Linux-2.6.33.2/drivers/staging/rt2860/common/cmm_aes.c

Compare this file to the similar file:
Show the results in this format:

/*
 *************************************************************************
 * Ralink Tech Inc.
 * 5F., No.36, Taiyuan St., Jhubei City,
 * Hsinchu County 302,
 * Taiwan, R.O.C.
 *
 * (c) Copyright 2002-2007, Ralink Technology, Inc.
 *
 * This program is free software; you can redistribute it and/or modify  *
 * it under the terms of the GNU General Public License as published by  *
 * the Free Software Foundation; either version 2 of the License, or     *
 * (at your option) any later version.                                   *
 *                                                                       *
 * This program is distributed in the hope that it will be useful,       *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 * GNU General Public License for more details.                          *
 *                                                                       *
 * You should have received a copy of the GNU General Public License     *
 * along with this program; if not, write to the                         *
 * Free Software Foundation, Inc.,                                       *
 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 *                                                                       *
 *************************************************************************

	Module Name:
	cmm_aes.c

	Abstract:

	Revision History:
	Who			When			What
	--------	----------		----------------------------------------------
	Paul Wu		02-25-02		Initial
*/

#include	"../rt_config.h"

struct aes_context {
	u32 erk[64];		/* encryption round keys */
	u32 drk[64];		/* decryption round keys */
	int nr;			/* number of rounds */
};

/*****************************/
/******** SBOX Table *********/
/*****************************/

u8 SboxTable[256] = {
	0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
	0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
	0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
	0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
	0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
	0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
	0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
	0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
	0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
	0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
	0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
	0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
	0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
	0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
	0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
	0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
	0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
	0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
	0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
	0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
	0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
	0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
	0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
	0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
	0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
	0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
	0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
	0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
	0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
	0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
	0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
	0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};

void xor_32(u8 *a, u8 *b, u8 *out)
{
	int i;

	for (i = 0; i < 4; i++) {
		out[i] = a[i] ^ b[i];
	}
}

void xor_128(u8 *a, u8 *b, u8 *out)
{
	int i;

	for (i = 0; i < 16; i++) {
		out[i] = a[i] ^ b[i];
	}
}

u8 RTMPCkipSbox(u8 a)
{
	return SboxTable[(int)a];
}

void next_key(u8 *key, int round)
{
	u8 rcon;
	u8 sbox_key[4];
	u8 rcon_table[12] = {
		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
		0x1b, 0x36, 0x36, 0x36
	};

	sbox_key[0] = RTMPCkipSbox(key[13]);
	sbox_key[1] = RTMPCkipSbox(key[14]);
	sbox_key[2] = RTMPCkipSbox(key[15]);
	sbox_key[3] = RTMPCkipSbox(key[12]);

	rcon = rcon_table[round];

	xor_32(&key[0], sbox_key, &key[0]);
	key[0] = key[0] ^ rcon;

	xor_32(&key[4], &key[0], &key[4]);
	xor_32(&key[8], &key[4], &key[8]);
	xor_32(&key[12], &key[8], &key[12]);
}

void byte_sub(u8 *in, u8 *out)
{
	int i;

	for (i = 0; i < 16; i++) {
		out[i] = RTMPCkipSbox(in[i]);
	}
}

/************************************/
/* bitwise_xor()                    */
/* A 128 bit, bitwise exclusive or  */
/************************************/

void bitwise_xor(unsigned char *ina, unsigned char *inb, unsigned char *out)
{
	int i;
	for (i = 0; i < 16; i++) {
		out[i] = ina[i] ^ inb[i];
	}
}

void shift_row(u8 *in, u8 *out)
{
	out[0] = in[0];
	out[1] = in[5];
	out[2] = in[10];
	out[3] = in[15];
	out[4] = in[4];
	out[5] = in[9];
	out[6] = in[14];
	out[7] = in[3];
	out[8] = in[8];
	out[9] = in[13];
	out[10] = in[2];
	out[11] = in[7];
	out[12] = in[12];
	out[13] = in[1];
	out[14] = in[6];
	out[15] = in[11];
}

void mix_column(u8 *in, u8 *out)
{
	int i;
	u8 add1b[4];
	u8 add1bf7[4];
	u8 rotl[4];
	u8 swap_halfs[4];
	u8 andf7[4];
	u8 rotr[4];
	u8 temp[4];
	u8 tempb[4];

	for (i = 0; i < 4; i++) {
		if ((in[i] & 0x80) == 0x80)
			add1b[i] = 0x1b;
		else
			add1b[i] = 0x00;
	}

	swap_halfs[0] = in[2];	/* Swap halfs */
	swap_halfs[1] = in[3];
	swap_halfs[2] = in[0];
	swap_halfs[3] = in[1];

	rotl[0] = in[3];	/* Rotate left 8 bits */
	rotl[1] = in[0];
	rotl[2] = in[1];
	rotl[3] = in[2];

	andf7[0] = in[0] & 0x7f;
	andf7[1] = in[1] & 0x7f;
	andf7[2] = in[2] & 0x7f;
	andf7[3] = in[3] & 0x7f;

	for (i = 3; i > 0; i--) {	/* logical shift left 1 bit */
		andf7[i] = andf7[i] << 1;
		if ((andf7[i - 1] & 0x80) == 0x80) {
			andf7[i] = (andf7[i] | 0x01);
		}
	}
	andf7[0] = andf7[0] << 1;
	andf7[0] = andf7[0] & 0xfe;

	xor_32(add1b, andf7, add1bf7);

	xor_32(in, add1bf7, rotr);

	temp[0] = rotr[0];	/* Rotate right 8 bits */
	rotr[0] = rotr[1];
	rotr[1] = rotr[2];
	rotr[2] = rotr[3];
	rotr[3] = temp[0];

	xor_32(add1bf7, rotr, temp);
	xor_32(swap_halfs, rotl, tempb);
	xor_32(temp, tempb, out);
}

/************************************************/
/* construct_mic_header1()                      */
/* Builds the first MIC header block from       */
/* header fields.                               */
/************************************************/

void construct_mic_header1(unsigned char *mic_header1,
			   int header_length, unsigned char *mpdu)
{
	mic_header1[0] = (unsigned char)((header_length - 2) / 256);
	mic_header1[1] = (unsigned char)((header_length - 2) % 256);
	mic_header1[2] = mpdu[0] & 0xcf;	/* Mute CF poll & CF ack bits */
	mic_header1[3] = mpdu[1] & 0xc7;	/* Mute retry, more data and pwr mgt bits */
	mic_header1[4] = mpdu[4];	/* A1 */
	mic_header1[5] = mpdu[5];
	mic_header1[6] = mpdu[6];
	mic_header1[7] = mpdu[7];
	mic_header1[8] = mpdu[8];
	mic_header1[9] = mpdu[9];
	mic_header1[10] = mpdu[10];	/* A2 */
	mic_header1[11] = mpdu[11];
	mic_header1[12] = mpdu[12];
	mic_header1[13] = mpdu[13];
	mic_header1[14] = mpdu[14];
	mic_header1[15] = mpdu[15];
}

/************************************************/
/* construct_mic_header2()                      */
/* Builds the last MIC header block from        */
/* header fields.                               */
/************************************************/

void construct_mic_header2(unsigned char *mic_header2,
			   unsigned char *mpdu, int a4_exists, int qc_exists)
{
	int i;

	for (i = 0; i < 16; i++)
		mic_header2[i] = 0x00;

	mic_header2[0] = mpdu[16];	/* A3 */
	mic_header2[1] = mpdu[17];
	mic_header2[2] = mpdu[18];
	mic_header2[3] = mpdu[19];
	mic_header2[4] = mpdu[20];
	mic_header2[5] = mpdu[21];

	/* In Sequence Control field, mute sequence numer bits (12-bit) */
	mic_header2[6] = mpdu[22] & 0x0f;	/* SC */
	mic_header2[7] = 0x00;	/* mpdu[23]; */

	if ((!qc_exists) & a4_exists) {
		for (i = 0; i < 6; i++)
			mic_header2[8 + i] = mpdu[24 + i];	/* A4 */

	}

	if (qc_exists && (!a4_exists)) {
		mic_header2[8] = mpdu[24] & 0x0f;	/* mute bits 15 - 4 */
		mic_header2[9] = mpdu[25] & 0x00;
	}

	if (qc_exists && a4_exists) {
		for (i = 0; i < 6; i++)
			mic_header2[8 + i] = mpdu[24 + i];	/* A4 */

		mic_header2[14] = mpdu[30] & 0x0f;
		mic_header2[15] = mpdu[31] & 0x00;
	}
}

/************************************************/
/* construct_mic_iv()                           */
/* Builds the MIC IV from header fields and PN  */
/************************************************/

void construct_mic_iv(unsigned char *mic_iv,
		      int qc_exists,
		      int a4_exists,
		      unsigned char *mpdu,
		      unsigned int payload_length, unsigned char *pn_vector)
{
	int i;

	mic_iv[0] = 0x59;
	if (qc_exists && a4_exists)
		mic_iv[1] = mpdu[30] & 0x0f;	/* QoS_TC           */
	if (qc_exists && !a4_exists)
		mic_iv[1] = mpdu[24] & 0x0f;	/* mute bits 7-4    */
	if (!qc_exists)
		mic_iv[1] = 0x00;
	for (i = 2; i < 8; i++)
		mic_iv[i] = mpdu[i + 8];	/* mic_iv[2:7] = A2[0:5] = mpdu[10:15] */
#ifdef CONSISTENT_PN_ORDER
	for (i = 8; i < 14; i++)
		mic_iv[i] = pn_vector[i - 8];	/* mic_iv[8:13] = PN[0:5] */
#else
	for (i = 8; i < 14; i++)
		mic_iv[i] = pn_vector[13 - i];	/* mic_iv[8:13] = PN[5:0] */
#endif
	i = (payload_length / 256);
	i = (payload_length % 256);
	mic_iv[14] = (unsigned char)(payload_length / 256);
	mic_iv[15] = (unsigned char)(payload_length % 256);

}

/****************************************/
/* aes128k128d()                        */
/* Performs a 128 bit AES encrypt with  */
/* 128 bit data.                        */
/****************************************/
void aes128k128d(unsigned char *key, unsigned char *data,
		 unsigned char *ciphertext)
{
	int round;
	int i;
	unsigned char intermediatea[16];
	unsigned char intermediateb[16];
	unsigned char round_key[16];

	for (i = 0; i < 16; i++)
		round_key[i] = key[i];

	for (round = 0; round < 11; round++) {
		if (round == 0) {
			xor_128(round_key, data, ciphertext);
			next_key(round_key, round);
		} else if (round == 10) {
			byte_sub(ciphertext, intermediatea);
			shift_row(intermediatea, intermediateb);
			xor_128(intermediateb, round_key, ciphertext);
		} else {	/* 1 - 9 */

			byte_sub(ciphertext, intermediatea);
			shift_row(intermediatea, intermediateb);
			mix_column(&intermediateb[0], &intermediatea[0]);
			mix_column(&intermediateb[4], &intermediatea[4]);
			mix_column(&intermediateb[8], &intermediatea[8]);
			mix_column(&intermediateb[12], &intermediatea[12]);
			xor_128(intermediatea, round_key, ciphertext);
			next_key(round_key, round);
		}
	}

}

void construct_ctr_preload(unsigned char *ctr_preload,
			   int a4_exists,
			   int qc_exists,
			   unsigned char *mpdu, unsigned char *pn_vector, int c)
{

	int i = 0;
	for (i = 0; i < 16; i++)
		ctr_preload[i] = 0x00;
	i = 0;

	ctr_preload[0] = 0x01;	/* flag */
	if (qc_exists && a4_exists)
		ctr_preload[1] = mpdu[30] & 0x0f;	/* QoC_Control  */
	if (qc_exists && !a4_exists)
		ctr_preload[1] = mpdu[24] & 0x0f;

	for (i = 2; i < 8; i++)
		ctr_preload[i] = mpdu[i + 8];	/* ctr_preload[2:7] = A2[0:5] = mpdu[10:15] */
#ifdef CONSISTENT_PN_ORDER
	for (i = 8; i < 14; i++)
		ctr_preload[i] = pn_vector[i - 8];	/* ctr_preload[8:13] = PN[0:5] */
#else
	for (i = 8; i < 14; i++)
		ctr_preload[i] = pn_vector[13 - i];	/* ctr_preload[8:13] = PN[5:0] */
#endif
	ctr_preload[14] = (unsigned char)(c / 256);	/* Ctr */
	ctr_preload[15] = (unsigned char)(c % 256);

}

BOOLEAN RTMPSoftDecryptAES(struct rt_rtmp_adapter *pAd,
			   u8 *pData,
			   unsigned long DataByteCnt, struct rt_cipher_key *pWpaKey)
{
	u8 KeyID;
	u32 HeaderLen;
	u8 PN[6];
	u32 payload_len;
	u32 num_blocks;
	u32 payload_remainder;
	u16 fc;
	u8 fc0;
	u8 fc1;
	u32 frame_type;
	u32 frame_subtype;
	u32 from_ds;
	u32 to_ds;
	int a4_exists;
	int qc_exists;
	u8 aes_out[16];
	int payload_index;
	u32 i;
	u8 ctr_preload[16];
	u8 chain_buffer[16];
	u8 padded_buffer[16];
	u8 mic_iv[16];
	u8 mic_header1[16];
	u8 mic_header2[16];
	u8 MIC[8];
	u8 TrailMIC[8];

	fc0 = *pData;
	fc1 = *(pData + 1);

	fc = *((u16 *)pData);

	frame_type = ((fc0 >> 2) & 0x03);
	frame_subtype = ((fc0 >> 4) & 0x0f);

	from_ds = (fc1 & 0x2) >> 1;
	to_ds = (fc1 & 0x1);

	a4_exists = (from_ds & to_ds);
	qc_exists = ((frame_subtype == 0x08) ||	/* Assumed QoS subtypes */
		     (frame_subtype == 0x09) ||	/* Likely to change.    */
		     (frame_subtype == 0x0a) || (frame_subtype == 0x0b)
	    );

	HeaderLen = 24;
	if (a4_exists)
		HeaderLen += 6;

	KeyID = *((u8 *)(pData + HeaderLen + 3));
	KeyID = KeyID >> 6;

	if (pWpaKey[KeyID].KeyLen == 0) {
		DBGPRINT(RT_DEBUG_TRACE,
			 ("RTMPSoftDecryptAES failed!(KeyID[%d] Length can not be 0)\n",
			  KeyID));
		return FALSE;
	}

	PN[0] = *(pData + HeaderLen);
	PN[1] = *(pData + HeaderLen + 1);
	PN[2] = *(pData + HeaderLen + 4);
	PN[3] = *(pData + HeaderLen + 5);
	PN[4] = *(pData + HeaderLen + 6);
	PN[5] = *(pData + HeaderLen + 7);

	payload_len = DataByteCnt - HeaderLen - 8 - 8;	/* 8 bytes for CCMP header , 8 bytes for MIC */
	payload_remainder = (payload_len) % 16;
	num_blocks = (payload_len) / 16;

	/* Find start of payload */
	payload_index = HeaderLen + 8;	/*IV+EIV */

	for (i = 0; i < num_blocks; i++) {
		construct_ctr_preload(ctr_preload,
				      a4_exists, qc_exists, pData, PN, i + 1);

		aes128k128d(pWpaKey[KeyID].Key, ctr_preload, aes_out);

		bitwise_xor(aes_out, pData + payload_index, chain_buffer);
		NdisMoveMemory(pData + payload_index - 8, chain_buffer, 16);
		payload_index += 16;
	}

	/* */
	/* If there is a short final block, then pad it */
	/* encrypt it and copy the unpadded part back */
	/* */
	if (payload_remainder > 0) {
		construct_ctr_preload(ctr_preload,
				      a4_exists,
				      qc_exists, pData, PN, num_blocks + 1);

		NdisZeroMemory(padded_buffer, 16);
		NdisMoveMemory(padded_buffer, pData + payload_index,
			       payload_remainder);

		aes128k128d(pWpaKey[KeyID].Key, ctr_preload, aes_out);

		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		NdisMoveMemory(pData + payload_index - 8, chain_buffer,
			       payload_remainder);
		payload_index += payload_remainder;
	}
	/* */
	/* Descrypt the MIC */
	/* */
	construct_ctr_preload(ctr_preload, a4_exists, qc_exists, pData, PN, 0);
	NdisZeroMemory(padded_buffer, 16);
	NdisMoveMemory(padded_buffer, pData + payload_index, 8);

	aes128k128d(pWpaKey[KeyID].Key, ctr_preload, aes_out);

	bitwise_xor(aes_out, padded_buffer, chain_buffer);

	NdisMoveMemory(TrailMIC, chain_buffer, 8);

	/* */
	/* Calculate MIC */
	/* */

	/*Force the protected frame bit on */
	*(pData + 1) = *(pData + 1) | 0x40;

	/* Find start of payload */
	/* Because the CCMP header has been removed */
	payload_index = HeaderLen;

	construct_mic_iv(mic_iv, qc_exists, a4_exists, pData, payload_len, PN);

	construct_mic_header1(mic_header1, HeaderLen, pData);

	construct_mic_header2(mic_header2, pData, a4_exists, qc_exists);

	aes128k128d(pWpaKey[KeyID].Key, mic_iv, aes_out);
	bitwise_xor(aes_out, mic_header1, chain_buffer);
	aes128k128d(pWpaKey[KeyID].Key, chain_buffer, aes_out);
	bitwise_xor(aes_out, mic_header2, chain_buffer);
	aes128k128d(pWpaKey[KeyID].Key, chain_buffer, aes_out);

	/* iterate through each 16 byte payload block */
	for (i = 0; i < num_blocks; i++) {
		bitwise_xor(aes_out, pData + payload_index, chain_buffer);
		payload_index += 16;
		aes128k128d(pWpaKey[KeyID].Key, chain_buffer, aes_out);
	}

	/* Add on the final payload block if it needs padding */
	if (payload_remainder > 0) {
		NdisZeroMemory(padded_buffer, 16);
		NdisMoveMemory(padded_buffer, pData + payload_index,
			       payload_remainder);

		bitwise_xor(aes_out, padded_buffer, chain_buffer);
		aes128k128d(pWpaKey[KeyID].Key, chain_buffer, aes_out);
	}
	/* aes_out contains padded mic, discard most significant */
	/* 8 bytes to generate 64 bit MIC */
	for (i = 0; i < 8; i++)
		MIC[i] = aes_out[i];

	if (!NdisEqualMemory(MIC, TrailMIC, 8)) {
		DBGPRINT(RT_DEBUG_ERROR, ("RTMPSoftDecryptAES, MIC Error !\n"));	/*MIC error. */
		return FALSE;
	}

	return TRUE;
}

/* =========================  AES En/Decryption ========================== */
#ifndef	uint8
#define	uint8  unsigned	char
#endif

#ifndef	uint32
#define	uint32 unsigned	int
#endif

/* forward S-box */
static uint32 FSb[256] = {
	0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
	0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
	0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
	0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
	0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
	0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
	0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
	0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
	0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
	0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
	0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
	0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
	0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
	0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
	0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
	0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
	0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
	0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
	0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
	0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
	0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
	0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
	0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
	0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
	0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
	0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
	0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
	0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
	0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
	0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
	0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
	0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};

/* forward table */
#define	FT \
\
	V(C6,63,63,A5),	V(F8,7C,7C,84),	V(EE,77,77,99),	V(F6,7B,7B,8D),	\
	V(FF,F2,F2,0D),	V(D6,6B,6B,BD),	V(DE,6F,6F,B1),	V(91,C5,C5,54),	\
	V(60,30,30,50),	V(02,01,01,03),	V(CE,67,67,A9),	V(56,2B,2B,7D),	\
	V(E7,FE,FE,19),	V(B5,D7,D7,62),	V(4D,AB,AB,E6),	V(EC,76,76,9A),	\
	V(8F,CA,CA,45),	V(1F,82,82,9D),	V(89,C9,C9,40),	V(FA,7D,7D,87),	\
	V(EF,FA,FA,15),	V(B2,59,59,EB),	V(8E,47,47,C9),	V(FB,F0,F0,0B),	\
	V(41,AD,AD,EC),	V(B3,D4,D4,67),	V(5F,A2,A2,FD),	V(45,AF,AF,EA),	\
	V(23,9C,9C,BF),	V(53,A4,A4,F7),	V(E4,72,72,96),	V(9B,C0,C0,5B),	\
	V(75,B7,B7,C2),	V(E1,FD,FD,1C),	V(3D,93,93,AE),	V(4C,26,26,6A),	\
	V(6C,36,36,5A),	V(7E,3F,3F,41),	V(F5,F7,F7,02),	V(83,CC,CC,4F),	\
	V(68,34,34,5C),	V(51,A5,A5,F4),	V(D1,E5,E5,34),	V(F9,F1,F1,08),	\
	V(E2,71,71,93),	V(AB,D8,D8,73),	V(62,31,31,53),	V(2A,15,15,3F),	\
	V(08,04,04,0C),	V(95,C7,C7,52),	V(46,23,23,65),	V(9D,C3,C3,5E),	\
	V(30,18,18,28),	V(37,96,96,A1),	V(0A,05,05,0F),	V(2F,9A,9A,B5),	\
	V(0E,07,07,09),	V(24,12,12,36),	V(1B,80,80,9B),	V(DF,E2,E2,3D),	\
	V(CD,EB,EB,26),	V(4E,27,27,69),	V(7F,B2,B2,CD),	V(EA,75,75,9F),	\
	V(12,09,09,1B),	V(1D,83,83,9E),	V(58,2C,2C,74),	V(34,1A,1A,2E),	\
	V(36,1B,1B,2D),	V(DC,6E,6E,B2),	V(B4,5A,5A,EE),	V(5B,A0,A0,FB),	\
	V(A4,52,52,F6),	V(76,3B,3B,4D),	V(B7,D6,D6,61),	V(7D,B3,B3,CE),	\
	V(52,29,29,7B),	V(DD,E3,E3,3E),	V(5E,2F,2F,71),	V(13,84,84,97),	\
	V(A6,53,53,F5),	V(B9,D1,D1,68),	V(00,00,00,00),	V(C1,ED,ED,2C),	\
	V(40,20,20,60),	V(E3,FC,FC,1F),	V(79,B1,B1,C8),	V(B6,5B,5B,ED),	\
	V(D4,6A,6A,BE),	V(8D,CB,CB,46),	V(67,BE,BE,D9),	V(72,39,39,4B),	\
	V(94,4A,4A,DE),	V(98,4C,4C,D4),	V(B0,58,58,E8),	V(85,CF,CF,4A),	\
	V(BB,D0,D0,6B),	V(C5,EF,EF,2A),	V(4F,AA,AA,E5),	V(ED,FB,FB,16),	\
	V(86,43,43,C5),	V(9A,4D,4D,D7),	V(66,33,33,55),	V(11,85,85,94),	\
	V(8A,45,45,CF),	V(E9,F9,F9,10),	V(04,02,02,06),	V(FE,7F,7F,81),	\
	V(A0,50,50,F0),	V(78,3C,3C,44),	V(25,9F,9F,BA),	V(4B,A8,A8,E3),	\
	V(A2,51,51,F3),	V(5D,A3,A3,FE),	V(80,40,40,C0),	V(05,8F,8F,8A),	\
	V(3F,92,92,AD),	V(21,9D,9D,BC),	V(70,38,38,48),	V(F1,F5,F5,04),	\
	V(63,BC,BC,DF),	V(77,B6,B6,C1),	V(AF,DA,DA,75),	V(42,21,21,63),	\
	V(20,10,10,30),	V(E5,FF,FF,1A),	V(FD,F3,F3,0E),	V(BF,D2,D2,6D),	\
	V(81,CD,CD,4C),	V(18,0C,0C,14),	V(26,13,13,35),	V(C3,EC,EC,2F),	\
	V(BE,5F,5F,E1),	V(35,97,97,A2),	V(88,44,44,CC),	V(2E,17,17,39),	\
	V(93,C4,C4,57),	V(55,A7,A7,F2),	V(FC,7E,7E,82),	V(7A,3D,3D,47),	\
	V(C8,64,64,AC),	V(BA,5D,5D,E7),	V(32,19,19,2B),	V(E6,73,73,95),	\
	V(C0,60,60,A0),	V(19,81,81,98),	V(9E,4F,4F,D1),	V(A3,DC,DC,7F),	\
	V(44,22,22,66),	V(54,2A,2A,7E),	V(3B,90,90,AB),	V(0B,88,88,83),	\
	V(8C,46,46,CA),	V(C7,EE,EE,29),	V(6B,B8,B8,D3),	V(28,14,14,3C),	\
	V(A7,DE,DE,79),	V(BC,5E,5E,E2),	V(16,0B,0B,1D),	V(AD,DB,DB,76),	\
	V(DB,E0,E0,3B),	V(64,32,32,56),	V(74,3A,3A,4E),	V(14,0A,0A,1E),	\
	V(92,49,49,DB),	V(0C,06,06,0A),	V(48,24,24,6C),	V(B8,5C,5C,E4),	\
	V(9F,C2,C2,5D),	V(BD,D3,D3,6E),	V(43,AC,AC,EF),	V(C4,62,62,A6),	\
	V(39,91,91,A8),	V(31,95,95,A4),	V(D3,E4,E4,37),	V(F2,79,79,8B),	\
	V(D5,E7,E7,32),	V(8B,C8,C8,43),	V(6E,37,37,59),	V(DA,6D,6D,B7),	\
	V(01,8D,8D,8C),	V(B1,D5,D5,64),	V(9C,4E,4E,D2),	V(49,A9,A9,E0),	\
	V(D8,6C,6C,B4),	V(AC,56,56,FA),	V(F3,F4,F4,07),	V(CF,EA,EA,25),	\
	V(CA,65,65,AF),	V(F4,7A,7A,8E),	V(47,AE,AE,E9),	V(10,08,08,18),	\
	V(6F,BA,BA,D5),	V(F0,78,78,88),	V(4A,25,25,6F),	V(5C,2E,2E,72),	\
	V(38,1C,1C,24),	V(57,A6,A6,F1),	V(73,B4,B4,C7),	V(97,C6,C6,51),	\
	V(CB,E8,E8,23),	V(A1,DD,DD,7C),	V(E8,74,74,9C),	V(3E,1F,1F,21),	\
	V(96,4B,4B,DD),	V(61,BD,BD,DC),	V(0D,8B,8B,86),	V(0F,8A,8A,85),	\
	V(E0,70,70,90),	V(7C,3E,3E,42),	V(71,B5,B5,C4),	V(CC,66,66,AA),	\
	V(90,48,48,D8),	V(06,03,03,05),	V(F7,F6,F6,01),	V(1C,0E,0E,12),	\
	V(C2,61,61,A3),	V(6A,35,35,5F),	V(AE,57,57,F9),	V(69,B9,B9,D0),	\
	V(17,86,86,91),	V(99,C1,C1,58),	V(3A,1D,1D,27),	V(27,9E,9E,B9),	\
	V(D9,E1,E1,38),	V(EB,F8,F8,13),	V(2B,98,98,B3),	V(22,11,11,33),	\
	V(D2,69,69,BB),	V(A9,D9,D9,70),	V(07,8E,8E,89),	V(33,94,94,A7),	\
	V(2D,9B,9B,B6),	V(3C,1E,1E,22),	V(15,87,87,92),	V(C9,E9,E9,20),	\
	V(87,CE,CE,49),	V(AA,55,55,FF),	V(50,28,28,78),	V(A5,DF,DF,7A),	\
	V(03,8C,8C,8F),	V(59,A1,A1,F8),	V(09,89,89,80),	V(1A,0D,0D,17),	\
	V(65,BF,BF,DA),	V(D7,E6,E6,31),	V(84,42,42,C6),	V(D0,68,68,B8),	\
	V(82,41,41,C3),	V(29,99,99,B0),	V(5A,2D,2D,77),	V(1E,0F,0F,11),	\
	V(7B,B0,B0,CB),	V(A8,54,54,FC),	V(6D,BB,BB,D6),	V(2C,16,16,3A)

#define	V(a,b,c,d) 0x##a##b##c##d
static uint32 FT0[256] = { FT };

#undef V

#define	V(a,b,c,d) 0x##d##a##b##c
static uint32 FT1[256] = { FT };

#undef V

#define	V(a,b,c,d) 0x##c##d##a##b
static uint32 FT2[256] = { FT };

#undef V

#define	V(a,b,c,d) 0x##b##c##d##a
static uint32 FT3[256] = { FT };

#undef V

#undef FT

/* reverse S-box */

static uint32 RSb[256] = {
	0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
	0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
	0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
	0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
	0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
	0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
	0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
	0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
	0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
	0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
	0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
	0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
	0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
	0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
	0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
	0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
	0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
	0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
	0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
	0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
	0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
	0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
	0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
	0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
	0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
	0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
	0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
	0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
	0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
	0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
	0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
	0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};

/* reverse table */

#define	RT \
\
	V(51,F4,A7,50),	V(7E,41,65,53),	V(1A,17,A4,C3),	V(3A,27,5E,96),	\
	V(3B,AB,6B,CB),	V(1F,9D,45,F1),	V(AC,FA,58,AB),	V(4B,E3,03,93),	\
	V(20,30,FA,55),	V(AD,76,6D,F6),	V(88,CC,76,91),	V(F5,02,4C,25),	\
	V(4F,E5,D7,FC),	V(C5,2A,CB,D7),	V(26,35,44,80),	V(B5,62,A3,8F),	\
	V(DE,B1,5A,49),	V(25,BA,1B,67),	V(45,EA,0E,98),	V(5D,FE,C0,E1),	\
	V(C3,2F,75,02),	V(81,4C,F0,12),	V(8D,46,97,A3),	V(6B,D3,F9,C6),	\
	V(03,8F,5F,E7),	V(15,92,9C,95),	V(BF,6D,7A,EB),	V(95,52,59,DA),	\
	V(D4,BE,83,2D),	V(58,74,21,D3),	V(49,E0,69,29),	V(8E,C9,C8,44),	\
	V(75,C2,89,6A),	V(F4,8E,79,78),	V(99,58,3E,6B),	V(27,B9,71,DD),	\
	V(BE,E1,4F,B6),	V(F0,88,AD,17),	V(C9,20,AC,66),	V(7D,CE,3A,B4),	\
	V(63,DF,4A,18),	V(E5,1A,31,82),	V(97,51,33,60),	V(62,53,7F,45),	\
	V(B1,64,77,E0),	V(BB,6B,AE,84),	V(FE,81,A0,1C),	V(F9,08,2B,94),	\
	V(70,48,68,58),	V(8F,45,FD,19),	V(94,DE,6C,87),	V(52,7B,F8,B7),	\
	V(AB,73,D3,23),	V(72,4B,02,E2),	V(E3,1F,8F,57),	V(66,55,AB,2A),	\
	V(B2,EB,28,07),	V(2F,B5,C2,03),	V(86,C5,7B,9A),	V(D3,37,08,A5),	\
	V(30,28,87,F2),	V(23,BF,A5,B2),	V(02,03,6A,BA),	V(ED,16,82,5C),	\
	V(8A,CF,1C,2B),	V(A7,79,B4,92),	V(F3,07,F2,F0),	V(4E,69,E2,A1),	\
	V(65,DA,F4,CD),	V(06,05,BE,D5),	V(D1,34,62,1F),	V(C4,A6,FE,8A),	\
	V(34,2E,53,9D),	V(A2,F3,55,A0),	V(05,8A,E1,32),	V(A4,F6,EB,75),	\
	V(0B,83,EC,39),	V(40,60,EF,AA),	V(5E,71,9F,06),	V(BD,6E,10,51),	\
	V(3E,21,8A,F9),	V(96,DD,06,3D),	V(DD,3E,05,AE),	V(4D,E6,BD,46),	\
	V(91,54,8D,B5),	V(71,C4,5D,05),	V(04,06,D4,6F),	V(60,50,15,FF),	\
	V(19,98,FB,24),	V(D6,BD,E9,97),	V(89,40,43,CC),	V(67,D9,9E,77),	\
	V(B0,E8,42,BD),	V(07,89,8B,88),	V(E7,19,5B,38),	V(79,C8,EE,DB),	\
	V(A1,7C,0A,47),	V(7C,42,0F,E9),	V(F8,84,1E,C9),	V(00,00,00,00),	\
	V(09,80,86,83),	V(32,2B,ED,48),	V(1E,11,70,AC),	V(6C,5A,72,4E),	\
	V(FD,0E,FF,FB),	V(0F,85,38,56),	V(3D,AE,D5,1E),	V(36,2D,39,27),	\
	V(0A,0F,D9,64),	V(68,5C,A6,21),	V(9B,5B,54,D1),	V(24,36,2E,3A),	\
	V(0C,0A,67,B1),	V(93,57,E7,0F),	V(B4,EE,96,D2),	V(1B,9B,91,9E),	\
	V(80,C0,C5,4F),	V(61,DC,20,A2),	V(5A,77,4B,69),	V(1C,12,1A,16),	\
	V(E2,93,BA,0A),	V(C0,A0,2A,E5),	V(3C,22,E0,43),	V(12,1B,17,1D),	\
	V(0E,09,0D,0B),	V(F2,8B,C7,AD),	V(2D,B6,A8,B9),	V(14,1E,A9,C8),	\
	V(57,F1,19,85),	V(AF,75,07,4C),	V(EE,99,DD,BB),	V(A3,7F,60,FD),	\
	V(F7,01,26,9F),	V(5C,72,F5,BC),	V(44,66,3B,C5),	V(5B,FB,7E,34),	\
	V(8B,43,29,76),	V(CB,23,C6,DC),	V(B6,ED,FC,68),	V(B8,E4,F1,63),	\
	V(D7,31,DC,CA),	V(42,63,85,10),	V(13,97,22,40),	V(84,C6,11,20),	\
	V(85,4A,24,7D),	V(D2,BB,3D,F8),	V(AE,F9,32,11),	V(C7,29,A1,6D),	\
	V(1D,9E,2F,4B),	V(DC,B2,30,F3),	V(0D,86,52,EC),	V(77,C1,E3,D0),	\
	V(2B,B3,16,6C),	V(A9,70,B9,99),	V(11,94,48,FA),	V(47,E9,64,22),	\
	V(A8,FC,8C,C4),	V(A0,F0,3F,1A),	V(56,7D,2C,D8),	V(22,33,90,EF),	\
	V(87,49,4E,C7),	V(D9,38,D1,C1),	V(8C,CA,A2,FE),	V(98,D4,0B,36),	\
	V(A6,F5,81,CF),	V(A5,7A,DE,28),	V(DA,B7,8E,26),	V(3F,AD,BF,A4),	\
	V(2C,3A,9D,E4),	V(50,78,92,0D),	V(6A,5F,CC,9B),	V(54,7E,46,62),	\
	V(F6,8D,13,C2),	V(90,D8,B8,E8),	V(2E,39,F7,5E),	V(82,C3,AF,F5),	\
	V(9F,5D,80,BE),	V(69,D0,93,7C),	V(6F,D5,2D,A9),	V(CF,25,12,B3),	\
	V(C8,AC,99,3B),	V(10,18,7D,A7),	V(E8,9C,63,6E),	V(DB,3B,BB,7B),	\
	V(CD,26,78,09),	V(6E,59,18,F4),	V(EC,9A,B7,01),	V(83,4F,9A,A8),	\
	V(E6,95,6E,65),	V(AA,FF,E6,7E),	V(21,BC,CF,08),	V(EF,15,E8,E6),	\
	V(BA,E7,9B,D9),	V(4A,6F,36,CE),	V(EA,9F,09,D4),	V(29,B0,7C,D6),	\
	V(31,A4,B2,AF),	V(2A,3F,23,31),	V(C6,A5,94,30),	V(35,A2,66,C0),	\
	V(74,4E,BC,37),	V(FC,82,CA,A6),	V(E0,90,D0,B0),	V(33,A7,D8,15),	\
	V(F1,04,98,4A),	V(41,EC,DA,F7),	V(7F,CD,50,0E),	V(17,91,F6,2F),	\
	V(76,4D,D6,8D),	V(43,EF,B0,4D),	V(CC,AA,4D,54),	V(E4,96,04,DF),	\
	V(9E,D1,B5,E3),	V(4C,6A,88,1B),	V(C1,2C,1F,B8),	V(46,65,51,7F),	\
	V(9D,5E,EA,04),	V(01,8C,35,5D),	V(FA,87,74,73),	V(FB,0B,41,2E),	\
	V(B3,67,1D,5A),	V(92,DB,D2,52),	V(E9,10,56,33),	V(6D,D6,47,13),	\
	V(9A,D7,61,8C),	V(37,A1,0C,7A),	V(59,F8,14,8E),	V(EB,13,3C,89),	\
	V(CE,A9,27,EE),	V(B7,61,C9,35),	V(E1,1C,E5,ED),	V(7A,47,B1,3C),	\
	V(9C,D2,DF,59),	V(55,F2,73,3F),	V(18,14,CE,79),	V(73,C7,37,BF),	\
	V(53,F7,CD,EA),	V(5F,FD,AA,5B),	V(DF,3D,6F,14),	V(78,44,DB,86),	\
	V(CA,AF,F3,81),	V(B9,68,C4,3E),	V(38,24,34,2C),	V(C2,A3,40,5F),	\
	V(16,1D,C3,72),	V(BC,E2,25,0C),	V(28,3C,49,8B),	V(FF,0D,95,41),	\
	V(39,A8,01,71),	V(08,0C,B3,DE),	V(D8,B4,E4,9C),	V(64,56,C1,90),	\
	V(7B,CB,84,61),	V(D5,32,B6,70),	V(48,6C,5C,74),	V(D0,B8,57,42)

#define	V(a,b,c,d) 0x##a##b##c##d
static uint32 RT0[256] = { RT };

#undef V

#define	V(a,b,c,d) 0x##d##a##b##c
static uint32 RT1[256] = { RT };

#undef V

#define	V(a,b,c,d) 0x##c##d##a##b
static uint32 RT2[256] = { RT };

#undef V

#define	V(a,b,c,d) 0x##b##c##d##a
static uint32 RT3[256] = { RT };

#undef V

#undef RT

/* round constants */

static uint32 RCON[10] = {
	0x01000000, 0x02000000, 0x04000000, 0x08000000,
	0x10000000, 0x20000000, 0x40000000, 0x80000000,
	0x1B000000, 0x36000000
};

/* key schedule	tables */

static int KT_init = 1;

static uint32 KT0[256];
static uint32 KT1[256];
static uint32 KT2[256];
static uint32 KT3[256];

/* platform-independant	32-bit integer manipulation	macros */

#define	GET_UINT32(n,b,i)						\
{												\
	(n)	= (	(uint32) (b)[(i)	] << 24	)		\
		| (	(uint32) (b)[(i) + 1] << 16	)		\
		| (	(uint32) (b)[(i) + 2] <<  8	)		\
		| (	(uint32) (b)[(i) + 3]		);		\
}

#define	PUT_UINT32(n,b,i)						\
{												\
	(b)[(i)	   ] = (uint8) ( (n) >>	24 );		\
	(b)[(i)	+ 1] = (uint8) ( (n) >>	16 );		\
	(b)[(i)	+ 2] = (uint8) ( (n) >>	 8 );		\
	(b)[(i)	+ 3] = (uint8) ( (n)	   );		\
}

int rt_aes_set_key(struct aes_context * ctx, uint8 * key, int nbits)
{
	int i;
	uint32 *RK, *SK;

	switch (nbits) {
	case 128:
		ctx->nr = 10;
		break;
	case 192:
		ctx->nr = 12;
		break;
	case 256:
		ctx->nr = 14;
		break;
	default:
		return (1);
	}

	RK = (uint32 *) ctx->erk;

	for (i = 0; i < (nbits >> 5); i++) {
		GET_UINT32(RK[i], key, i * 4);
	}

	/* setup encryption     round keys */

	switch (nbits) {
	case 128:

		for (i = 0; i < 10; i++, RK += 4) {
			RK[4] = RK[0] ^ RCON[i] ^
			    (FSb[(uint8) (RK[3] >> 16)] << 24) ^
			    (FSb[(uint8) (RK[3] >> 8)] << 16) ^
			    (FSb[(uint8) (RK[3])] << 8) ^
			    (FSb[(uint8) (RK[3] >> 24)]);

			RK[5] = RK[1] ^ RK[4];
			RK[6] = RK[2] ^ RK[5];
			RK[7] = RK[3] ^ RK[6];
		}
		break;

	case 192:

		for (i = 0; i < 8; i++, RK += 6) {
			RK[6] = RK[0] ^ RCON[i] ^
			    (FSb[(uint8) (RK[5] >> 16)] << 24) ^
			    (FSb[(uint8) (RK[5] >> 8)] << 16) ^
			    (FSb[(uint8) (RK[5])] << 8) ^
			    (FSb[(uint8) (RK[5] >> 24)]);

			RK[7] = RK[1] ^ RK[6];
			RK[8] = RK[2] ^ RK[7];
			RK[9] = RK[3] ^ RK[8];
			RK[10] = RK[4] ^ RK[9];
			RK[11] = RK[5] ^ RK[10];
		}
		break;

	case 256:

		for (i = 0; i < 7; i++, RK += 8) {
			RK[8] = RK[0] ^ RCON[i] ^
			    (FSb[(uint8) (RK[7] >> 16)] << 24) ^
			    (FSb[(uint8) (RK[7] >> 8)] << 16) ^
			    (FSb[(uint8) (RK[7])] << 8) ^
			    (FSb[(uint8) (RK[7] >> 24)]);

			RK[9] = RK[1] ^ RK[8];
			RK[10] = RK[2] ^ RK[9];
			RK[11] = RK[3] ^ RK[10];

			RK[12] = RK[4] ^
			    (FSb[(uint8) (RK[11] >> 24)] << 24) ^
			    (FSb[(uint8) (RK[11] >> 16)] << 16) ^
			    (FSb[(uint8) (RK[11] >> 8)] << 8) ^
			    (FSb[(uint8) (RK[11])]);

			RK[13] = RK[5] ^ RK[12];
			RK[14] = RK[6] ^ RK[13];
			RK[15] = RK[7] ^ RK[14];
		}
		break;
	}

	/* setup decryption     round keys */

	if (KT_init) {
		for (i = 0; i < 256; i++) {
			KT0[i] = RT0[FSb[i]];
			KT1[i] = RT1[FSb[i]];
			KT2[i] = RT2[FSb[i]];
			KT3[i] = RT3[FSb[i]];
		}

		KT_init = 0;
	}

	SK = (uint32 *) ctx->drk;

	*SK++ = *RK++;
	*SK++ = *RK++;
	*SK++ = *RK++;
	*SK++ = *RK++;

	for (i = 1; i < ctx->nr; i++) {
		RK -= 8;

		*SK++ = KT0[(uint8) (*RK >> 24)] ^
		    KT1[(uint8) (*RK >> 16)] ^
		    KT2[(uint8) (*RK >> 8)] ^ KT3[(uint8) (*RK)];
		RK++;

		*SK++ = KT0[(uint8) (*RK >> 24)] ^
		    KT1[(uint8) (*RK >> 16)] ^
		    KT2[(uint8) (*RK >> 8)] ^ KT3[(uint8) (*RK)];
		RK++;

		*SK++ = KT0[(uint8) (*RK >> 24)] ^
		    KT1[(uint8) (*RK >> 16)] ^
		    KT2[(uint8) (*RK >> 8)] ^ KT3[(uint8) (*RK)];
		RK++;

		*SK++ = KT0[(uint8) (*RK >> 24)] ^
		    KT1[(uint8) (*RK >> 16)] ^
		    KT2[(uint8) (*RK >> 8)] ^ KT3[(uint8) (*RK)];
		RK++;
	}

	RK -= 8;

	*SK++ = *RK++;
	*SK++ = *RK++;
	*SK++ = *RK++;
	*SK++ = *RK++;

	return (0);
}

/* AES 128-bit block encryption	routine	*/

void rt_aes_encrypt(struct aes_context * ctx, uint8 input[16], uint8 output[16])
{
	uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;

	RK = (uint32 *) ctx->erk;
	GET_UINT32(X0, input, 0);
	X0 ^= RK[0];
	GET_UINT32(X1, input, 4);
	X1 ^= RK[1];
	GET_UINT32(X2, input, 8);
	X2 ^= RK[2];
	GET_UINT32(X3, input, 12);
	X3 ^= RK[3];

#define	AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)		\
{												\
	RK += 4;									\
												\
	X0 = RK[0] ^ FT0[ (uint8) (	Y0 >> 24 ) ] ^	\
				 FT1[ (uint8) (	Y1 >> 16 ) ] ^	\
				 FT2[ (uint8) (	Y2 >>  8 ) ] ^	\
				 FT3[ (uint8) (	Y3		 ) ];	\
												\
	X1 = RK[1] ^ FT0[ (uint8) (	Y1 >> 24 ) ] ^	\
				 FT1[ (uint8) (	Y2 >> 16 ) ] ^	\
				 FT2[ (uint8) (	Y3 >>  8 ) ] ^	\
				 FT3[ (uint8) (	Y0		 ) ];	\
												\
	X2 = RK[2] ^ FT0[ (uint8) (	Y2 >> 24 ) ] ^	\
				 FT1[ (uint8) (	Y3 >> 16 ) ] ^	\
				 FT2[ (uint8) (	Y0 >>  8 ) ] ^	\
				 FT3[ (uint8) (	Y1		 ) ];	\
												\
	X3 = RK[3] ^ FT0[ (uint8) (	Y3 >> 24 ) ] ^	\
				 FT1[ (uint8) (	Y0 >> 16 ) ] ^	\
				 FT2[ (uint8) (	Y1 >>  8 ) ] ^	\
				 FT3[ (uint8) (	Y2		 ) ];	\
}

	AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 1 */
	AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 2 */
	AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 3 */
	AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 4 */
	AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 5 */
	AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 6 */
	AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 7 */
	AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 8 */
	AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 9 */

	if (ctx->nr > 10) {
		AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 10     */
		AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 11     */
	}

	if (ctx->nr > 12) {
		AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 12     */
		AES_FROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 13     */
	}

	/* last round */

	RK += 4;

	X0 = RK[0] ^ (FSb[(uint8) (Y0 >> 24)] << 24) ^
	    (FSb[(uint8) (Y1 >> 16)] << 16) ^
	    (FSb[(uint8) (Y2 >> 8)] << 8) ^ (FSb[(uint8) (Y3)]);

	X1 = RK[1] ^ (FSb[(uint8) (Y1 >> 24)] << 24) ^
	    (FSb[(uint8) (Y2 >> 16)] << 16) ^
	    (FSb[(uint8) (Y3 >> 8)] << 8) ^ (FSb[(uint8) (Y0)]);

	X2 = RK[2] ^ (FSb[(uint8) (Y2 >> 24)] << 24) ^
	    (FSb[(uint8) (Y3 >> 16)] << 16) ^
	    (FSb[(uint8) (Y0 >> 8)] << 8) ^ (FSb[(uint8) (Y1)]);

	X3 = RK[3] ^ (FSb[(uint8) (Y3 >> 24)] << 24) ^
	    (FSb[(uint8) (Y0 >> 16)] << 16) ^
	    (FSb[(uint8) (Y1 >> 8)] << 8) ^ (FSb[(uint8) (Y2)]);

	PUT_UINT32(X0, output, 0);
	PUT_UINT32(X1, output, 4);
	PUT_UINT32(X2, output, 8);
	PUT_UINT32(X3, output, 12);
}

/* AES 128-bit block decryption	routine	*/

void rt_aes_decrypt(struct aes_context * ctx, uint8 input[16], uint8 output[16])
{
	uint32 *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;

	RK = (uint32 *) ctx->drk;

	GET_UINT32(X0, input, 0);
	X0 ^= RK[0];
	GET_UINT32(X1, input, 4);
	X1 ^= RK[1];
	GET_UINT32(X2, input, 8);
	X2 ^= RK[2];
	GET_UINT32(X3, input, 12);
	X3 ^= RK[3];

#define	AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)		\
{												\
	RK += 4;									\
												\
	X0 = RK[0] ^ RT0[ (uint8) (	Y0 >> 24 ) ] ^	\
				 RT1[ (uint8) (	Y3 >> 16 ) ] ^	\
				 RT2[ (uint8) (	Y2 >>  8 ) ] ^	\
				 RT3[ (uint8) (	Y1		 ) ];	\
												\
	X1 = RK[1] ^ RT0[ (uint8) (	Y1 >> 24 ) ] ^	\
				 RT1[ (uint8) (	Y0 >> 16 ) ] ^	\
				 RT2[ (uint8) (	Y3 >>  8 ) ] ^	\
				 RT3[ (uint8) (	Y2		 ) ];	\
												\
	X2 = RK[2] ^ RT0[ (uint8) (	Y2 >> 24 ) ] ^	\
				 RT1[ (uint8) (	Y1 >> 16 ) ] ^	\
				 RT2[ (uint8) (	Y0 >>  8 ) ] ^	\
				 RT3[ (uint8) (	Y3		 ) ];	\
												\
	X3 = RK[3] ^ RT0[ (uint8) (	Y3 >> 24 ) ] ^	\
				 RT1[ (uint8) (	Y2 >> 16 ) ] ^	\
				 RT2[ (uint8) (	Y1 >>  8 ) ] ^	\
				 RT3[ (uint8) (	Y0		 ) ];	\
}

	AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 1 */
	AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 2 */
	AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 3 */
	AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 4 */
	AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 5 */
	AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 6 */
	AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 7 */
	AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 8 */
	AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 9 */

	if (ctx->nr > 10) {
		AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 10     */
		AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 11     */
	}

	if (ctx->nr > 12) {
		AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3);	/* round 12     */
		AES_RROUND(Y0, Y1, Y2, Y3, X0, X1, X2, X3);	/* round 13     */
	}

	/* last round */

	RK += 4;

	X0 = RK[0] ^ (RSb[(uint8) (Y0 >> 24)] << 24) ^
	    (RSb[(uint8) (Y3 >> 16)] << 16) ^
	    (RSb[(uint8) (Y2 >> 8)] << 8) ^ (RSb[(uint8) (Y1)]);

	X1 = RK[1] ^ (RSb[(uint8) (Y1 >> 24)] << 24) ^
	    (RSb[(uint8) (Y0 >> 16)] << 16) ^
	    (RSb[(uint8) (Y3 >> 8)] << 8) ^ (RSb[(uint8) (Y2)]);

	X2 = RK[2] ^ (RSb[(uint8) (Y2 >> 24)] << 24) ^
	    (RSb[(uint8) (Y1 >> 16)] << 16) ^
	    (RSb[(uint8) (Y0 >> 8)] << 8) ^ (RSb[(uint8) (Y3)]);

	X3 = RK[3] ^ (RSb[(uint8) (Y3 >> 24)] << 24) ^
	    (RSb[(uint8) (Y2 >> 16)] << 16) ^
	    (RSb[(uint8) (Y1 >> 8)] << 8) ^ (RSb[(uint8) (Y0)]);

	PUT_UINT32(X0, output, 0);
	PUT_UINT32(X1, output, 4);
	PUT_UINT32(X2, output, 8);
	PUT_UINT32(X3, output, 12);
}

/*
    ==========================================================================
    Description:
        ENCRYPT AES GTK before sending in EAPOL frame.
        AES GTK length = 128 bit,  so fix blocks for aes-key-wrap as 2 in this function.
        This function references to RFC 3394 for aes key wrap algorithm.
    Return:
    ==========================================================================
*/
void AES_GTK_KEY_WRAP(u8 * key,
		      u8 * plaintext,
		      u32 p_len, u8 * ciphertext)
{
	u8 A[8], BIN[16], BOUT[16];
	u8 R[512];
	int num_blocks = p_len / 8;	/* unit:64bits */
	int i, j;
	struct aes_context aesctx;
	u8 xor;

	rt_aes_set_key(&aesctx, key, 128);

	/* Init IA */
	for (i = 0; i < 8; i++)
		A[i] = 0xa6;

	/*Input plaintext */
	for (i = 0; i < num_blocks; i++) {
		for (j = 0; j < 8; j++)
			R[8 * (i + 1) + j] = plaintext[8 * i + j];
	}

	/* Key Mix */
	for (j = 0; j < 6; j++) {
		for (i = 1; i <= num_blocks; i++) {
			/*phase 1 */
			NdisMoveMemory(BIN, A, 8);
			NdisMoveMemory(&BIN[8], &R[8 * i], 8);
			rt_aes_encrypt(&aesctx, BIN, BOUT);

			NdisMoveMemory(A, &BOUT[0], 8);
			xor = num_blocks * j + i;
			A[7] = BOUT[7] ^ xor;
			NdisMoveMemory(&R[8 * i], &BOUT[8], 8);
		}
	}

	/* Output ciphertext */
	NdisMoveMemory(ciphertext, A, 8);

	for (i = 1; i <= num_blocks; i++) {
		for (j = 0; j < 8; j++)
			ciphertext[8 * i + j] = R[8 * i + j];
	}
}

/*
	========================================================================

	Routine Description:
		Misc function to decrypt AES body

	Arguments:

	Return Value:

	Note:
		This function references to	RFC	3394 for aes key unwrap algorithm.

	========================================================================
*/
void AES_GTK_KEY_UNWRAP(u8 * key,
			u8 * plaintext,
			u32 c_len, u8 * ciphertext)
{
	u8 A[8], BIN[16], BOUT[16];
	u8 xor;
	int i, j;
	struct aes_context aesctx;
	u8 *R;
	int num_blocks = c_len / 8;	/* unit:64bits */

	os_alloc_mem(NULL, (u8 **) & R, 512);

	if (R == NULL) {
		DBGPRINT(RT_DEBUG_ERROR,
			 ("AES_GTK_KEY_UNWRAP: no memory!\n"));
		return;
	}
	/* End of if */
	/* Initialize */
	NdisMoveMemory(A, ciphertext, 8);
	/*Input plaintext */
	for (i = 0; i < (c_len - 8); i++) {
		R[i] = ciphertext[i + 8];
	}

	rt_aes_set_key(&aesctx, key, 128);

	for (j = 5; j >= 0; j--) {
		for (i = (num_blocks - 1); i > 0; i--) {
			xor = (num_blocks - 1) * j + i;
			NdisMoveMemory(BIN, A, 8);
			BIN[7] = A[7] ^ xor;
			NdisMoveMemory(&BIN[8], &R[(i - 1) * 8], 8);
			rt_aes_decrypt(&aesctx, BIN, BOUT);
			NdisMoveMemory(A, &BOUT[0], 8);
			NdisMoveMemory(&R[(i - 1) * 8], &BOUT[8], 8);
		}
	}

	/* OUTPUT */
	for (i = 0; i < c_len; i++) {
		plaintext[i] = R[i];
	}

	os_free_mem(NULL, R);
}