Linux-2.6.33.2/drivers/staging/vme/bridges/vme_tsi148.c

Compare this file to the similar file:
Show the results in this format:

/*
 * Support for the Tundra TSI148 VME-PCI Bridge Chip
 *
 * Author: Martyn Welch <martyn.welch@gefanuc.com>
 * Copyright 2008 GE Fanuc Intelligent Platforms Embedded Systems, Inc.
 *
 * Based on work by Tom Armistead and Ajit Prem
 * Copyright 2004 Motorola Inc.
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <asm/time.h>
#include <asm/io.h>
#include <asm/uaccess.h>

#include "../vme.h"
#include "../vme_bridge.h"
#include "vme_tsi148.h"

static int __init tsi148_init(void);
static int tsi148_probe(struct pci_dev *, const struct pci_device_id *);
static void tsi148_remove(struct pci_dev *);
static void __exit tsi148_exit(void);


int tsi148_slave_set(struct vme_slave_resource *, int, unsigned long long,
	unsigned long long, dma_addr_t, vme_address_t, vme_cycle_t);
int tsi148_slave_get(struct vme_slave_resource *, int *, unsigned long long *,
	unsigned long long *, dma_addr_t *, vme_address_t *, vme_cycle_t *);

int tsi148_master_get(struct vme_master_resource *, int *, unsigned long long *,
        unsigned long long *, vme_address_t *, vme_cycle_t *, vme_width_t *);
int tsi148_master_set(struct vme_master_resource *, int, unsigned long long,
	unsigned long long, vme_address_t, vme_cycle_t,	vme_width_t);
ssize_t tsi148_master_read(struct vme_master_resource *, void *, size_t,
	loff_t);
ssize_t tsi148_master_write(struct vme_master_resource *, void *, size_t,
	loff_t);
unsigned int tsi148_master_rmw(struct vme_master_resource *, unsigned int,
	unsigned int, unsigned int, loff_t);
int tsi148_dma_list_add (struct vme_dma_list *, struct vme_dma_attr *,
	struct vme_dma_attr *, size_t);
int tsi148_dma_list_exec(struct vme_dma_list *);
int tsi148_dma_list_empty(struct vme_dma_list *);
int tsi148_generate_irq(int, int);
int tsi148_slot_get(void);

/* Modue parameter */
int err_chk = 0;

/* XXX These should all be in a per device structure */
struct vme_bridge *tsi148_bridge;
wait_queue_head_t dma_queue[2];
wait_queue_head_t iack_queue;
void (*lm_callback[4])(int);	/* Called in interrupt handler, be careful! */
void *crcsr_kernel;
dma_addr_t crcsr_bus;
struct vme_master_resource *flush_image;
struct mutex vme_rmw;	/* Only one RMW cycle at a time */
struct mutex vme_int;	/*
				 * Only one VME interrupt can be
				 * generated at a time, provide locking
				 */

static char driver_name[] = "vme_tsi148";

static struct pci_device_id tsi148_ids[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_TUNDRA, PCI_DEVICE_ID_TUNDRA_TSI148) },
	{ },
};

static struct pci_driver tsi148_driver = {
	.name = driver_name,
	.id_table = tsi148_ids,
	.probe = tsi148_probe,
	.remove = tsi148_remove,
};

static void reg_join(unsigned int high, unsigned int low,
	unsigned long long *variable)
{
	*variable = (unsigned long long)high << 32;
	*variable |= (unsigned long long)low;
}

static void reg_split(unsigned long long variable, unsigned int *high,
	unsigned int *low)
{
	*low = (unsigned int)variable & 0xFFFFFFFF;
	*high = (unsigned int)(variable >> 32);
}

/*
 * Wakes up DMA queue.
 */
static u32 tsi148_DMA_irqhandler(int channel_mask)
{
	u32 serviced = 0;

	if (channel_mask & TSI148_LCSR_INTS_DMA0S) {
		wake_up(&dma_queue[0]);
		serviced |= TSI148_LCSR_INTC_DMA0C;
	}
	if (channel_mask & TSI148_LCSR_INTS_DMA1S) {
		wake_up(&dma_queue[1]);
		serviced |= TSI148_LCSR_INTC_DMA1C;
	}

	return serviced;
}

/*
 * Wake up location monitor queue
 */
static u32 tsi148_LM_irqhandler(u32 stat)
{
	int i;
	u32 serviced = 0;

	for (i = 0; i < 4; i++) {
		if(stat & TSI148_LCSR_INTS_LMS[i]) {
			/* We only enable interrupts if the callback is set */
			lm_callback[i](i);
			serviced |= TSI148_LCSR_INTC_LMC[i];
		}
	}

	return serviced;
}

/*
 * Wake up mail box queue.
 *
 * XXX This functionality is not exposed up though API.
 */
static u32 tsi148_MB_irqhandler(u32 stat)
{
	int i;
	u32 val;
	u32 serviced = 0;

	for (i = 0; i < 4; i++) {
		if(stat & TSI148_LCSR_INTS_MBS[i]) {
			val = ioread32be(tsi148_bridge->base +
				TSI148_GCSR_MBOX[i]);
			printk("VME Mailbox %d received: 0x%x\n", i, val);
			serviced |= TSI148_LCSR_INTC_MBC[i];
		}
	}

	return serviced;
}

/*
 * Display error & status message when PERR (PCI) exception interrupt occurs.
 */
static u32 tsi148_PERR_irqhandler(void)
{
	printk(KERN_ERR
		"PCI Exception at address: 0x%08x:%08x, attributes: %08x\n",
		ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPAU),
		ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPAL),
		ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPAT)
		);
	printk(KERN_ERR
		"PCI-X attribute reg: %08x, PCI-X split completion reg: %08x\n",
		ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPXA),
		ioread32be(tsi148_bridge->base + TSI148_LCSR_EDPXS)
		);

	iowrite32be(TSI148_LCSR_EDPAT_EDPCL,
		tsi148_bridge->base + TSI148_LCSR_EDPAT);

	return TSI148_LCSR_INTC_PERRC;
}

/*
 * Save address and status when VME error interrupt occurs.
 */
static u32 tsi148_VERR_irqhandler(void)
{
	unsigned int error_addr_high, error_addr_low;
	unsigned long long error_addr;
	u32 error_attrib;
	struct vme_bus_error *error;

	error_addr_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_VEAU);
	error_addr_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_VEAL);
	error_attrib = ioread32be(tsi148_bridge->base + TSI148_LCSR_VEAT);

	reg_join(error_addr_high, error_addr_low, &error_addr);

	/* Check for exception register overflow (we have lost error data) */
	if(error_attrib & TSI148_LCSR_VEAT_VEOF) {
		printk(KERN_ERR "VME Bus Exception Overflow Occurred\n");
	}

	error = (struct vme_bus_error *)kmalloc(sizeof (struct vme_bus_error),
		GFP_ATOMIC);
	if (error) {
		error->address = error_addr;
		error->attributes = error_attrib;
		list_add_tail(&(error->list), &(tsi148_bridge->vme_errors));
	} else {
		printk(KERN_ERR
			"Unable to alloc memory for VMEbus Error reporting\n");
		printk(KERN_ERR
			"VME Bus Error at address: 0x%llx, attributes: %08x\n",
			error_addr, error_attrib);
	}

	/* Clear Status */
	iowrite32be(TSI148_LCSR_VEAT_VESCL,
		tsi148_bridge->base + TSI148_LCSR_VEAT);

	return TSI148_LCSR_INTC_VERRC;
}

/*
 * Wake up IACK queue.
 */
static u32 tsi148_IACK_irqhandler(void)
{
	wake_up(&iack_queue);

	return TSI148_LCSR_INTC_IACKC;
}

/*
 * Calling VME bus interrupt callback if provided.
 */
static u32 tsi148_VIRQ_irqhandler(u32 stat)
{
	int vec, i, serviced = 0;

	for (i = 7; i > 0; i--) {
		if (stat & (1 << i)) {
			/*
			 * 	Note:   Even though the registers are defined
			 * 	as 32-bits in the spec, we only want to issue
			 * 	8-bit IACK cycles on the bus, read from offset
			 * 	3.
			 */
			vec = ioread8(tsi148_bridge->base +
				TSI148_LCSR_VIACK[i] + 3);

			vme_irq_handler(tsi148_bridge, i, vec);

			serviced |= (1 << i);
		}
	}

	return serviced;
}

/*
 * Top level interrupt handler.  Clears appropriate interrupt status bits and
 * then calls appropriate sub handler(s).
 */
static irqreturn_t tsi148_irqhandler(int irq, void *dev_id)
{
	u32 stat, enable, serviced = 0;

	/* Determine which interrupts are unmasked and set */
	enable = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
	stat = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTS);

	/* Only look at unmasked interrupts */
	stat &= enable;

	if (unlikely(!stat)) {
		return IRQ_NONE;
	}

	/* Call subhandlers as appropriate */
	/* DMA irqs */
	if (stat & (TSI148_LCSR_INTS_DMA1S | TSI148_LCSR_INTS_DMA0S))
		serviced |= tsi148_DMA_irqhandler(stat);

	/* Location monitor irqs */
	if (stat & (TSI148_LCSR_INTS_LM3S | TSI148_LCSR_INTS_LM2S |
			TSI148_LCSR_INTS_LM1S | TSI148_LCSR_INTS_LM0S))
		serviced |= tsi148_LM_irqhandler(stat);

	/* Mail box irqs */
	if (stat & (TSI148_LCSR_INTS_MB3S | TSI148_LCSR_INTS_MB2S |
			TSI148_LCSR_INTS_MB1S | TSI148_LCSR_INTS_MB0S))
		serviced |= tsi148_MB_irqhandler(stat);

	/* PCI bus error */
	if (stat & TSI148_LCSR_INTS_PERRS)
		serviced |= tsi148_PERR_irqhandler();

	/* VME bus error */
	if (stat & TSI148_LCSR_INTS_VERRS)
		serviced |= tsi148_VERR_irqhandler();

	/* IACK irq */
	if (stat & TSI148_LCSR_INTS_IACKS)
		serviced |= tsi148_IACK_irqhandler();

	/* VME bus irqs */
	if (stat & (TSI148_LCSR_INTS_IRQ7S | TSI148_LCSR_INTS_IRQ6S |
			TSI148_LCSR_INTS_IRQ5S | TSI148_LCSR_INTS_IRQ4S |
			TSI148_LCSR_INTS_IRQ3S | TSI148_LCSR_INTS_IRQ2S |
			TSI148_LCSR_INTS_IRQ1S))
		serviced |= tsi148_VIRQ_irqhandler(stat);

	/* Clear serviced interrupts */
	iowrite32be(serviced, tsi148_bridge->base + TSI148_LCSR_INTC);

	return IRQ_HANDLED;
}

static int tsi148_irq_init(struct vme_bridge *bridge)
{
	int result;
	unsigned int tmp;
	struct pci_dev *pdev;

	/* Need pdev */
        pdev = container_of(bridge->parent, struct pci_dev, dev);

	/* Initialise list for VME bus errors */
	INIT_LIST_HEAD(&(bridge->vme_errors));

	mutex_init(&(bridge->irq_mtx));

	result = request_irq(pdev->irq,
			     tsi148_irqhandler,
			     IRQF_SHARED,
			     driver_name, pdev);
	if (result) {
		dev_err(&pdev->dev, "Can't get assigned pci irq vector %02X\n",
			pdev->irq);
		return result;
	}

	/* Enable and unmask interrupts */
	tmp = TSI148_LCSR_INTEO_DMA1EO | TSI148_LCSR_INTEO_DMA0EO |
		TSI148_LCSR_INTEO_MB3EO | TSI148_LCSR_INTEO_MB2EO |
		TSI148_LCSR_INTEO_MB1EO | TSI148_LCSR_INTEO_MB0EO |
		TSI148_LCSR_INTEO_PERREO | TSI148_LCSR_INTEO_VERREO |
		TSI148_LCSR_INTEO_IACKEO;

	/* XXX This leaves the following interrupts masked.
	 * TSI148_LCSR_INTEO_VIEEO
	 * TSI148_LCSR_INTEO_SYSFLEO
	 * TSI148_LCSR_INTEO_ACFLEO
	 */

	/* Don't enable Location Monitor interrupts here - they will be
	 * enabled when the location monitors are properly configured and
	 * a callback has been attached.
	 * TSI148_LCSR_INTEO_LM0EO
	 * TSI148_LCSR_INTEO_LM1EO
	 * TSI148_LCSR_INTEO_LM2EO
	 * TSI148_LCSR_INTEO_LM3EO
	 */

	/* Don't enable VME interrupts until we add a handler, else the board
	 * will respond to it and we don't want that unless it knows how to
	 * properly deal with it.
	 * TSI148_LCSR_INTEO_IRQ7EO
	 * TSI148_LCSR_INTEO_IRQ6EO
	 * TSI148_LCSR_INTEO_IRQ5EO
	 * TSI148_LCSR_INTEO_IRQ4EO
	 * TSI148_LCSR_INTEO_IRQ3EO
	 * TSI148_LCSR_INTEO_IRQ2EO
	 * TSI148_LCSR_INTEO_IRQ1EO
	 */

	iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEO);
	iowrite32be(tmp, bridge->base + TSI148_LCSR_INTEN);

	return 0;
}

static void tsi148_irq_exit(struct pci_dev *pdev)
{
	/* Turn off interrupts */
	iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTEO);
	iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTEN);

	/* Clear all interrupts */
	iowrite32be(0xFFFFFFFF, tsi148_bridge->base + TSI148_LCSR_INTC);

	/* Detach interrupt handler */
	free_irq(pdev->irq, pdev);
}

/*
 * Check to see if an IACk has been received, return true (1) or false (0).
 */
int tsi148_iack_received(void)
{
	u32 tmp;

	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_VICR);

	if (tmp & TSI148_LCSR_VICR_IRQS)
		return 0;
	else
		return 1;
}

/*
 * Configure VME interrupt
 */
void tsi148_irq_set(int level, int state, int sync)
{
	struct pci_dev *pdev;
	u32 tmp;

	/* We need to do the ordering differently for enabling and disabling */
	if (state == 0) {
		tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEN);
		tmp &= ~TSI148_LCSR_INTEN_IRQEN[level - 1];
		iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEN);

		tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
		tmp &= ~TSI148_LCSR_INTEO_IRQEO[level - 1];
		iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEO);

		if (sync != 0) {
			pdev = container_of(tsi148_bridge->parent,
				struct pci_dev, dev);

			synchronize_irq(pdev->irq);
		}
	} else {
		tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
		tmp |= TSI148_LCSR_INTEO_IRQEO[level - 1];
		iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEO);

		tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEN);
		tmp |= TSI148_LCSR_INTEN_IRQEN[level - 1];
		iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEN);
	}
}

/*
 * Generate a VME bus interrupt at the requested level & vector. Wait for
 * interrupt to be acked.
 */
int tsi148_irq_generate(int level, int statid)
{
	u32 tmp;

	mutex_lock(&(vme_int));

	/* Read VICR register */
	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_VICR);

	/* Set Status/ID */
	tmp = (tmp & ~TSI148_LCSR_VICR_STID_M) |
		(statid & TSI148_LCSR_VICR_STID_M);
	iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_VICR);

	/* Assert VMEbus IRQ */
	tmp = tmp | TSI148_LCSR_VICR_IRQL[level];
	iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_VICR);

	/* XXX Consider implementing a timeout? */
	wait_event_interruptible(iack_queue, tsi148_iack_received());

	mutex_unlock(&(vme_int));

	return 0;
}

/*
 * Find the first error in this address range
 */
static struct vme_bus_error *tsi148_find_error(vme_address_t aspace,
	unsigned long long address, size_t count)
{
	struct list_head *err_pos;
	struct vme_bus_error *vme_err, *valid = NULL;
	unsigned long long bound;

	bound = address + count;

	/*
	 * XXX We are currently not looking at the address space when parsing
	 *     for errors. This is because parsing the Address Modifier Codes
	 *     is going to be quite resource intensive to do properly. We
	 *     should be OK just looking at the addresses and this is certainly
	 *     much better than what we had before.
	 */
	err_pos = NULL;
	/* Iterate through errors */
	list_for_each(err_pos, &(tsi148_bridge->vme_errors)) {
		vme_err = list_entry(err_pos, struct vme_bus_error, list);
		if((vme_err->address >= address) && (vme_err->address < bound)){
			valid = vme_err;
			break;
		}
	}

	return valid;
}

/*
 * Clear errors in the provided address range.
 */
static void tsi148_clear_errors(vme_address_t aspace,
	unsigned long long address, size_t count)
{
	struct list_head *err_pos, *temp;
	struct vme_bus_error *vme_err;
	unsigned long long bound;

	bound = address + count;

	/*
	 * XXX We are currently not looking at the address space when parsing
	 *     for errors. This is because parsing the Address Modifier Codes
	 *     is going to be quite resource intensive to do properly. We
	 *     should be OK just looking at the addresses and this is certainly
	 *     much better than what we had before.
	 */
	err_pos = NULL;
	/* Iterate through errors */
	list_for_each_safe(err_pos, temp, &(tsi148_bridge->vme_errors)) {
		vme_err = list_entry(err_pos, struct vme_bus_error, list);

		if((vme_err->address >= address) && (vme_err->address < bound)){
			list_del(err_pos);
			kfree(vme_err);
		}
	}
}

/*
 * Initialize a slave window with the requested attributes.
 */
int tsi148_slave_set(struct vme_slave_resource *image, int enabled,
	unsigned long long vme_base, unsigned long long size,
	dma_addr_t pci_base, vme_address_t aspace, vme_cycle_t cycle)
{
	unsigned int i, addr = 0, granularity = 0;
	unsigned int temp_ctl = 0;
	unsigned int vme_base_low, vme_base_high;
	unsigned int vme_bound_low, vme_bound_high;
	unsigned int pci_offset_low, pci_offset_high;
	unsigned long long vme_bound, pci_offset;

#if 0
        printk("Set slave image %d to:\n", image->number);
 	printk("\tEnabled: %s\n", (enabled == 1)? "yes" : "no");
	printk("\tVME Base:0x%llx\n", vme_base);
	printk("\tWindow Size:0x%llx\n", size);
	printk("\tPCI Base:0x%lx\n", (unsigned long)pci_base);
	printk("\tAddress Space:0x%x\n", aspace);
	printk("\tTransfer Cycle Properties:0x%x\n", cycle);
#endif

	i = image->number;

	switch (aspace) {
	case VME_A16:
		granularity = 0x10;
		addr |= TSI148_LCSR_ITAT_AS_A16;
		break;
	case VME_A24:
		granularity = 0x1000;
		addr |= TSI148_LCSR_ITAT_AS_A24;
		break;
	case VME_A32:
		granularity = 0x10000;
		addr |= TSI148_LCSR_ITAT_AS_A32;
		break;
	case VME_A64:
		granularity = 0x10000;
		addr |= TSI148_LCSR_ITAT_AS_A64;
		break;
	case VME_CRCSR:
	case VME_USER1:
	case VME_USER2:
	case VME_USER3:
	case VME_USER4:
	default:
		printk("Invalid address space\n");
		return -EINVAL;
		break;
	}

	/* Convert 64-bit variables to 2x 32-bit variables */
	reg_split(vme_base, &vme_base_high, &vme_base_low);

	/*
	 * Bound address is a valid address for the window, adjust
	 * accordingly
	 */
	vme_bound = vme_base + size - granularity;
	reg_split(vme_bound, &vme_bound_high, &vme_bound_low);
	pci_offset = (unsigned long long)pci_base - vme_base;
	reg_split(pci_offset, &pci_offset_high, &pci_offset_low);

	if (vme_base_low & (granularity - 1)) {
		printk("Invalid VME base alignment\n");
		return -EINVAL;
	}
	if (vme_bound_low & (granularity - 1)) {
		printk("Invalid VME bound alignment\n");
		return -EINVAL;
	}
	if (pci_offset_low & (granularity - 1)) {
		printk("Invalid PCI Offset alignment\n");
		return -EINVAL;
	}

#if 0
	printk("\tVME Bound:0x%llx\n", vme_bound);
	printk("\tPCI Offset:0x%llx\n", pci_offset);
#endif

	/*  Disable while we are mucking around */
	temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITAT);
	temp_ctl &= ~TSI148_LCSR_ITAT_EN;
	iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITAT);

	/* Setup mapping */
	iowrite32be(vme_base_high, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITSAU);
	iowrite32be(vme_base_low, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITSAL);
	iowrite32be(vme_bound_high, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITEAU);
	iowrite32be(vme_bound_low, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITEAL);
	iowrite32be(pci_offset_high, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITOFU);
	iowrite32be(pci_offset_low, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITOFL);

/* XXX Prefetch stuff currently unsupported */
#if 0

	for (x = 0; x < 4; x++) {
		if ((64 << x) >= vmeIn->prefetchSize) {
			break;
		}
	}
	if (x == 4)
		x--;
	temp_ctl |= (x << 16);

	if (vmeIn->prefetchThreshold)
		if (vmeIn->prefetchThreshold)
			temp_ctl |= 0x40000;
#endif

	/* Setup 2eSST speeds */
	temp_ctl &= ~TSI148_LCSR_ITAT_2eSSTM_M;
	switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) {
	case VME_2eSST160:
		temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_160;
		break;
	case VME_2eSST267:
		temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_267;
		break;
	case VME_2eSST320:
		temp_ctl |= TSI148_LCSR_ITAT_2eSSTM_320;
		break;
	}

	/* Setup cycle types */
	temp_ctl &= ~(0x1F << 7);
	if (cycle & VME_BLT)
		temp_ctl |= TSI148_LCSR_ITAT_BLT;
	if (cycle & VME_MBLT)
		temp_ctl |= TSI148_LCSR_ITAT_MBLT;
	if (cycle & VME_2eVME)
		temp_ctl |= TSI148_LCSR_ITAT_2eVME;
	if (cycle & VME_2eSST)
		temp_ctl |= TSI148_LCSR_ITAT_2eSST;
	if (cycle & VME_2eSSTB)
		temp_ctl |= TSI148_LCSR_ITAT_2eSSTB;

	/* Setup address space */
	temp_ctl &= ~TSI148_LCSR_ITAT_AS_M;
	temp_ctl |= addr;

	temp_ctl &= ~0xF;
	if (cycle & VME_SUPER)
		temp_ctl |= TSI148_LCSR_ITAT_SUPR ;
	if (cycle & VME_USER)
		temp_ctl |= TSI148_LCSR_ITAT_NPRIV;
	if (cycle & VME_PROG)
		temp_ctl |= TSI148_LCSR_ITAT_PGM;
	if (cycle & VME_DATA)
		temp_ctl |= TSI148_LCSR_ITAT_DATA;

	/* Write ctl reg without enable */
	iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITAT);

	if (enabled)
		temp_ctl |= TSI148_LCSR_ITAT_EN;

	iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITAT);

	return 0;
}

/*
 * Get slave window configuration.
 *
 * XXX Prefetch currently unsupported.
 */
int tsi148_slave_get(struct vme_slave_resource *image, int *enabled,
	unsigned long long *vme_base, unsigned long long *size,
	dma_addr_t *pci_base, vme_address_t *aspace, vme_cycle_t *cycle)
{
	unsigned int i, granularity = 0, ctl = 0;
	unsigned int vme_base_low, vme_base_high;
	unsigned int vme_bound_low, vme_bound_high;
	unsigned int pci_offset_low, pci_offset_high;
	unsigned long long vme_bound, pci_offset;


	i = image->number;

	/* Read registers */
	ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITAT);

	vme_base_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITSAU);
	vme_base_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITSAL);
	vme_bound_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITEAU);
	vme_bound_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITEAL);
	pci_offset_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITOFU);
	pci_offset_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_IT[i] +
		TSI148_LCSR_OFFSET_ITOFL);

	/* Convert 64-bit variables to 2x 32-bit variables */
	reg_join(vme_base_high, vme_base_low, vme_base);
	reg_join(vme_bound_high, vme_bound_low, &vme_bound);
	reg_join(pci_offset_high, pci_offset_low, &pci_offset);

	*pci_base = (dma_addr_t)vme_base + pci_offset;

	*enabled = 0;
	*aspace = 0;
	*cycle = 0;

	if (ctl & TSI148_LCSR_ITAT_EN)
		*enabled = 1;

	if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A16) {
		granularity = 0x10;
		*aspace |= VME_A16;
	}
	if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A24) {
		granularity = 0x1000;
		*aspace |= VME_A24;
	}
	if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A32) {
		granularity = 0x10000;
		*aspace |= VME_A32;
	}
	if ((ctl & TSI148_LCSR_ITAT_AS_M) == TSI148_LCSR_ITAT_AS_A64) {
		granularity = 0x10000;
		*aspace |= VME_A64;
	}

	/* Need granularity before we set the size */
	*size = (unsigned long long)((vme_bound - *vme_base) + granularity);


	if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_160)
		*cycle |= VME_2eSST160;
	if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_267)
		*cycle |= VME_2eSST267;
	if ((ctl & TSI148_LCSR_ITAT_2eSSTM_M) == TSI148_LCSR_ITAT_2eSSTM_320)
		*cycle |= VME_2eSST320;

	if (ctl & TSI148_LCSR_ITAT_BLT)
		*cycle |= VME_BLT;
	if (ctl & TSI148_LCSR_ITAT_MBLT)
		*cycle |= VME_MBLT;
	if (ctl & TSI148_LCSR_ITAT_2eVME)
		*cycle |= VME_2eVME;
	if (ctl & TSI148_LCSR_ITAT_2eSST)
		*cycle |= VME_2eSST;
	if (ctl & TSI148_LCSR_ITAT_2eSSTB)
		*cycle |= VME_2eSSTB;

	if (ctl & TSI148_LCSR_ITAT_SUPR)
		*cycle |= VME_SUPER;
	if (ctl & TSI148_LCSR_ITAT_NPRIV)
		*cycle |= VME_USER;
	if (ctl & TSI148_LCSR_ITAT_PGM)
		*cycle |= VME_PROG;
	if (ctl & TSI148_LCSR_ITAT_DATA)
		*cycle |= VME_DATA;

	return 0;
}

/*
 * Allocate and map PCI Resource
 */
static int tsi148_alloc_resource(struct vme_master_resource *image,
	unsigned long long size)
{
	unsigned long long existing_size;
	int retval = 0;
	struct pci_dev *pdev;

	/* Find pci_dev container of dev */
        if (tsi148_bridge->parent == NULL) {
                printk("Dev entry NULL\n");
                return -EINVAL;
        }
        pdev = container_of(tsi148_bridge->parent, struct pci_dev, dev);

	existing_size = (unsigned long long)(image->pci_resource.end -
		image->pci_resource.start);

	/* If the existing size is OK, return */
	if ((size != 0) && (existing_size == (size - 1)))
		return 0;

	if (existing_size != 0) {
		iounmap(image->kern_base);
		image->kern_base = NULL;
		if (image->pci_resource.name != NULL)
			kfree(image->pci_resource.name);
		release_resource(&(image->pci_resource));
		memset(&(image->pci_resource), 0, sizeof(struct resource));
	}

	/* Exit here if size is zero */
	if (size == 0) {
		return 0;
	}

	if (image->pci_resource.name == NULL) {
		image->pci_resource.name = kmalloc(VMENAMSIZ+3, GFP_KERNEL);
		if (image->pci_resource.name == NULL) {
			printk(KERN_ERR "Unable to allocate memory for resource"
				" name\n");
			retval = -ENOMEM;
			goto err_name;
		}
	}

	sprintf((char *)image->pci_resource.name, "%s.%d", tsi148_bridge->name,
		image->number);

	image->pci_resource.start = 0;
	image->pci_resource.end = (unsigned long)size;
	image->pci_resource.flags = IORESOURCE_MEM;

	retval = pci_bus_alloc_resource(pdev->bus,
		&(image->pci_resource), size, size, PCIBIOS_MIN_MEM,
		0, NULL, NULL);
	if (retval) {
		printk(KERN_ERR "Failed to allocate mem resource for "
			"window %d size 0x%lx start 0x%lx\n",
			image->number, (unsigned long)size,
			(unsigned long)image->pci_resource.start);
		goto err_resource;
	}

	image->kern_base = ioremap_nocache(
		image->pci_resource.start, size);
	if (image->kern_base == NULL) {
		printk(KERN_ERR "Failed to remap resource\n");
		retval = -ENOMEM;
		goto err_remap;
	}

	return 0;

	iounmap(image->kern_base);
	image->kern_base = NULL;
err_remap:
	release_resource(&(image->pci_resource));
err_resource:
	kfree(image->pci_resource.name);
	memset(&(image->pci_resource), 0, sizeof(struct resource));
err_name:
	return retval;
}

/*
 * Free and unmap PCI Resource
 */
static void tsi148_free_resource(struct vme_master_resource *image)
{
	iounmap(image->kern_base);
	image->kern_base = NULL;
	release_resource(&(image->pci_resource));
	kfree(image->pci_resource.name);
	memset(&(image->pci_resource), 0, sizeof(struct resource));
}

/*
 * Set the attributes of an outbound window.
 */
int tsi148_master_set( struct vme_master_resource *image, int enabled,
	unsigned long long vme_base, unsigned long long size,
	vme_address_t aspace, vme_cycle_t cycle, vme_width_t dwidth)
{
	int retval = 0;
	unsigned int i;
	unsigned int temp_ctl = 0;
	unsigned int pci_base_low, pci_base_high;
	unsigned int pci_bound_low, pci_bound_high;
	unsigned int vme_offset_low, vme_offset_high;
	unsigned long long pci_bound, vme_offset, pci_base;

	/* Verify input data */
	if (vme_base & 0xFFFF) {
		printk(KERN_ERR "Invalid VME Window alignment\n");
		retval = -EINVAL;
		goto err_window;
	}

	if ((size == 0) && (enabled != 0)) {
		printk(KERN_ERR "Size must be non-zero for enabled windows\n");
		retval = -EINVAL;
		goto err_window;
	}

	spin_lock(&(image->lock));

	/* Let's allocate the resource here rather than further up the stack as
	 * it avoids pushing loads of bus dependant stuff up the stack. If size
	 * is zero, any existing resource will be freed.
	 */
	retval = tsi148_alloc_resource(image, size);
	if (retval) {
		spin_unlock(&(image->lock));
		printk(KERN_ERR "Unable to allocate memory for "
			"resource\n");
		goto err_res;
	}

	if (size == 0) {
		pci_base = 0;
		pci_bound = 0;
		vme_offset = 0;
	} else {
		pci_base = (unsigned long long)image->pci_resource.start;

		/*
		 * Bound address is a valid address for the window, adjust
		 * according to window granularity.
		 */
		pci_bound = pci_base + (size - 0x10000);
		vme_offset = vme_base - pci_base;
	}

	/* Convert 64-bit variables to 2x 32-bit variables */
	reg_split(pci_base, &pci_base_high, &pci_base_low);
	reg_split(pci_bound, &pci_bound_high, &pci_bound_low);
	reg_split(vme_offset, &vme_offset_high, &vme_offset_low);

	if (pci_base_low & 0xFFFF) {
		spin_unlock(&(image->lock));
		printk(KERN_ERR "Invalid PCI base alignment\n");
		retval = -EINVAL;
		goto err_gran;
	}
	if (pci_bound_low & 0xFFFF) {
		spin_unlock(&(image->lock));
		printk(KERN_ERR "Invalid PCI bound alignment\n");
		retval = -EINVAL;
		goto err_gran;
	}
	if (vme_offset_low & 0xFFFF) {
		spin_unlock(&(image->lock));
		printk(KERN_ERR "Invalid VME Offset alignment\n");
		retval = -EINVAL;
		goto err_gran;
	}

	i = image->number;

	/* Disable while we are mucking around */
	temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTAT);
	temp_ctl &= ~TSI148_LCSR_OTAT_EN;
	iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTAT);

/* XXX Prefetch stuff currently unsupported */
#if 0
	if (vmeOut->prefetchEnable) {
		temp_ctl |= 0x40000;
		for (x = 0; x < 4; x++) {
			if ((2 << x) >= vmeOut->prefetchSize)
				break;
		}
		if (x == 4)
			x = 3;
		temp_ctl |= (x << 16);
	}
#endif

	/* Setup 2eSST speeds */
	temp_ctl &= ~TSI148_LCSR_OTAT_2eSSTM_M;
	switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) {
	case VME_2eSST160:
		temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_160;
		break;
	case VME_2eSST267:
		temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_267;
		break;
	case VME_2eSST320:
		temp_ctl |= TSI148_LCSR_OTAT_2eSSTM_320;
		break;
	}

	/* Setup cycle types */
	if (cycle & VME_BLT) {
		temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
		temp_ctl |= TSI148_LCSR_OTAT_TM_BLT;
	}
	if (cycle & VME_MBLT) {
		temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
		temp_ctl |= TSI148_LCSR_OTAT_TM_MBLT;
	}
	if (cycle & VME_2eVME) {
		temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
		temp_ctl |= TSI148_LCSR_OTAT_TM_2eVME;
	}
	if (cycle & VME_2eSST) {
		temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
		temp_ctl |= TSI148_LCSR_OTAT_TM_2eSST;
	}
	if (cycle & VME_2eSSTB) {
		printk(KERN_WARNING "Currently not setting Broadcast Select "
			"Registers\n");
		temp_ctl &= ~TSI148_LCSR_OTAT_TM_M;
		temp_ctl |= TSI148_LCSR_OTAT_TM_2eSSTB;
	}

	/* Setup data width */
	temp_ctl &= ~TSI148_LCSR_OTAT_DBW_M;
	switch (dwidth) {
	case VME_D16:
		temp_ctl |= TSI148_LCSR_OTAT_DBW_16;
		break;
	case VME_D32:
		temp_ctl |= TSI148_LCSR_OTAT_DBW_32;
		break;
	default:
		spin_unlock(&(image->lock));
		printk(KERN_ERR "Invalid data width\n");
		retval = -EINVAL;
		goto err_dwidth;
	}

	/* Setup address space */
	temp_ctl &= ~TSI148_LCSR_OTAT_AMODE_M;
	switch (aspace) {
	case VME_A16:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_A16;
		break;
	case VME_A24:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_A24;
		break;
	case VME_A32:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_A32;
		break;
	case VME_A64:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_A64;
		break;
	case VME_CRCSR:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_CRCSR;
		break;
	case VME_USER1:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER1;
		break;
	case VME_USER2:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER2;
		break;
	case VME_USER3:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER3;
		break;
	case VME_USER4:
		temp_ctl |= TSI148_LCSR_OTAT_AMODE_USER4;
		break;
	default:
		spin_unlock(&(image->lock));
		printk(KERN_ERR "Invalid address space\n");
		retval = -EINVAL;
		goto err_aspace;
		break;
	}

	temp_ctl &= ~(3<<4);
	if (cycle & VME_SUPER)
		temp_ctl |= TSI148_LCSR_OTAT_SUP;
	if (cycle & VME_PROG)
		temp_ctl |= TSI148_LCSR_OTAT_PGM;

	/* Setup mapping */
	iowrite32be(pci_base_high, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTSAU);
	iowrite32be(pci_base_low, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTSAL);
	iowrite32be(pci_bound_high, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTEAU);
	iowrite32be(pci_bound_low, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTEAL);
	iowrite32be(vme_offset_high, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTOFU);
	iowrite32be(vme_offset_low, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTOFL);

/* XXX We need to deal with OTBS */
#if 0
	iowrite32be(vmeOut->bcastSelect2esst, tsi148_bridge->base +
		TSI148_LCSR_OT[i] + TSI148_LCSR_OFFSET_OTBS);
#endif

	/* Write ctl reg without enable */
	iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTAT);

	if (enabled)
		temp_ctl |= TSI148_LCSR_OTAT_EN;

	iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTAT);

	spin_unlock(&(image->lock));
	return 0;

err_aspace:
err_dwidth:
err_gran:
	tsi148_free_resource(image);
err_res:
err_window:
	return retval;

}

/*
 * Set the attributes of an outbound window.
 *
 * XXX Not parsing prefetch information.
 */
int __tsi148_master_get( struct vme_master_resource *image, int *enabled,
	unsigned long long *vme_base, unsigned long long *size,
	vme_address_t *aspace, vme_cycle_t *cycle, vme_width_t *dwidth)
{
	unsigned int i, ctl;
	unsigned int pci_base_low, pci_base_high;
	unsigned int pci_bound_low, pci_bound_high;
	unsigned int vme_offset_low, vme_offset_high;

	unsigned long long pci_base, pci_bound, vme_offset;

	i = image->number;

	ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTAT);

	pci_base_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTSAU);
	pci_base_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTSAL);
	pci_bound_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTEAU);
	pci_bound_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTEAL);
	vme_offset_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTOFU);
	vme_offset_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTOFL);

	/* Convert 64-bit variables to 2x 32-bit variables */
	reg_join(pci_base_high, pci_base_low, &pci_base);
	reg_join(pci_bound_high, pci_bound_low, &pci_bound);
	reg_join(vme_offset_high, vme_offset_low, &vme_offset);

	*vme_base = pci_base + vme_offset;
	*size = (unsigned long long)(pci_bound - pci_base) + 0x10000;

	*enabled = 0;
	*aspace = 0;
	*cycle = 0;
	*dwidth = 0;

	if (ctl & TSI148_LCSR_OTAT_EN)
		*enabled = 1;

	/* Setup address space */
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A16)
		*aspace |= VME_A16;
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A24)
		*aspace |= VME_A24;
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A32)
		*aspace |= VME_A32;
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_A64)
		*aspace |= VME_A64;
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_CRCSR)
		*aspace |= VME_CRCSR;
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER1)
		*aspace |= VME_USER1;
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER2)
		*aspace |= VME_USER2;
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER3)
		*aspace |= VME_USER3;
	if ((ctl & TSI148_LCSR_OTAT_AMODE_M) == TSI148_LCSR_OTAT_AMODE_USER4)
		*aspace |= VME_USER4;

	/* Setup 2eSST speeds */
	if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_160)
		*cycle |= VME_2eSST160;
	if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_267)
		*cycle |= VME_2eSST267;
	if ((ctl & TSI148_LCSR_OTAT_2eSSTM_M) == TSI148_LCSR_OTAT_2eSSTM_320)
		*cycle |= VME_2eSST320;

	/* Setup cycle types */
	if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_SCT)
		*cycle |= VME_SCT;
	if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_BLT)
		*cycle |= VME_BLT;
	if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_MBLT)
		*cycle |= VME_MBLT;
	if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_2eVME)
		*cycle |= VME_2eVME;
	if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_2eSST)
		*cycle |= VME_2eSST;
	if ((ctl & TSI148_LCSR_OTAT_TM_M ) == TSI148_LCSR_OTAT_TM_2eSSTB)
		*cycle |= VME_2eSSTB;

	if (ctl & TSI148_LCSR_OTAT_SUP)
		*cycle |= VME_SUPER;
	else
		*cycle |= VME_USER;

	if (ctl & TSI148_LCSR_OTAT_PGM)
		*cycle |= VME_PROG;
	else
		*cycle |= VME_DATA;

	/* Setup data width */
	if ((ctl & TSI148_LCSR_OTAT_DBW_M) == TSI148_LCSR_OTAT_DBW_16)
		*dwidth = VME_D16;
	if ((ctl & TSI148_LCSR_OTAT_DBW_M) == TSI148_LCSR_OTAT_DBW_32)
		*dwidth = VME_D32;

	return 0;
}


int tsi148_master_get( struct vme_master_resource *image, int *enabled,
	unsigned long long *vme_base, unsigned long long *size,
	vme_address_t *aspace, vme_cycle_t *cycle, vme_width_t *dwidth)
{
	int retval;

	spin_lock(&(image->lock));

	retval = __tsi148_master_get(image, enabled, vme_base, size, aspace,
		cycle, dwidth);

	spin_unlock(&(image->lock));

	return retval;
}

ssize_t tsi148_master_read(struct vme_master_resource *image, void *buf,
	size_t count, loff_t offset)
{
	int retval, enabled;
	unsigned long long vme_base, size;
	vme_address_t aspace;
	vme_cycle_t cycle;
	vme_width_t dwidth;
	struct vme_bus_error *vme_err = NULL;

	spin_lock(&(image->lock));

	memcpy_fromio(buf, image->kern_base + offset, (unsigned int)count);
	retval = count;

	if (!err_chk)
		goto skip_chk;

	__tsi148_master_get(image, &enabled, &vme_base, &size, &aspace, &cycle,
		&dwidth);

	vme_err = tsi148_find_error(aspace, vme_base + offset, count);
	if(vme_err != NULL) {
		dev_err(image->parent->parent, "First VME read error detected "
			"an at address 0x%llx\n", vme_err->address);
		retval = vme_err->address - (vme_base + offset);
		/* Clear down save errors in this address range */
		tsi148_clear_errors(aspace, vme_base + offset, count);
	}

skip_chk:
	spin_unlock(&(image->lock));

	return retval;
}


/* XXX We need to change vme_master_resource->mtx to a spinlock so that read
 *     and write functions can be used in an interrupt context
 */
ssize_t tsi148_master_write(struct vme_master_resource *image, void *buf,
	size_t count, loff_t offset)
{
	int retval = 0, enabled;
	unsigned long long vme_base, size;
	vme_address_t aspace;
	vme_cycle_t cycle;
	vme_width_t dwidth;

	struct vme_bus_error *vme_err = NULL;

	spin_lock(&(image->lock));

	memcpy_toio(image->kern_base + offset, buf, (unsigned int)count);
	retval = count;

	/*
	 * Writes are posted. We need to do a read on the VME bus to flush out
	 * all of the writes before we check for errors. We can't guarentee
	 * that reading the data we have just written is safe. It is believed
	 * that there isn't any read, write re-ordering, so we can read any
	 * location in VME space, so lets read the Device ID from the tsi148's
	 * own registers as mapped into CR/CSR space.
	 *
	 * We check for saved errors in the written address range/space.
	 */

	if (!err_chk)
		goto skip_chk;

	/*
	 * Get window info first, to maximise the time that the buffers may
	 * fluch on their own
	 */
	__tsi148_master_get(image, &enabled, &vme_base, &size, &aspace, &cycle,
		&dwidth);

	ioread16(flush_image->kern_base + 0x7F000);

	vme_err = tsi148_find_error(aspace, vme_base + offset, count);
	if(vme_err != NULL) {
		printk("First VME write error detected an at address 0x%llx\n",
			vme_err->address);
		retval = vme_err->address - (vme_base + offset);
		/* Clear down save errors in this address range */
		tsi148_clear_errors(aspace, vme_base + offset, count);
	}

skip_chk:
	spin_unlock(&(image->lock));

	return retval;
}

/*
 * Perform an RMW cycle on the VME bus.
 *
 * Requires a previously configured master window, returns final value.
 */
unsigned int tsi148_master_rmw(struct vme_master_resource *image,
	unsigned int mask, unsigned int compare, unsigned int swap,
	loff_t offset)
{
	unsigned long long pci_addr;
	unsigned int pci_addr_high, pci_addr_low;
	u32 tmp, result;
	int i;


	/* Find the PCI address that maps to the desired VME address */
	i = image->number;

	/* Locking as we can only do one of these at a time */
	mutex_lock(&(vme_rmw));

	/* Lock image */
	spin_lock(&(image->lock));

	pci_addr_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTSAU);
	pci_addr_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_OT[i] +
		TSI148_LCSR_OFFSET_OTSAL);

	reg_join(pci_addr_high, pci_addr_low, &pci_addr);
	reg_split(pci_addr + offset, &pci_addr_high, &pci_addr_low);

	/* Configure registers */
	iowrite32be(mask, tsi148_bridge->base + TSI148_LCSR_RMWEN);
	iowrite32be(compare, tsi148_bridge->base + TSI148_LCSR_RMWC);
	iowrite32be(swap, tsi148_bridge->base + TSI148_LCSR_RMWS);
	iowrite32be(pci_addr_high, tsi148_bridge->base + TSI148_LCSR_RMWAU);
	iowrite32be(pci_addr_low, tsi148_bridge->base + TSI148_LCSR_RMWAL);

	/* Enable RMW */
	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_VMCTRL);
	tmp |= TSI148_LCSR_VMCTRL_RMWEN;
	iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_VMCTRL);

	/* Kick process off with a read to the required address. */
	result = ioread32be(image->kern_base + offset);

	/* Disable RMW */
	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_VMCTRL);
	tmp &= ~TSI148_LCSR_VMCTRL_RMWEN;
	iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_VMCTRL);

	spin_unlock(&(image->lock));

	mutex_unlock(&(vme_rmw));

	return result;
}

static int tsi148_dma_set_vme_src_attributes (u32 *attr, vme_address_t aspace,
	vme_cycle_t cycle, vme_width_t dwidth)
{
	/* Setup 2eSST speeds */
	switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) {
	case VME_2eSST160:
		*attr |= TSI148_LCSR_DSAT_2eSSTM_160;
		break;
	case VME_2eSST267:
		*attr |= TSI148_LCSR_DSAT_2eSSTM_267;
		break;
	case VME_2eSST320:
		*attr |= TSI148_LCSR_DSAT_2eSSTM_320;
		break;
	}

	/* Setup cycle types */
	if (cycle & VME_SCT) {
		*attr |= TSI148_LCSR_DSAT_TM_SCT;
	}
	if (cycle & VME_BLT) {
		*attr |= TSI148_LCSR_DSAT_TM_BLT;
	}
	if (cycle & VME_MBLT) {
		*attr |= TSI148_LCSR_DSAT_TM_MBLT;
	}
	if (cycle & VME_2eVME) {
		*attr |= TSI148_LCSR_DSAT_TM_2eVME;
	}
	if (cycle & VME_2eSST) {
		*attr |= TSI148_LCSR_DSAT_TM_2eSST;
	}
	if (cycle & VME_2eSSTB) {
		printk("Currently not setting Broadcast Select Registers\n");
		*attr |= TSI148_LCSR_DSAT_TM_2eSSTB;
	}

	/* Setup data width */
	switch (dwidth) {
	case VME_D16:
		*attr |= TSI148_LCSR_DSAT_DBW_16;
		break;
	case VME_D32:
		*attr |= TSI148_LCSR_DSAT_DBW_32;
		break;
	default:
		printk("Invalid data width\n");
		return -EINVAL;
	}

	/* Setup address space */
	switch (aspace) {
	case VME_A16:
		*attr |= TSI148_LCSR_DSAT_AMODE_A16;
		break;
	case VME_A24:
		*attr |= TSI148_LCSR_DSAT_AMODE_A24;
		break;
	case VME_A32:
		*attr |= TSI148_LCSR_DSAT_AMODE_A32;
		break;
	case VME_A64:
		*attr |= TSI148_LCSR_DSAT_AMODE_A64;
		break;
	case VME_CRCSR:
		*attr |= TSI148_LCSR_DSAT_AMODE_CRCSR;
		break;
	case VME_USER1:
		*attr |= TSI148_LCSR_DSAT_AMODE_USER1;
		break;
	case VME_USER2:
		*attr |= TSI148_LCSR_DSAT_AMODE_USER2;
		break;
	case VME_USER3:
		*attr |= TSI148_LCSR_DSAT_AMODE_USER3;
		break;
	case VME_USER4:
		*attr |= TSI148_LCSR_DSAT_AMODE_USER4;
		break;
	default:
		printk("Invalid address space\n");
		return -EINVAL;
		break;
	}

	if (cycle & VME_SUPER)
		*attr |= TSI148_LCSR_DSAT_SUP;
	if (cycle & VME_PROG)
		*attr |= TSI148_LCSR_DSAT_PGM;

	return 0;
}

static int tsi148_dma_set_vme_dest_attributes(u32 *attr, vme_address_t aspace,
	vme_cycle_t cycle, vme_width_t dwidth)
{
	/* Setup 2eSST speeds */
	switch (cycle & (VME_2eSST160 | VME_2eSST267 | VME_2eSST320)) {
	case VME_2eSST160:
		*attr |= TSI148_LCSR_DDAT_2eSSTM_160;
		break;
	case VME_2eSST267:
		*attr |= TSI148_LCSR_DDAT_2eSSTM_267;
		break;
	case VME_2eSST320:
		*attr |= TSI148_LCSR_DDAT_2eSSTM_320;
		break;
	}

	/* Setup cycle types */
	if (cycle & VME_SCT) {
		*attr |= TSI148_LCSR_DDAT_TM_SCT;
	}
	if (cycle & VME_BLT) {
		*attr |= TSI148_LCSR_DDAT_TM_BLT;
	}
	if (cycle & VME_MBLT) {
		*attr |= TSI148_LCSR_DDAT_TM_MBLT;
	}
	if (cycle & VME_2eVME) {
		*attr |= TSI148_LCSR_DDAT_TM_2eVME;
	}
	if (cycle & VME_2eSST) {
		*attr |= TSI148_LCSR_DDAT_TM_2eSST;
	}
	if (cycle & VME_2eSSTB) {
		printk("Currently not setting Broadcast Select Registers\n");
		*attr |= TSI148_LCSR_DDAT_TM_2eSSTB;
	}

	/* Setup data width */
	switch (dwidth) {
	case VME_D16:
		*attr |= TSI148_LCSR_DDAT_DBW_16;
		break;
	case VME_D32:
		*attr |= TSI148_LCSR_DDAT_DBW_32;
		break;
	default:
		printk("Invalid data width\n");
		return -EINVAL;
	}

	/* Setup address space */
	switch (aspace) {
	case VME_A16:
		*attr |= TSI148_LCSR_DDAT_AMODE_A16;
		break;
	case VME_A24:
		*attr |= TSI148_LCSR_DDAT_AMODE_A24;
		break;
	case VME_A32:
		*attr |= TSI148_LCSR_DDAT_AMODE_A32;
		break;
	case VME_A64:
		*attr |= TSI148_LCSR_DDAT_AMODE_A64;
		break;
	case VME_CRCSR:
		*attr |= TSI148_LCSR_DDAT_AMODE_CRCSR;
		break;
	case VME_USER1:
		*attr |= TSI148_LCSR_DDAT_AMODE_USER1;
		break;
	case VME_USER2:
		*attr |= TSI148_LCSR_DDAT_AMODE_USER2;
		break;
	case VME_USER3:
		*attr |= TSI148_LCSR_DDAT_AMODE_USER3;
		break;
	case VME_USER4:
		*attr |= TSI148_LCSR_DDAT_AMODE_USER4;
		break;
	default:
		printk("Invalid address space\n");
		return -EINVAL;
		break;
	}

	if (cycle & VME_SUPER)
		*attr |= TSI148_LCSR_DDAT_SUP;
	if (cycle & VME_PROG)
		*attr |= TSI148_LCSR_DDAT_PGM;

	return 0;
}

/*
 * Add a link list descriptor to the list
 *
 * XXX Need to handle 2eSST Broadcast select bits
 */
int tsi148_dma_list_add (struct vme_dma_list *list, struct vme_dma_attr *src,
	struct vme_dma_attr *dest, size_t count)
{
	struct tsi148_dma_entry *entry, *prev;
	u32 address_high, address_low;
	struct vme_dma_pattern *pattern_attr;
	struct vme_dma_pci *pci_attr;
	struct vme_dma_vme *vme_attr;
	dma_addr_t desc_ptr;
	int retval = 0;

	/* XXX descriptor must be aligned on 64-bit boundaries */
	entry = (struct tsi148_dma_entry *)kmalloc(
		sizeof(struct tsi148_dma_entry), GFP_KERNEL);
	if (entry == NULL) {
		printk("Failed to allocate memory for dma resource "
			"structure\n");
		retval = -ENOMEM;
		goto err_mem;
	}

	/* Test descriptor alignment */
	if ((unsigned long)&(entry->descriptor) & 0x7) {
		printk("Descriptor not aligned to 8 byte boundary as "
			"required: %p\n", &(entry->descriptor));
		retval = -EINVAL;
		goto err_align;
	}

	/* Given we are going to fill out the structure, we probably don't
	 * need to zero it, but better safe than sorry for now.
	 */
	memset(&(entry->descriptor), 0, sizeof(struct tsi148_dma_descriptor));

	/* Fill out source part */
	switch (src->type) {
	case VME_DMA_PATTERN:
		pattern_attr = (struct vme_dma_pattern *)src->private;

		entry->descriptor.dsal = pattern_attr->pattern;
		entry->descriptor.dsat = TSI148_LCSR_DSAT_TYP_PAT;
		/* Default behaviour is 32 bit pattern */
		if (pattern_attr->type & VME_DMA_PATTERN_BYTE) {
			entry->descriptor.dsat |= TSI148_LCSR_DSAT_PSZ;
		}
		/* It seems that the default behaviour is to increment */
		if ((pattern_attr->type & VME_DMA_PATTERN_INCREMENT) == 0) {
			entry->descriptor.dsat |= TSI148_LCSR_DSAT_NIN;
		}
		break;
	case VME_DMA_PCI:
		pci_attr = (struct vme_dma_pci *)src->private;

		reg_split((unsigned long long)pci_attr->address, &address_high,
			&address_low);
		entry->descriptor.dsau = address_high;
		entry->descriptor.dsal = address_low;
		entry->descriptor.dsat = TSI148_LCSR_DSAT_TYP_PCI;
		break;
	case VME_DMA_VME:
		vme_attr = (struct vme_dma_vme *)src->private;

		reg_split((unsigned long long)vme_attr->address, &address_high,
			&address_low);
		entry->descriptor.dsau = address_high;
		entry->descriptor.dsal = address_low;
		entry->descriptor.dsat = TSI148_LCSR_DSAT_TYP_VME;

		retval = tsi148_dma_set_vme_src_attributes(
			&(entry->descriptor.dsat), vme_attr->aspace,
			vme_attr->cycle, vme_attr->dwidth);
		if(retval < 0 )
			goto err_source;
		break;
	default:
		printk("Invalid source type\n");
		retval = -EINVAL;
		goto err_source;
		break;
	}

	/* Assume last link - this will be over-written by adding another */
	entry->descriptor.dnlau = 0;
	entry->descriptor.dnlal = TSI148_LCSR_DNLAL_LLA;


	/* Fill out destination part */
	switch (dest->type) {
	case VME_DMA_PCI:
		pci_attr = (struct vme_dma_pci *)dest->private;

		reg_split((unsigned long long)pci_attr->address, &address_high,
			&address_low);
		entry->descriptor.ddau = address_high;
		entry->descriptor.ddal = address_low;
		entry->descriptor.ddat = TSI148_LCSR_DDAT_TYP_PCI;
		break;
	case VME_DMA_VME:
		vme_attr = (struct vme_dma_vme *)dest->private;

		reg_split((unsigned long long)vme_attr->address, &address_high,
			&address_low);
		entry->descriptor.ddau = address_high;
		entry->descriptor.ddal = address_low;
		entry->descriptor.ddat = TSI148_LCSR_DDAT_TYP_VME;

		retval = tsi148_dma_set_vme_dest_attributes(
			&(entry->descriptor.ddat), vme_attr->aspace,
			vme_attr->cycle, vme_attr->dwidth);
		if(retval < 0 )
			goto err_dest;
		break;
	default:
		printk("Invalid destination type\n");
		retval = -EINVAL;
		goto err_dest;
		break;
	}

	/* Fill out count */
	entry->descriptor.dcnt = (u32)count;

	/* Add to list */
	list_add_tail(&(entry->list), &(list->entries));

	/* Fill out previous descriptors "Next Address" */
	if(entry->list.prev != &(list->entries)){
		prev = list_entry(entry->list.prev, struct tsi148_dma_entry,
			list);
		/* We need the bus address for the pointer */
		desc_ptr = virt_to_bus(&(entry->descriptor));
		reg_split(desc_ptr, &(prev->descriptor.dnlau),
			&(prev->descriptor.dnlal));
	}

	return 0;

err_dest:
err_source:
err_align:
		kfree(entry);
err_mem:
	return retval;
}

/*
 * Check to see if the provided DMA channel is busy.
 */
static int tsi148_dma_busy(int channel)
{
	u32 tmp;

	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_DMA[channel] +
		TSI148_LCSR_OFFSET_DSTA);

	if (tmp & TSI148_LCSR_DSTA_BSY)
		return 0;
	else
		return 1;

}

/*
 * Execute a previously generated link list
 *
 * XXX Need to provide control register configuration.
 */
int tsi148_dma_list_exec(struct vme_dma_list *list)
{
	struct vme_dma_resource *ctrlr;
	int channel, retval = 0;
	struct tsi148_dma_entry *entry;
	dma_addr_t bus_addr;
	u32 bus_addr_high, bus_addr_low;
	u32 val, dctlreg = 0;
#if 0
	int x;
#endif

	ctrlr = list->parent;

	mutex_lock(&(ctrlr->mtx));

	channel = ctrlr->number;

	if (! list_empty(&(ctrlr->running))) {
		/*
		 * XXX We have an active DMA transfer and currently haven't
		 *     sorted out the mechanism for "pending" DMA transfers.
		 *     Return busy.
		 */
		/* Need to add to pending here */
		mutex_unlock(&(ctrlr->mtx));
		return -EBUSY;
	} else {
		list_add(&(list->list), &(ctrlr->running));
	}
#if 0
	/* XXX Still todo */
	for (x = 0; x < 8; x++) {	/* vme block size */
		if ((32 << x) >= vmeDma->maxVmeBlockSize) {
			break;
		}
	}
	if (x == 8)
		x = 7;
	dctlreg |= (x << 12);

	for (x = 0; x < 8; x++) {	/* pci block size */
		if ((32 << x) >= vmeDma->maxPciBlockSize) {
			break;
		}
	}
	if (x == 8)
		x = 7;
	dctlreg |= (x << 4);

	if (vmeDma->vmeBackOffTimer) {
		for (x = 1; x < 8; x++) {	/* vme timer */
			if ((1 << (x - 1)) >= vmeDma->vmeBackOffTimer) {
				break;
			}
		}
		if (x == 8)
			x = 7;
		dctlreg |= (x << 8);
	}

	if (vmeDma->pciBackOffTimer) {
		for (x = 1; x < 8; x++) {	/* pci timer */
			if ((1 << (x - 1)) >= vmeDma->pciBackOffTimer) {
				break;
			}
		}
		if (x == 8)
			x = 7;
		dctlreg |= (x << 0);
	}
#endif

	/* Get first bus address and write into registers */
	entry = list_first_entry(&(list->entries), struct tsi148_dma_entry,
		list);

	bus_addr = virt_to_bus(&(entry->descriptor));

	mutex_unlock(&(ctrlr->mtx));

	reg_split(bus_addr, &bus_addr_high, &bus_addr_low);

	iowrite32be(bus_addr_high, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DNLAU);
	iowrite32be(bus_addr_low, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DNLAL);

	/* Start the operation */
	iowrite32be(dctlreg | TSI148_LCSR_DCTL_DGO, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCTL);

	wait_event_interruptible(dma_queue[channel], tsi148_dma_busy(channel));
	/*
	 * Read status register, this register is valid until we kick off a
	 * new transfer.
	 */
	val = ioread32be(tsi148_bridge->base + TSI148_LCSR_DMA[channel] +
		TSI148_LCSR_OFFSET_DSTA);

	if (val & TSI148_LCSR_DSTA_VBE) {
		printk(KERN_ERR "tsi148: DMA Error. DSTA=%08X\n", val);
		retval = -EIO;
	}

	/* Remove list from running list */
	mutex_lock(&(ctrlr->mtx));
	list_del(&(list->list));
	mutex_unlock(&(ctrlr->mtx));

	return retval;
}

/*
 * Clean up a previously generated link list
 *
 * We have a separate function, don't assume that the chain can't be reused.
 */
int tsi148_dma_list_empty(struct vme_dma_list *list)
{
	struct list_head *pos, *temp;
        struct tsi148_dma_entry *entry;

	/* detach and free each entry */
	list_for_each_safe(pos, temp, &(list->entries)) {
		list_del(pos);
		entry = list_entry(pos, struct tsi148_dma_entry, list);
		kfree(entry);
	}

	return (0);
}

/*
 * All 4 location monitors reside at the same base - this is therefore a
 * system wide configuration.
 *
 * This does not enable the LM monitor - that should be done when the first
 * callback is attached and disabled when the last callback is removed.
 */
int tsi148_lm_set(struct vme_lm_resource *lm, unsigned long long lm_base,
	vme_address_t aspace, vme_cycle_t cycle)
{
	u32 lm_base_high, lm_base_low, lm_ctl = 0;
	int i;

	mutex_lock(&(lm->mtx));

	/* If we already have a callback attached, we can't move it! */
	for (i = 0; i < lm->monitors; i++) {
		if(lm_callback[i] != NULL) {
			mutex_unlock(&(lm->mtx));
			printk("Location monitor callback attached, can't "
				"reset\n");
			return -EBUSY;
		}
	}

	switch (aspace) {
	case VME_A16:
		lm_ctl |= TSI148_LCSR_LMAT_AS_A16;
		break;
	case VME_A24:
		lm_ctl |= TSI148_LCSR_LMAT_AS_A24;
		break;
	case VME_A32:
		lm_ctl |= TSI148_LCSR_LMAT_AS_A32;
		break;
	case VME_A64:
		lm_ctl |= TSI148_LCSR_LMAT_AS_A64;
		break;
	default:
		mutex_unlock(&(lm->mtx));
		printk("Invalid address space\n");
		return -EINVAL;
		break;
	}

	if (cycle & VME_SUPER)
		lm_ctl |= TSI148_LCSR_LMAT_SUPR ;
	if (cycle & VME_USER)
		lm_ctl |= TSI148_LCSR_LMAT_NPRIV;
	if (cycle & VME_PROG)
		lm_ctl |= TSI148_LCSR_LMAT_PGM;
	if (cycle & VME_DATA)
		lm_ctl |= TSI148_LCSR_LMAT_DATA;

	reg_split(lm_base, &lm_base_high, &lm_base_low);

	iowrite32be(lm_base_high, tsi148_bridge->base + TSI148_LCSR_LMBAU);
	iowrite32be(lm_base_low, tsi148_bridge->base + TSI148_LCSR_LMBAL);
	iowrite32be(lm_ctl, tsi148_bridge->base + TSI148_LCSR_LMAT);

	mutex_unlock(&(lm->mtx));

	return 0;
}

/* Get configuration of the callback monitor and return whether it is enabled
 * or disabled.
 */
int tsi148_lm_get(struct vme_lm_resource *lm, unsigned long long *lm_base,
	vme_address_t *aspace, vme_cycle_t *cycle)
{
	u32 lm_base_high, lm_base_low, lm_ctl, enabled = 0;

	mutex_lock(&(lm->mtx));

	lm_base_high = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMBAU);
	lm_base_low = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMBAL);
	lm_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMAT);

	reg_join(lm_base_high, lm_base_low, lm_base);

	if (lm_ctl & TSI148_LCSR_LMAT_EN)
		enabled = 1;

	if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A16) {
		*aspace |= VME_A16;
	}
	if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A24) {
		*aspace |= VME_A24;
	}
	if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A32) {
		*aspace |= VME_A32;
	}
	if ((lm_ctl & TSI148_LCSR_LMAT_AS_M) == TSI148_LCSR_LMAT_AS_A64) {
		*aspace |= VME_A64;
	}

	if (lm_ctl & TSI148_LCSR_LMAT_SUPR)
		*cycle |= VME_SUPER;
	if (lm_ctl & TSI148_LCSR_LMAT_NPRIV)
		*cycle |= VME_USER;
	if (lm_ctl & TSI148_LCSR_LMAT_PGM)
		*cycle |= VME_PROG;
	if (lm_ctl & TSI148_LCSR_LMAT_DATA)
		*cycle |= VME_DATA;

	mutex_unlock(&(lm->mtx));

	return enabled;
}

/*
 * Attach a callback to a specific location monitor.
 *
 * Callback will be passed the monitor triggered.
 */
int tsi148_lm_attach(struct vme_lm_resource *lm, int monitor,
	void (*callback)(int))
{
	u32 lm_ctl, tmp;

	mutex_lock(&(lm->mtx));

	/* Ensure that the location monitor is configured - need PGM or DATA */
	lm_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMAT);
	if ((lm_ctl & (TSI148_LCSR_LMAT_PGM | TSI148_LCSR_LMAT_DATA)) == 0) {
		mutex_unlock(&(lm->mtx));
		printk("Location monitor not properly configured\n");
		return -EINVAL;
	}

	/* Check that a callback isn't already attached */
	if (lm_callback[monitor] != NULL) {
		mutex_unlock(&(lm->mtx));
		printk("Existing callback attached\n");
		return -EBUSY;
	}

	/* Attach callback */
	lm_callback[monitor] = callback;

	/* Enable Location Monitor interrupt */
	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEN);
	tmp |= TSI148_LCSR_INTEN_LMEN[monitor];
	iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEN);

	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
	tmp |= TSI148_LCSR_INTEO_LMEO[monitor];
	iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEO);

	/* Ensure that global Location Monitor Enable set */
	if ((lm_ctl & TSI148_LCSR_LMAT_EN) == 0) {
		lm_ctl |= TSI148_LCSR_LMAT_EN;
		iowrite32be(lm_ctl, tsi148_bridge->base + TSI148_LCSR_LMAT);
	}

	mutex_unlock(&(lm->mtx));

	return 0;
}

/*
 * Detach a callback function forn a specific location monitor.
 */
int tsi148_lm_detach(struct vme_lm_resource *lm, int monitor)
{
	u32 lm_en, tmp;

	mutex_lock(&(lm->mtx));

	/* Disable Location Monitor and ensure previous interrupts are clear */
	lm_en = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEN);
	lm_en &= ~TSI148_LCSR_INTEN_LMEN[monitor];
	iowrite32be(lm_en, tsi148_bridge->base + TSI148_LCSR_INTEN);

	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_INTEO);
	tmp &= ~TSI148_LCSR_INTEO_LMEO[monitor];
	iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_INTEO);

	iowrite32be(TSI148_LCSR_INTC_LMC[monitor],
		 tsi148_bridge->base + TSI148_LCSR_INTC);

	/* Detach callback */
	lm_callback[monitor] = NULL;

	/* If all location monitors disabled, disable global Location Monitor */
	if ((lm_en & (TSI148_LCSR_INTS_LM0S | TSI148_LCSR_INTS_LM1S |
			TSI148_LCSR_INTS_LM2S | TSI148_LCSR_INTS_LM3S)) == 0) {
		tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_LMAT);
		tmp &= ~TSI148_LCSR_LMAT_EN;
		iowrite32be(tmp, tsi148_bridge->base + TSI148_LCSR_LMAT);
	}

	mutex_unlock(&(lm->mtx));

	return 0;
}

/*
 * Determine Geographical Addressing
 */
int tsi148_slot_get(void)
{
        u32 slot = 0;

	slot = ioread32be(tsi148_bridge->base + TSI148_LCSR_VSTAT);
	slot = slot & TSI148_LCSR_VSTAT_GA_M;
	return (int)slot;
}

static int __init tsi148_init(void)
{
	return pci_register_driver(&tsi148_driver);
}

/*
 * Configure CR/CSR space
 *
 * Access to the CR/CSR can be configured at power-up. The location of the
 * CR/CSR registers in the CR/CSR address space is determined by the boards
 * Auto-ID or Geographic address. This function ensures that the window is
 * enabled at an offset consistent with the boards geopgraphic address.
 *
 * Each board has a 512kB window, with the highest 4kB being used for the
 * boards registers, this means there is a fix length 508kB window which must
 * be mapped onto PCI memory.
 */
static int tsi148_crcsr_init(struct pci_dev *pdev)
{
	u32 cbar, crat, vstat;
	u32 crcsr_bus_high, crcsr_bus_low;
	int retval;

	/* Allocate mem for CR/CSR image */
	crcsr_kernel = pci_alloc_consistent(pdev, VME_CRCSR_BUF_SIZE,
		&crcsr_bus);
	if (crcsr_kernel == NULL) {
		dev_err(&pdev->dev, "Failed to allocate memory for CR/CSR "
			"image\n");
		return -ENOMEM;
	}

	memset(crcsr_kernel, 0, VME_CRCSR_BUF_SIZE);

	reg_split(crcsr_bus, &crcsr_bus_high, &crcsr_bus_low);

	iowrite32be(crcsr_bus_high, tsi148_bridge->base + TSI148_LCSR_CROU);
	iowrite32be(crcsr_bus_low, tsi148_bridge->base + TSI148_LCSR_CROL);

	/* Ensure that the CR/CSR is configured at the correct offset */
	cbar = ioread32be(tsi148_bridge->base + TSI148_CBAR);
	cbar = (cbar & TSI148_CRCSR_CBAR_M)>>3;

	vstat = tsi148_slot_get();

	if (cbar != vstat) {
		dev_info(&pdev->dev, "Setting CR/CSR offset\n");
		iowrite32be(cbar<<3, tsi148_bridge->base + TSI148_CBAR);
	}
	dev_info(&pdev->dev, "CR/CSR Offset: %d\n", cbar);

	crat = ioread32be(tsi148_bridge->base + TSI148_LCSR_CRAT);
	if (crat & TSI148_LCSR_CRAT_EN) {
		dev_info(&pdev->dev, "Enabling CR/CSR space\n");
		iowrite32be(crat | TSI148_LCSR_CRAT_EN,
			tsi148_bridge->base + TSI148_LCSR_CRAT);
	} else
		dev_info(&pdev->dev, "CR/CSR already enabled\n");

	/* If we want flushed, error-checked writes, set up a window
	 * over the CR/CSR registers. We read from here to safely flush
	 * through VME writes.
	 */
	if(err_chk) {
		retval = tsi148_master_set(flush_image, 1, (vstat * 0x80000),
			0x80000, VME_CRCSR, VME_SCT, VME_D16);
		if (retval)
			dev_err(&pdev->dev, "Configuring flush image failed\n");
	}

	return 0;

}

static void tsi148_crcsr_exit(struct pci_dev *pdev)
{
	u32 crat;

	/* Turn off CR/CSR space */
	crat = ioread32be(tsi148_bridge->base + TSI148_LCSR_CRAT);
	iowrite32be(crat & ~TSI148_LCSR_CRAT_EN,
		tsi148_bridge->base + TSI148_LCSR_CRAT);

	/* Free image */
	iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_CROU);
	iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_CROL);

	pci_free_consistent(pdev, VME_CRCSR_BUF_SIZE, crcsr_kernel, crcsr_bus);
}

static int tsi148_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int retval, i, master_num;
	u32 data;
	struct list_head *pos = NULL;
	struct vme_master_resource *master_image;
	struct vme_slave_resource *slave_image;
	struct vme_dma_resource *dma_ctrlr;
	struct vme_lm_resource *lm;

	/* If we want to support more than one of each bridge, we need to
	 * dynamically generate this so we get one per device
	 */
	tsi148_bridge = (struct vme_bridge *)kmalloc(sizeof(struct vme_bridge),
		GFP_KERNEL);
	if (tsi148_bridge == NULL) {
		dev_err(&pdev->dev, "Failed to allocate memory for device "
			"structure\n");
		retval = -ENOMEM;
		goto err_struct;
	}

	memset(tsi148_bridge, 0, sizeof(struct vme_bridge));

	/* Enable the device */
	retval = pci_enable_device(pdev);
	if (retval) {
		dev_err(&pdev->dev, "Unable to enable device\n");
		goto err_enable;
	}

	/* Map Registers */
	retval = pci_request_regions(pdev, driver_name);
	if (retval) {
		dev_err(&pdev->dev, "Unable to reserve resources\n");
		goto err_resource;
	}

	/* map registers in BAR 0 */
	tsi148_bridge->base = ioremap_nocache(pci_resource_start(pdev, 0), 4096);
	if (!tsi148_bridge->base) {
		dev_err(&pdev->dev, "Unable to remap CRG region\n");
		retval = -EIO;
		goto err_remap;
	}

	/* Check to see if the mapping worked out */
	data = ioread32(tsi148_bridge->base + TSI148_PCFS_ID) & 0x0000FFFF;
	if (data != PCI_VENDOR_ID_TUNDRA) {
		dev_err(&pdev->dev, "CRG region check failed\n");
		retval = -EIO;
		goto err_test;
	}

	/* Initialize wait queues & mutual exclusion flags */
	/* XXX These need to be moved to the vme_bridge structure */
	init_waitqueue_head(&dma_queue[0]);
	init_waitqueue_head(&dma_queue[1]);
	init_waitqueue_head(&iack_queue);
	mutex_init(&(vme_int));
	mutex_init(&(vme_rmw));

	tsi148_bridge->parent = &(pdev->dev);
	strcpy(tsi148_bridge->name, driver_name);

	/* Setup IRQ */
	retval = tsi148_irq_init(tsi148_bridge);
	if (retval != 0) {
		dev_err(&pdev->dev, "Chip Initialization failed.\n");
		goto err_irq;
	}

	/* If we are going to flush writes, we need to read from the VME bus.
	 * We need to do this safely, thus we read the devices own CR/CSR
	 * register. To do this we must set up a window in CR/CSR space and
	 * hence have one less master window resource available.
	 */
	master_num = TSI148_MAX_MASTER;
	if(err_chk){
		master_num--;
		/* XXX */
		flush_image = (struct vme_master_resource *)kmalloc(
			sizeof(struct vme_master_resource), GFP_KERNEL);
		if (flush_image == NULL) {
			dev_err(&pdev->dev, "Failed to allocate memory for "
			"flush resource structure\n");
			retval = -ENOMEM;
			goto err_master;
		}
		flush_image->parent = tsi148_bridge;
		spin_lock_init(&(flush_image->lock));
		flush_image->locked = 1;
		flush_image->number = master_num;
		flush_image->address_attr = VME_A16 | VME_A24 | VME_A32 |
			VME_A64;
		flush_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT |
			VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 |
			VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER |
			VME_PROG | VME_DATA;
		flush_image->width_attr = VME_D16 | VME_D32;
		memset(&(flush_image->pci_resource), 0,
			sizeof(struct resource));
		flush_image->kern_base  = NULL;
	}

	/* Add master windows to list */
	INIT_LIST_HEAD(&(tsi148_bridge->master_resources));
	for (i = 0; i < master_num; i++) {
		master_image = (struct vme_master_resource *)kmalloc(
			sizeof(struct vme_master_resource), GFP_KERNEL);
		if (master_image == NULL) {
			dev_err(&pdev->dev, "Failed to allocate memory for "
			"master resource structure\n");
			retval = -ENOMEM;
			goto err_master;
		}
		master_image->parent = tsi148_bridge;
		spin_lock_init(&(master_image->lock));
		master_image->locked = 0;
		master_image->number = i;
		master_image->address_attr = VME_A16 | VME_A24 | VME_A32 |
			VME_A64;
		master_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT |
			VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 |
			VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER |
			VME_PROG | VME_DATA;
		master_image->width_attr = VME_D16 | VME_D32;
		memset(&(master_image->pci_resource), 0,
			sizeof(struct resource));
		master_image->kern_base  = NULL;
		list_add_tail(&(master_image->list),
			&(tsi148_bridge->master_resources));
	}

	/* Add slave windows to list */
	INIT_LIST_HEAD(&(tsi148_bridge->slave_resources));
	for (i = 0; i < TSI148_MAX_SLAVE; i++) {
		slave_image = (struct vme_slave_resource *)kmalloc(
			sizeof(struct vme_slave_resource), GFP_KERNEL);
		if (slave_image == NULL) {
			dev_err(&pdev->dev, "Failed to allocate memory for "
			"slave resource structure\n");
			retval = -ENOMEM;
			goto err_slave;
		}
		slave_image->parent = tsi148_bridge;
		mutex_init(&(slave_image->mtx));
		slave_image->locked = 0;
		slave_image->number = i;
		slave_image->address_attr = VME_A16 | VME_A24 | VME_A32 |
			VME_A64 | VME_CRCSR | VME_USER1 | VME_USER2 |
			VME_USER3 | VME_USER4;
		slave_image->cycle_attr = VME_SCT | VME_BLT | VME_MBLT |
			VME_2eVME | VME_2eSST | VME_2eSSTB | VME_2eSST160 |
			VME_2eSST267 | VME_2eSST320 | VME_SUPER | VME_USER |
			VME_PROG | VME_DATA;
		list_add_tail(&(slave_image->list),
			&(tsi148_bridge->slave_resources));
	}

	/* Add dma engines to list */
	INIT_LIST_HEAD(&(tsi148_bridge->dma_resources));
	for (i = 0; i < TSI148_MAX_DMA; i++) {
		dma_ctrlr = (struct vme_dma_resource *)kmalloc(
			sizeof(struct vme_dma_resource), GFP_KERNEL);
		if (dma_ctrlr == NULL) {
			dev_err(&pdev->dev, "Failed to allocate memory for "
			"dma resource structure\n");
			retval = -ENOMEM;
			goto err_dma;
		}
		dma_ctrlr->parent = tsi148_bridge;
		mutex_init(&(dma_ctrlr->mtx));
		dma_ctrlr->locked = 0;
		dma_ctrlr->number = i;
		INIT_LIST_HEAD(&(dma_ctrlr->pending));
		INIT_LIST_HEAD(&(dma_ctrlr->running));
		list_add_tail(&(dma_ctrlr->list),
			&(tsi148_bridge->dma_resources));
	}

	/* Add location monitor to list */
	INIT_LIST_HEAD(&(tsi148_bridge->lm_resources));
	lm = kmalloc(sizeof(struct vme_lm_resource), GFP_KERNEL);
	if (lm == NULL) {
		dev_err(&pdev->dev, "Failed to allocate memory for "
		"location monitor resource structure\n");
		retval = -ENOMEM;
		goto err_lm;
	}
	lm->parent = tsi148_bridge;
	mutex_init(&(lm->mtx));
	lm->locked = 0;
	lm->number = 1;
	lm->monitors = 4;
	list_add_tail(&(lm->list), &(tsi148_bridge->lm_resources));

	tsi148_bridge->slave_get = tsi148_slave_get;
	tsi148_bridge->slave_set = tsi148_slave_set;
	tsi148_bridge->master_get = tsi148_master_get;
	tsi148_bridge->master_set = tsi148_master_set;
	tsi148_bridge->master_read = tsi148_master_read;
	tsi148_bridge->master_write = tsi148_master_write;
	tsi148_bridge->master_rmw = tsi148_master_rmw;
	tsi148_bridge->dma_list_add = tsi148_dma_list_add;
	tsi148_bridge->dma_list_exec = tsi148_dma_list_exec;
	tsi148_bridge->dma_list_empty = tsi148_dma_list_empty;
	tsi148_bridge->irq_set = tsi148_irq_set;
	tsi148_bridge->irq_generate = tsi148_irq_generate;
	tsi148_bridge->lm_set = tsi148_lm_set;
	tsi148_bridge->lm_get = tsi148_lm_get;
	tsi148_bridge->lm_attach = tsi148_lm_attach;
	tsi148_bridge->lm_detach = tsi148_lm_detach;
	tsi148_bridge->slot_get = tsi148_slot_get;

	data = ioread32be(tsi148_bridge->base + TSI148_LCSR_VSTAT);
	dev_info(&pdev->dev, "Board is%s the VME system controller\n",
		(data & TSI148_LCSR_VSTAT_SCONS)? "" : " not");
	dev_info(&pdev->dev, "VME geographical address is %d\n",
		data & TSI148_LCSR_VSTAT_GA_M);
	dev_info(&pdev->dev, "VME Write and flush and error check is %s\n",
		err_chk ? "enabled" : "disabled");

	if(tsi148_crcsr_init(pdev)) {
		dev_err(&pdev->dev, "CR/CSR configuration failed.\n");
		goto err_crcsr;

	}

	/* Need to save tsi148_bridge pointer locally in link list for use in
	 * tsi148_remove()
	 */
	retval = vme_register_bridge(tsi148_bridge);
	if (retval != 0) {
		dev_err(&pdev->dev, "Chip Registration failed.\n");
		goto err_reg;
	}

	/* Clear VME bus "board fail", and "power-up reset" lines */
	data = ioread32be(tsi148_bridge->base + TSI148_LCSR_VSTAT);
	data &= ~TSI148_LCSR_VSTAT_BRDFL;
	data |= TSI148_LCSR_VSTAT_CPURST;
	iowrite32be(data, tsi148_bridge->base + TSI148_LCSR_VSTAT);

	return 0;

	vme_unregister_bridge(tsi148_bridge);
err_reg:
	tsi148_crcsr_exit(pdev);
err_crcsr:
err_lm:
	/* resources are stored in link list */
	list_for_each(pos, &(tsi148_bridge->lm_resources)) {
		lm = list_entry(pos, struct vme_lm_resource, list);
		list_del(pos);
		kfree(lm);
	}
err_dma:
	/* resources are stored in link list */
	list_for_each(pos, &(tsi148_bridge->dma_resources)) {
		dma_ctrlr = list_entry(pos, struct vme_dma_resource, list);
		list_del(pos);
		kfree(dma_ctrlr);
	}
err_slave:
	/* resources are stored in link list */
	list_for_each(pos, &(tsi148_bridge->slave_resources)) {
		slave_image = list_entry(pos, struct vme_slave_resource, list);
		list_del(pos);
		kfree(slave_image);
	}
err_master:
	/* resources are stored in link list */
	list_for_each(pos, &(tsi148_bridge->master_resources)) {
		master_image = list_entry(pos, struct vme_master_resource,				list);
		list_del(pos);
		kfree(master_image);
	}

	tsi148_irq_exit(pdev);
err_irq:
err_test:
	iounmap(tsi148_bridge->base);
err_remap:
	pci_release_regions(pdev);
err_resource:
	pci_disable_device(pdev);
err_enable:
	kfree(tsi148_bridge);
err_struct:
	return retval;

}

static void tsi148_remove(struct pci_dev *pdev)
{
	struct list_head *pos = NULL;
	struct vme_master_resource *master_image;
	struct vme_slave_resource *slave_image;
	struct vme_dma_resource *dma_ctrlr;
	int i;

	dev_dbg(&pdev->dev, "Driver is being unloaded.\n");

	/* XXX We need to find the pdev->dev in the list of vme_bridge->dev's */

	/*
	 *  Shutdown all inbound and outbound windows.
	 */
	for (i = 0; i < 8; i++) {
		iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_IT[i] +
			TSI148_LCSR_OFFSET_ITAT);
		iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_OT[i] +
			TSI148_LCSR_OFFSET_OTAT);
	}

	/*
	 *  Shutdown Location monitor.
	 */
	iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_LMAT);

	/*
	 *  Shutdown CRG map.
	 */
	iowrite32be(0, tsi148_bridge->base + TSI148_LCSR_CSRAT);

	/*
	 *  Clear error status.
	 */
	iowrite32be(0xFFFFFFFF, tsi148_bridge->base + TSI148_LCSR_EDPAT);
	iowrite32be(0xFFFFFFFF, tsi148_bridge->base + TSI148_LCSR_VEAT);
	iowrite32be(0x07000700, tsi148_bridge->base + TSI148_LCSR_PSTAT);

	/*
	 *  Remove VIRQ interrupt (if any)
	 */
	if (ioread32be(tsi148_bridge->base + TSI148_LCSR_VICR) & 0x800) {
		iowrite32be(0x8000, tsi148_bridge->base + TSI148_LCSR_VICR);
	}

	/*
	 *  Map all Interrupts to PCI INTA
	 */
	iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTM1);
	iowrite32be(0x0, tsi148_bridge->base + TSI148_LCSR_INTM2);

	tsi148_irq_exit(pdev);

	vme_unregister_bridge(tsi148_bridge);

	tsi148_crcsr_exit(pdev);

	/* resources are stored in link list */
	list_for_each(pos, &(tsi148_bridge->dma_resources)) {
		dma_ctrlr = list_entry(pos, struct vme_dma_resource, list);
		list_del(pos);
		kfree(dma_ctrlr);
	}

	/* resources are stored in link list */
	list_for_each(pos, &(tsi148_bridge->slave_resources)) {
		slave_image = list_entry(pos, struct vme_slave_resource, list);
		list_del(pos);
		kfree(slave_image);
	}

	/* resources are stored in link list */
	list_for_each(pos, &(tsi148_bridge->master_resources)) {
		master_image = list_entry(pos, struct vme_master_resource,				list);
		list_del(pos);
		kfree(master_image);
	}

	tsi148_irq_exit(pdev);

	iounmap(tsi148_bridge->base);

	pci_release_regions(pdev);

	pci_disable_device(pdev);

	kfree(tsi148_bridge);
}

static void __exit tsi148_exit(void)
{
	pci_unregister_driver(&tsi148_driver);

	printk(KERN_DEBUG "Driver removed.\n");
}

MODULE_PARM_DESC(err_chk, "Check for VME errors on reads and writes");
module_param(err_chk, bool, 0);

MODULE_DESCRIPTION("VME driver for the Tundra Tempe VME bridge");
MODULE_LICENSE("GPL");

module_init(tsi148_init);
module_exit(tsi148_exit);

/*----------------------------------------------------------------------------
 * STAGING
 *--------------------------------------------------------------------------*/

#if 0
/*
 * Direct Mode DMA transfer
 *
 * XXX Not looking at direct mode for now, we can always use link list mode
 *     with a single entry.
 */
int tsi148_dma_run(struct vme_dma_resource *resource, struct vme_dma_attr src,
	struct vme_dma_attr dest, size_t count)
{
	u32 dctlreg = 0;
	unsigned int tmp;
	int val;
	int channel, x;
	struct vmeDmaPacket *cur_dma;
	struct tsi148_dma_descriptor *dmaLL;

	/* direct mode */
	dctlreg = 0x800000;

	for (x = 0; x < 8; x++) {	/* vme block size */
		if ((32 << x) >= vmeDma->maxVmeBlockSize) {
			break;
		}
	}
	if (x == 8)
		x = 7;
	dctlreg |= (x << 12);

	for (x = 0; x < 8; x++) {	/* pci block size */
		if ((32 << x) >= vmeDma->maxPciBlockSize) {
			break;
		}
	}
	if (x == 8)
		x = 7;
	dctlreg |= (x << 4);

	if (vmeDma->vmeBackOffTimer) {
		for (x = 1; x < 8; x++) {	/* vme timer */
			if ((1 << (x - 1)) >= vmeDma->vmeBackOffTimer) {
				break;
			}
		}
		if (x == 8)
			x = 7;
		dctlreg |= (x << 8);
	}

	if (vmeDma->pciBackOffTimer) {
		for (x = 1; x < 8; x++) {	/* pci timer */
			if ((1 << (x - 1)) >= vmeDma->pciBackOffTimer) {
				break;
			}
		}
		if (x == 8)
			x = 7;
		dctlreg |= (x << 0);
	}

	/* Program registers for DMA transfer */
	iowrite32be(dmaLL->dsau, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DSAU);
	iowrite32be(dmaLL->dsal, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DSAL);
	iowrite32be(dmaLL->ddau, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DDAU);
	iowrite32be(dmaLL->ddal, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DDAL);
	iowrite32be(dmaLL->dsat, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DSAT);
	iowrite32be(dmaLL->ddat, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DDAT);
	iowrite32be(dmaLL->dcnt, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCNT);
	iowrite32be(dmaLL->ddbs, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DDBS);

	/* Start the operation */
	iowrite32be(dctlreg | 0x2000000, tsi148_bridge->base +
		TSI148_LCSR_DMA[channel] + TSI148_LCSR_OFFSET_DCTL);

	tmp = ioread32be(tsi148_bridge->base + TSI148_LCSR_DMA[channel] +
		TSI148_LCSR_OFFSET_DSTA);
	wait_event_interruptible(dma_queue[channel], (tmp & 0x1000000) == 0);

	/*
	 * Read status register, we should probably do this in some error
	 * handler rather than here so that we can be sure we haven't kicked off
	 * another DMA transfer.
	 */
	val = ioread32be(tsi148_bridge->base + TSI148_LCSR_DMA[channel] +
		TSI148_LCSR_OFFSET_DSTA);

	vmeDma->vmeDmaStatus = 0;
	if (val & 0x10000000) {
		printk(KERN_ERR
			"DMA Error in DMA_tempe_irqhandler DSTA=%08X\n",
			val);
		vmeDma->vmeDmaStatus = val;

	}
	return (0);
}
#endif

#if 0

/* Global VME controller information */
struct pci_dev *vme_pci_dev;

/*
 * Set the VME bus arbiter with the requested attributes
 */
int tempe_set_arbiter(vmeArbiterCfg_t * vmeArb)
{
	int temp_ctl = 0;
	int gto = 0;

	temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_VCTRL);
	temp_ctl &= 0xFFEFFF00;

	if (vmeArb->globalTimeoutTimer == 0xFFFFFFFF) {
		gto = 8;
	} else if (vmeArb->globalTimeoutTimer > 2048) {
		return (-EINVAL);
	} else if (vmeArb->globalTimeoutTimer == 0) {
		gto = 0;
	} else {
		gto = 1;
		while ((16 * (1 << (gto - 1))) < vmeArb->globalTimeoutTimer) {
			gto += 1;
		}
	}
	temp_ctl |= gto;

	if (vmeArb->arbiterMode != VME_PRIORITY_MODE) {
		temp_ctl |= 1 << 6;
	}

	if (vmeArb->arbiterTimeoutFlag) {
		temp_ctl |= 1 << 7;
	}

	if (vmeArb->noEarlyReleaseFlag) {
		temp_ctl |= 1 << 20;
	}
	iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_VCTRL);

	return (0);
}

/*
 * Return the attributes of the VME bus arbiter.
 */
int tempe_get_arbiter(vmeArbiterCfg_t * vmeArb)
{
	int temp_ctl = 0;
	int gto = 0;


	temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_VCTRL);

	gto = temp_ctl & 0xF;
	if (gto != 0) {
		vmeArb->globalTimeoutTimer = (16 * (1 << (gto - 1)));
	}

	if (temp_ctl & (1 << 6)) {
		vmeArb->arbiterMode = VME_R_ROBIN_MODE;
	} else {
		vmeArb->arbiterMode = VME_PRIORITY_MODE;
	}

	if (temp_ctl & (1 << 7)) {
		vmeArb->arbiterTimeoutFlag = 1;
	}

	if (temp_ctl & (1 << 20)) {
		vmeArb->noEarlyReleaseFlag = 1;
	}

	return (0);
}

/*
 * Set the VME bus requestor with the requested attributes
 */
int tempe_set_requestor(vmeRequesterCfg_t * vmeReq)
{
	int temp_ctl = 0;

	temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_VMCTRL);
	temp_ctl &= 0xFFFF0000;

	if (vmeReq->releaseMode == 1) {
		temp_ctl |= (1 << 3);
	}

	if (vmeReq->fairMode == 1) {
		temp_ctl |= (1 << 2);
	}

	temp_ctl |= (vmeReq->timeonTimeoutTimer & 7) << 8;
	temp_ctl |= (vmeReq->timeoffTimeoutTimer & 7) << 12;
	temp_ctl |= vmeReq->requestLevel;

	iowrite32be(temp_ctl, tsi148_bridge->base + TSI148_LCSR_VMCTRL);
	return (0);
}

/*
 * Return the attributes of the VME bus requestor
 */
int tempe_get_requestor(vmeRequesterCfg_t * vmeReq)
{
	int temp_ctl = 0;

	temp_ctl = ioread32be(tsi148_bridge->base + TSI148_LCSR_VMCTRL);

	if (temp_ctl & 0x18) {
		vmeReq->releaseMode = 1;
	}

	if (temp_ctl & (1 << 2)) {
		vmeReq->fairMode = 1;
	}

	vmeReq->requestLevel = temp_ctl & 3;
	vmeReq->timeonTimeoutTimer = (temp_ctl >> 8) & 7;
	vmeReq->timeoffTimeoutTimer = (temp_ctl >> 12) & 7;

	return (0);
}


#endif