_GATE_SELECT:
	case NI_GPCT_NEXT_SOURCE_GATE_SELECT:
	case NI_GPCT_ANALOG_TRIGGER_OUT_GATE_SELECT:
	case NI_GPCT_LOGIC_LOW_GATE_SELECT:
		ni_m_series_gate_select = selected_gate & selected_gate_mask;
		break;
	default:
		for (i = 0; i <= ni_m_series_max_rtsi_channel; ++i) {
			if (selected_gate == NI_GPCT_RTSI_GATE_SELECT(i)) {
				ni_m_series_gate_select =
				    selected_gate & selected_gate_mask;
				break;
			}
		}
		if (i <= ni_m_series_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_m_series_max_pfi_channel; ++i) {
			if (selected_gate == NI_GPCT_PFI_GATE_SELECT(i)) {
				ni_m_series_gate_select =
				    selected_gate & selected_gate_mask;
				break;
			}
		}
		if (i <= ni_m_series_max_pfi_channel)
			break;
		return -EINVAL;
		break;
	}
	ni_tio_set_bits(counter,
			NITIO_Gi_Input_Select_Reg(counter->counter_index),
			Gi_Gate_Select_Mask,
			Gi_Gate_Select_Bits(ni_m_series_gate_select));
	return 0;
}

static int ni_660x_set_second_gate(struct ni_gpct *counter,
				   unsigned int gate_source)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned second_gate_reg =
	    NITIO_Gi_Second_Gate_Reg(counter->counter_index);
	const unsigned selected_second_gate = CR_CHAN(gate_source);
	/* bits of second_gate that may be meaningful to second gate register */
	static const unsigned selected_second_gate_mask = 0x1f;
	unsigned ni_660x_second_gate_select;
	unsigned i;

	switch (selected_second_gate) {
	case NI_GPCT_SOURCE_PIN_i_GATE_SELECT:
	case NI_GPCT_UP_DOWN_PIN_i_GATE_SELECT:
	case NI_GPCT_SELECTED_GATE_GATE_SELECT:
	case NI_GPCT_NEXT_OUT_GATE_SELECT:
	case NI_GPCT_LOGIC_LOW_GATE_SELECT:
		ni_660x_second_gate_select =
		    selected_second_gate & selected_second_gate_mask;
		break;
	case NI_GPCT_NEXT_SOURCE_GATE_SELECT:
		ni_660x_second_gate_select =
		    NI_660x_Next_SRC_Second_Gate_Select;
		break;
	default:
		for (i = 0; i <= ni_660x_max_rtsi_channel; ++i) {
			if (selected_second_gate == NI_GPCT_RTSI_GATE_SELECT(i)) {
				ni_660x_second_gate_select =
				    selected_second_gate &
				    selected_second_gate_mask;
				break;
			}
		}
		if (i <= ni_660x_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_660x_max_up_down_pin; ++i) {
			if (selected_second_gate ==
			    NI_GPCT_UP_DOWN_PIN_GATE_SELECT(i)) {
				ni_660x_second_gate_select =
				    selected_second_gate &
				    selected_second_gate_mask;
				break;
			}
		}
		if (i <= ni_660x_max_up_down_pin)
			break;
		return -EINVAL;
		break;
	};
	counter_dev->regs[second_gate_reg] |= Gi_Second_Gate_Mode_Bit;
	counter_dev->regs[second_gate_reg] &= ~Gi_Second_Gate_Select_Mask;
	counter_dev->regs[second_gate_reg] |=
	    Gi_Second_Gate_Select_Bits(ni_660x_second_gate_select);
	write_register(counter, counter_dev->regs[second_gate_reg],
		       second_gate_reg);
	return 0;
}

static int ni_m_series_set_second_gate(struct ni_gpct *counter,
				       unsigned int gate_source)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned second_gate_reg =
	    NITIO_Gi_Second_Gate_Reg(counter->counter_index);
	const unsigned selected_second_gate = CR_CHAN(gate_source);
	/* bits of second_gate that may be meaningful to second gate register */
	static const unsigned selected_second_gate_mask = 0x1f;
	unsigned ni_m_series_second_gate_select;

	/* FIXME: We don't know what the m-series second gate codes are, so we'll just pass
	   the bits through for now. */
	switch (selected_second_gate) {
	default:
		ni_m_series_second_gate_select =
		    selected_second_gate & selected_second_gate_mask;
		break;
	};
	counter_dev->regs[second_gate_reg] |= Gi_Second_Gate_Mode_Bit;
	counter_dev->regs[second_gate_reg] &= ~Gi_Second_Gate_Select_Mask;
	counter_dev->regs[second_gate_reg] |=
	    Gi_Second_Gate_Select_Bits(ni_m_series_second_gate_select);
	write_register(counter, counter_dev->regs[second_gate_reg],
		       second_gate_reg);
	return 0;
}

int ni_tio_set_gate_src(struct ni_gpct *counter, unsigned gate_index,
			unsigned int gate_source)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned second_gate_reg =
	    NITIO_Gi_Second_Gate_Reg(counter->counter_index);

	switch (gate_index) {
	case 0:
		if (CR_CHAN(gate_source) == NI_GPCT_DISABLED_GATE_SELECT) {
			ni_tio_set_bits(counter,
					NITIO_Gi_Mode_Reg(counter->
							  counter_index),
					Gi_Gating_Mode_Mask,
					Gi_Gating_Disabled_Bits);
			return 0;
		}
		ni_tio_set_first_gate_modifiers(counter, gate_source);
		switch (counter_dev->variant) {
		case ni_gpct_variant_e_series:
		case ni_gpct_variant_m_series:
			return ni_m_series_set_first_gate(counter, gate_source);
			break;
		case ni_gpct_variant_660x:
			return ni_660x_set_first_gate(counter, gate_source);
			break;
		default:
			BUG();
			break;
		}
		break;
	case 1:
		if (ni_tio_second_gate_registers_present(counter_dev) == 0)
			return -EINVAL;
		if (CR_CHAN(gate_source) == NI_GPCT_DISABLED_GATE_SELECT) {
			counter_dev->regs[second_gate_reg] &=
			    ~Gi_Second_Gate_Mode_Bit;
			write_register(counter,
				       counter_dev->regs[second_gate_reg],
				       second_gate_reg);
			return 0;
		}
		if (gate_source & CR_INVERT) {
			counter_dev->regs[second_gate_reg] |=
			    Gi_Second_Gate_Polarity_Bit;
		} else {
			counter_dev->regs[second_gate_reg] &=
			    ~Gi_Second_Gate_Polarity_Bit;
		}
		switch (counter_dev->variant) {
		case ni_gpct_variant_m_series:
			return ni_m_series_set_second_gate(counter,
							   gate_source);
			break;
		case ni_gpct_variant_660x:
			return ni_660x_set_second_gate(counter, gate_source);
			break;
		default:
			BUG();
			break;
		}
		break;
	default:
		return -EINVAL;
		break;
	}
	return 0;
}

static int ni_tio_set_other_src(struct ni_gpct *counter, unsigned index,
				unsigned int source)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;

	if (counter_dev->variant == ni_gpct_variant_m_series) {
		unsigned int abz_reg, shift, mask;

		abz_reg = NITIO_Gi_ABZ_Reg(counter->counter_index);
		switch (index) {
		case NI_GPCT_SOURCE_ENCODER_A:
			shift = 10;
			break;
		case NI_GPCT_SOURCE_ENCODER_B:
			shift = 5;
			break;
		case NI_GPCT_SOURCE_ENCODER_Z:
			shift = 0;
			break;
		default:
			return -EINVAL;
			break;
		}
		mask = 0x1f << shift;
		if (source > 0x1f) {
			/* Disable gate */
			source = 0x1f;
		}
		counter_dev->regs[abz_reg] &= ~mask;
		counter_dev->regs[abz_reg] |= (source << shift) & mask;
		write_register(counter, counter_dev->regs[abz_reg], abz_reg);
/* printk("%s %x %d %d\n", __func__, counter_dev->regs[abz_reg], index, source); */
		return 0;
	}
	return -EINVAL;
}

static unsigned ni_660x_first_gate_to_generic_gate_source(unsigned
							  ni_660x_gate_select)
{
	unsigned i;

	switch (ni_660x_gate_select) {
	case NI_660x_Source_Pin_i_Gate_Select:
		return NI_GPCT_SOURCE_PIN_i_GATE_SELECT;
		break;
	case NI_660x_Gate_Pin_i_Gate_Select:
		return NI_GPCT_GATE_PIN_i_GATE_SELECT;
		break;
	case NI_660x_Next_SRC_Gate_Select:
		return NI_GPCT_NEXT_SOURCE_GATE_SELECT;
		break;
	case NI_660x_Next_Out_Gate_Select:
		return NI_GPCT_NEXT_OUT_GATE_SELECT;
		break;
	case NI_660x_Logic_Low_Gate_Select:
		return NI_GPCT_LOGIC_LOW_GATE_SELECT;
		break;
	default:
		for (i = 0; i <= ni_660x_max_rtsi_channel; ++i) {
			if (ni_660x_gate_select == NI_660x_RTSI_Gate_Select(i)) {
				return NI_GPCT_RTSI_GATE_SELECT(i);
				break;
			}
		}
		if (i <= ni_660x_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_660x_max_gate_pin; ++i) {
			if (ni_660x_gate_select ==
			    NI_660x_Gate_Pin_Gate_Select(i)) {
				return NI_GPCT_GATE_PIN_GATE_SELECT(i);
				break;
			}
		}
		if (i <= ni_660x_max_gate_pin)
			break;
		BUG();
		break;
	}
	return 0;
};

static unsigned ni_m_series_first_gate_to_generic_gate_source(unsigned
							      ni_m_series_gate_select)
{
	unsigned i;

	switch (ni_m_series_gate_select) {
	case NI_M_Series_Timestamp_Mux_Gate_Select:
		return NI_GPCT_TIMESTAMP_MUX_GATE_SELECT;
		break;
	case NI_M_Series_AI_START2_Gate_Select:
		return NI_GPCT_AI_START2_GATE_SELECT;
		break;
	case NI_M_Series_PXI_Star_Trigger_Gate_Select:
		return NI_GPCT_PXI_STAR_TRIGGER_GATE_SELECT;
		break;
	case NI_M_Series_Next_Out_Gate_Select:
		return NI_GPCT_NEXT_OUT_GATE_SELECT;
		break;
	case NI_M_Series_AI_START1_Gate_Select:
		return NI_GPCT_AI_START1_GATE_SELECT;
		break;
	case NI_M_Series_Next_SRC_Gate_Select:
		return NI_GPCT_NEXT_SOURCE_GATE_SELECT;
		break;
	case NI_M_Series_Analog_Trigger_Out_Gate_Select:
		return NI_GPCT_ANALOG_TRIGGER_OUT_GATE_SELECT;
		break;
	case NI_M_Series_Logic_Low_Gate_Select:
		return NI_GPCT_LOGIC_LOW_GATE_SELECT;
		break;
	default:
		for (i = 0; i <= ni_m_series_max_rtsi_channel; ++i) {
			if (ni_m_series_gate_select ==
			    NI_M_Series_RTSI_Gate_Select(i)) {
				return NI_GPCT_RTSI_GATE_SELECT(i);
				break;
			}
		}
		if (i <= ni_m_series_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_m_series_max_pfi_channel; ++i) {
			if (ni_m_series_gate_select ==
			    NI_M_Series_PFI_Gate_Select(i)) {
				return NI_GPCT_PFI_GATE_SELECT(i);
				break;
			}
		}
		if (i <= ni_m_series_max_pfi_channel)
			break;
		BUG();
		break;
	}
	return 0;
};

static unsigned ni_660x_second_gate_to_generic_gate_source(unsigned
							   ni_660x_gate_select)
{
	unsigned i;

	switch (ni_660x_gate_select) {
	case NI_660x_Source_Pin_i_Second_Gate_Select:
		return NI_GPCT_SOURCE_PIN_i_GATE_SELECT;
		break;
	case NI_660x_Up_Down_Pin_i_Second_Gate_Select:
		return NI_GPCT_UP_DOWN_PIN_i_GATE_SELECT;
		break;
	case NI_660x_Next_SRC_Second_Gate_Select:
		return NI_GPCT_NEXT_SOURCE_GATE_SELECT;
		break;
	case NI_660x_Next_Out_Second_Gate_Select:
		return NI_GPCT_NEXT_OUT_GATE_SELECT;
		break;
	case NI_660x_Selected_Gate_Second_Gate_Select:
		return NI_GPCT_SELECTED_GATE_GATE_SELECT;
		break;
	case NI_660x_Logic_Low_Second_Gate_Select:
		return NI_GPCT_LOGIC_LOW_GATE_SELECT;
		break;
	default:
		for (i = 0; i <= ni_660x_max_rtsi_channel; ++i) {
			if (ni_660x_gate_select ==
			    NI_660x_RTSI_Second_Gate_Select(i)) {
				return NI_GPCT_RTSI_GATE_SELECT(i);
				break;
			}
		}
		if (i <= ni_660x_max_rtsi_channel)
			break;
		for (i = 0; i <= ni_660x_max_up_down_pin; ++i) {
			if (ni_660x_gate_select ==
			    NI_660x_Up_Down_Pin_Second_Gate_Select(i)) {
				return NI_GPCT_UP_DOWN_PIN_GATE_SELECT(i);
				break;
			}
		}
		if (i <= ni_660x_max_up_down_pin)
			break;
		BUG();
		break;
	}
	return 0;
};

static unsigned ni_m_series_second_gate_to_generic_gate_source(unsigned
							       ni_m_series_gate_select)
{
	/*FIXME: the second gate sources for the m series are undocumented, so we just return
	 * the raw bits for now. */
	switch (ni_m_series_gate_select) {
	default:
		return ni_m_series_gate_select;
		break;
	}
	return 0;
};

static int ni_tio_get_gate_src(struct ni_gpct *counter, unsigned gate_index,
			       unsigned int *gate_source)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned mode_bits = ni_tio_get_soft_copy(counter,
							NITIO_Gi_Mode_Reg
							(counter->
							 counter_index));
	const unsigned second_gate_reg =
	    NITIO_Gi_Second_Gate_Reg(counter->counter_index);
	unsigned gate_select_bits;

	switch (gate_index) {
	case 0:
		if ((mode_bits & Gi_Gating_Mode_Mask) ==
		    Gi_Gating_Disabled_Bits) {
			*gate_source = NI_GPCT_DISABLED_GATE_SELECT;
			return 0;
		} else {
			gate_select_bits =
			    (ni_tio_get_soft_copy(counter,
						  NITIO_Gi_Input_Select_Reg
						  (counter->counter_index)) &
			     Gi_Gate_Select_Mask) >> Gi_Gate_Select_Shift;
		}
		switch (counter_dev->variant) {
		case ni_gpct_variant_e_series:
		case ni_gpct_variant_m_series:
			*gate_source =
			    ni_m_series_first_gate_to_generic_gate_source
			    (gate_select_bits);
			break;
		case ni_gpct_variant_660x:
			*gate_source =
			    ni_660x_first_gate_to_generic_gate_source
			    (gate_select_bits);
			break;
		default:
			BUG();
			break;
		}
		if (mode_bits & Gi_Gate_Polarity_Bit) {
			*gate_source |= CR_INVERT;
		}
		if ((mode_bits & Gi_Gating_Mode_Mask) != Gi_Level_Gating_Bits) {
			*gate_source |= CR_EDGE;
		}
		break;
	case 1:
		if ((mode_bits & Gi_Gating_Mode_Mask) == Gi_Gating_Disabled_Bits
		    || (counter_dev->regs[second_gate_reg] &
			Gi_Second_Gate_Mode_Bit)
		    == 0) {
			*gate_source = NI_GPCT_DISABLED_GATE_SELECT;
			return 0;
		} else {
			gate_select_bits =
			    (counter_dev->regs[second_gate_reg] &
			     Gi_Second_Gate_Select_Mask) >>
			    Gi_Second_Gate_Select_Shift;
		}
		switch (counter_dev->variant) {
		case ni_gpct_variant_e_series:
		case ni_gpct_variant_m_series:
			*gate_source =
			    ni_m_series_second_gate_to_generic_gate_source
			    (gate_select_bits);
			break;
		case ni_gpct_variant_660x:
			*gate_source =
			    ni_660x_second_gate_to_generic_gate_source
			    (gate_select_bits);
			break;
		default:
			BUG();
			break;
		}
		if (counter_dev->regs[second_gate_reg] &
		    Gi_Second_Gate_Polarity_Bit) {
			*gate_source |= CR_INVERT;
		}
		/* second gate can't have edge/level mode set independently */
		if ((mode_bits & Gi_Gating_Mode_Mask) != Gi_Level_Gating_Bits) {
			*gate_source |= CR_EDGE;
		}
		break;
	default:
		return -EINVAL;
		break;
	}
	return 0;
}

int ni_tio_insn_config(struct ni_gpct *counter,
		       struct comedi_insn *insn, unsigned int *data)
{
	switch (data[0]) {
	case INSN_CONFIG_SET_COUNTER_MODE:
		return ni_tio_set_counter_mode(counter, data[1]);
		break;
	case INSN_CONFIG_ARM:
		return ni_tio_arm(counter, 1, data[1]);
		break;
	case INSN_CONFIG_DISARM:
		ni_tio_arm(counter, 0, 0);
		return 0;
		break;
	case INSN_CONFIG_GET_COUNTER_STATUS:
		data[1] = ni_tio_counter_status(counter);
		data[2] = counter_status_mask;
		return 0;
		break;
	case INSN_CONFIG_SET_CLOCK_SRC:
		return ni_tio_set_clock_src(counter, data[1], data[2]);
		break;
	case INSN_CONFIG_GET_CLOCK_SRC:
		ni_tio_get_clock_src(counter, &data[1], &data[2]);
		return 0;
		break;
	case INSN_CONFIG_SET_GATE_SRC:
		return ni_tio_set_gate_src(counter, data[1], data[2]);
		break;
	case INSN_CONFIG_GET_GATE_SRC:
		return ni_tio_get_gate_src(counter, data[1], &data[2]);
		break;
	case INSN_CONFIG_SET_OTHER_SRC:
		return ni_tio_set_other_src(counter, data[1], data[2]);
		break;
	case INSN_CONFIG_RESET:
		ni_tio_reset_count_and_disarm(counter);
		return 0;
		break;
	default:
		break;
	}
	return -EINVAL;
}

int ni_tio_rinsn(struct ni_gpct *counter, struct comedi_insn *insn,
		 unsigned int *data)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned channel = CR_CHAN(insn->chanspec);
	unsigned first_read;
	unsigned second_read;
	unsigned correct_read;

	if (insn->n < 1)
		return 0;
	switch (channel) {
	case 0:
		ni_tio_set_bits(counter,
				NITIO_Gi_Command_Reg(counter->counter_index),
				Gi_Save_Trace_Bit, 0);
		ni_tio_set_bits(counter,
				NITIO_Gi_Command_Reg(counter->counter_index),
				Gi_Save_Trace_Bit, Gi_Save_Trace_Bit);
		/* The count doesn't get latched until the next clock edge, so it is possible the count
		   may change (once) while we are reading.  Since the read of the SW_Save_Reg isn't
		   atomic (apparently even when it's a 32 bit register according to 660x docs),
		   we need to read twice and make sure the reading hasn't changed.  If it has,
		   a third read will be correct since the count value will definitely have latched by then. */
		first_read =
		    read_register(counter,
				  NITIO_Gi_SW_Save_Reg(counter->counter_index));
		second_read =
		    read_register(counter,
				  NITIO_Gi_SW_Save_Reg(counter->counter_index));
		if (first_read != second_read)
			correct_read =
			    read_register(counter,
					  NITIO_Gi_SW_Save_Reg(counter->
							       counter_index));
		else
			correct_read = first_read;
		data[0] = correct_read;
		return 0;
		break;
	case 1:
		data[0] =
		    counter_dev->
		    regs[NITIO_Gi_LoadA_Reg(counter->counter_index)];
		break;
	case 2:
		data[0] =
		    counter_dev->
		    regs[NITIO_Gi_LoadB_Reg(counter->counter_index)];
		break;
	};
	return 0;
}

static unsigned ni_tio_next_load_register(struct ni_gpct *counter)
{
	const unsigned bits = read_register(counter,
					    NITIO_Gxx_Status_Reg(counter->
								 counter_index));

	if (bits & Gi_Next_Load_Source_Bit(counter->counter_index)) {
		return NITIO_Gi_LoadB_Reg(counter->counter_index);
	} else {
		return NITIO_Gi_LoadA_Reg(counter->counter_index);
	}
}

int ni_tio_winsn(struct ni_gpct *counter, struct comedi_insn *insn,
		 unsigned int *data)
{
	struct ni_gpct_device *counter_dev = counter->counter_dev;
	const unsigned channel = CR_CHAN(insn->chanspec);
	unsigned load_reg;

	if (insn->n < 1)
		return 0;
	switch (channel) {
	case 0:
		/* Unsafe if counter is armed.  Should probably check status and return -EBUSY if armed. */
		/* Don't disturb load source select, just use whichever load register is already selected. */
		load_reg = ni_tio_next_load_register(counter);
		write_register(counter, data[0], load_reg);
		ni_tio_set_bits_transient(counter,
					  NITIO_Gi_Command_Reg(counter->
							       counter_index),
					  0, 0, Gi_Load_Bit);
		/* restore state of load reg to whatever the user set last set it to */
		write_register(counter, counter_dev->regs[load_reg], load_reg);
		break;
	case 1:
		counter_dev->regs[NITIO_Gi_LoadA_Reg(counter->counter_index)] =
		    data[0];
		write_register(counter, data[0],
			       NITIO_Gi_LoadA_Reg(counter->counter_index));
		break;
	case 2:
		counter_dev->regs[NITIO_Gi_LoadB_Reg(counter->counter_index)] =
		    data[0];
		write_register(counter, data[0],
			       NITIO_Gi_LoadB_Reg(counter->counter_index));
		break;
	default:
		return -EINVAL;
		break;
	}
	return 0;
}

EXPORT_SYMBOL_GPL(ni_tio_rinsn);
EXPORT_SYMBOL_GPL(ni_tio_winsn);
EXPORT_SYMBOL_GPL(ni_tio_insn_config);
EXPORT_SYMBOL_GPL(ni_tio_init_counter);
EXPORT_SYMBOL_GPL(ni_tio_arm);
EXPORT_SYMBOL_GPL(ni_tio_set_gate_src);
EXPORT_SYMBOL_GPL(ni_gpct_device_construct);
EXPORT_SYMBOL_GPL(ni_gpct_device_destroy);