Linux-2.6.33.2/drivers/md/raid0.c

/*
   raid0.c : Multiple Devices driver for Linux
             Copyright (C) 1994-96 Marc ZYNGIER
	     <zyngier@ufr-info-p7.ibp.fr> or
	     <maz@gloups.fdn.fr>
             Copyright (C) 1999, 2000 Ingo Molnar, Red Hat


   RAID-0 management functions.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.
   
   You should have received a copy of the GNU General Public License
   (for example /usr/src/linux/COPYING); if not, write to the Free
   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
*/

#include <linux/blkdev.h>
#include <linux/seq_file.h>
#include "md.h"
#include "raid0.h"

static void raid0_unplug(struct request_queue *q)
{
	mddev_t *mddev = q->queuedata;
	raid0_conf_t *conf = mddev->private;
	mdk_rdev_t **devlist = conf->devlist;
	int i;

	for (i=0; i<mddev->raid_disks; i++) {
		struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);

		blk_unplug(r_queue);
	}
}

static int raid0_congested(void *data, int bits)
{
	mddev_t *mddev = data;
	raid0_conf_t *conf = mddev->private;
	mdk_rdev_t **devlist = conf->devlist;
	int i, ret = 0;

	if (mddev_congested(mddev, bits))
		return 1;

	for (i = 0; i < mddev->raid_disks && !ret ; i++) {
		struct request_queue *q = bdev_get_queue(devlist[i]->bdev);

		ret |= bdi_congested(&q->backing_dev_info, bits);
	}
	return ret;
}

/*
 * inform the user of the raid configuration
*/
static void dump_zones(mddev_t *mddev)
{
	int j, k, h;
	sector_t zone_size = 0;
	sector_t zone_start = 0;
	char b[BDEVNAME_SIZE];
	raid0_conf_t *conf = mddev->private;
	printk(KERN_INFO "******* %s configuration *********\n",
		mdname(mddev));
	h = 0;
	for (j = 0; j < conf->nr_strip_zones; j++) {
		printk(KERN_INFO "zone%d=[", j);
		for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
			printk("%s/",
			bdevname(conf->devlist[j*mddev->raid_disks
						+ k]->bdev, b));
		printk("]\n");

		zone_size  = conf->strip_zone[j].zone_end - zone_start;
		printk(KERN_INFO "        zone offset=%llukb "
				"device offset=%llukb size=%llukb\n",
			(unsigned long long)zone_start>>1,
			(unsigned long long)conf->strip_zone[j].dev_start>>1,
			(unsigned long long)zone_size>>1);
		zone_start = conf->strip_zone[j].zone_end;
	}
	printk(KERN_INFO "**********************************\n\n");
}

static int create_strip_zones(mddev_t *mddev)
{
	int i, c, err;
	sector_t curr_zone_end, sectors;
	mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev, **dev;
	struct strip_zone *zone;
	int cnt;
	char b[BDEVNAME_SIZE];
	raid0_conf_t *conf = kzalloc(sizeof(*conf), GFP_KERNEL);

	if (!conf)
		return -ENOMEM;
	list_for_each_entry(rdev1, &mddev->disks, same_set) {
		printk(KERN_INFO "raid0: looking at %s\n",
			bdevname(rdev1->bdev,b));
		c = 0;

		/* round size to chunk_size */
		sectors = rdev1->sectors;
		sector_div(sectors, mddev->chunk_sectors);
		rdev1->sectors = sectors * mddev->chunk_sectors;

		list_for_each_entry(rdev2, &mddev->disks, same_set) {
			printk(KERN_INFO "raid0:   comparing %s(%llu)",
			       bdevname(rdev1->bdev,b),
			       (unsigned long long)rdev1->sectors);
			printk(KERN_INFO " with %s(%llu)\n",
			       bdevname(rdev2->bdev,b),
			       (unsigned long long)rdev2->sectors);
			if (rdev2 == rdev1) {
				printk(KERN_INFO "raid0:   END\n");
				break;
			}
			if (rdev2->sectors == rdev1->sectors) {
				/*
				 * Not unique, don't count it as a new
				 * group
				 */
				printk(KERN_INFO "raid0:   EQUAL\n");
				c = 1;
				break;
			}
			printk(KERN_INFO "raid0:   NOT EQUAL\n");
		}
		if (!c) {
			printk(KERN_INFO "raid0:   ==> UNIQUE\n");
			conf->nr_strip_zones++;
			printk(KERN_INFO "raid0: %d zones\n",
				conf->nr_strip_zones);
		}
	}
	printk(KERN_INFO "raid0: FINAL %d zones\n", conf->nr_strip_zones);
	err = -ENOMEM;
	conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
				conf->nr_strip_zones, GFP_KERNEL);
	if (!conf->strip_zone)
		goto abort;
	conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
				conf->nr_strip_zones*mddev->raid_disks,
				GFP_KERNEL);
	if (!conf->devlist)
		goto abort;

	/* The first zone must contain all devices, so here we check that
	 * there is a proper alignment of slots to devices and find them all
	 */
	zone = &conf->strip_zone[0];
	cnt = 0;
	smallest = NULL;
	dev = conf->devlist;
	err = -EINVAL;
	list_for_each_entry(rdev1, &mddev->disks, same_set) {
		int j = rdev1->raid_disk;

		if (j < 0 || j >= mddev->raid_disks) {
			printk(KERN_ERR "raid0: bad disk number %d - "
				"aborting!\n", j);
			goto abort;
		}
		if (dev[j]) {
			printk(KERN_ERR "raid0: multiple devices for %d - "
				"aborting!\n", j);
			goto abort;
		}
		dev[j] = rdev1;

		disk_stack_limits(mddev->gendisk, rdev1->bdev,
				  rdev1->data_offset << 9);
		/* as we don't honour merge_bvec_fn, we must never risk
		 * violating it, so limit ->max_sector to one PAGE, as
		 * a one page request is never in violation.
		 */

		if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
		    queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
			blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);

		if (!smallest || (rdev1->sectors < smallest->sectors))
			smallest = rdev1;
		cnt++;
	}
	if (cnt != mddev->raid_disks) {
		printk(KERN_ERR "raid0: too few disks (%d of %d) - "
			"aborting!\n", cnt, mddev->raid_disks);
		goto abort;
	}
	zone->nb_dev = cnt;
	zone->zone_end = smallest->sectors * cnt;

	curr_zone_end = zone->zone_end;

	/* now do the other zones */
	for (i = 1; i < conf->nr_strip_zones; i++)
	{
		int j;

		zone = conf->strip_zone + i;
		dev = conf->devlist + i * mddev->raid_disks;

		printk(KERN_INFO "raid0: zone %d\n", i);
		zone->dev_start = smallest->sectors;
		smallest = NULL;
		c = 0;

		for (j=0; j<cnt; j++) {
			rdev = conf->devlist[j];
			printk(KERN_INFO "raid0: checking %s ...",
				bdevname(rdev->bdev, b));
			if (rdev->sectors <= zone->dev_start) {
				printk(KERN_INFO " nope.\n");
				continue;
			}
			printk(KERN_INFO " contained as device %d\n", c);
			dev[c] = rdev;
			c++;
			if (!smallest || rdev->sectors < smallest->sectors) {
				smallest = rdev;
				printk(KERN_INFO "  (%llu) is smallest!.\n",
					(unsigned long long)rdev->sectors);
			}
		}

		zone->nb_dev = c;
		sectors = (smallest->sectors - zone->dev_start) * c;
		printk(KERN_INFO "raid0: zone->nb_dev: %d, sectors: %llu\n",
			zone->nb_dev, (unsigned long long)sectors);

		curr_zone_end += sectors;
		zone->zone_end = curr_zone_end;

		printk(KERN_INFO "raid0: current zone start: %llu\n",
			(unsigned long long)smallest->sectors);
	}
	mddev->queue->unplug_fn = raid0_unplug;
	mddev->queue->backing_dev_info.congested_fn = raid0_congested;
	mddev->queue->backing_dev_info.congested_data = mddev;

	/*
	 * now since we have the hard sector sizes, we can make sure
	 * chunk size is a multiple of that sector size
	 */
	if ((mddev->chunk_sectors << 9) % queue_logical_block_size(mddev->queue)) {
		printk(KERN_ERR "%s chunk_size of %d not valid\n",
		       mdname(mddev),
		       mddev->chunk_sectors << 9);
		goto abort;
	}

	blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
	blk_queue_io_opt(mddev->queue,
			 (mddev->chunk_sectors << 9) * mddev->raid_disks);

	printk(KERN_INFO "raid0: done.\n");
	mddev->private = conf;
	return 0;
abort:
	kfree(conf->strip_zone);
	kfree(conf->devlist);
	kfree(conf);
	mddev->private = NULL;
	return err;
}

/**
 *	raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
 *	@q: request queue
 *	@bvm: properties of new bio
 *	@biovec: the request that could be merged to it.
 *
 *	Return amount of bytes we can accept at this offset
 */
static int raid0_mergeable_bvec(struct request_queue *q,
				struct bvec_merge_data *bvm,
				struct bio_vec *biovec)
{
	mddev_t *mddev = q->queuedata;
	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
	int max;
	unsigned int chunk_sectors = mddev->chunk_sectors;
	unsigned int bio_sectors = bvm->bi_size >> 9;

	if (is_power_of_2(chunk_sectors))
		max =  (chunk_sectors - ((sector & (chunk_sectors-1))
						+ bio_sectors)) << 9;
	else
		max =  (chunk_sectors - (sector_div(sector, chunk_sectors)
						+ bio_sectors)) << 9;
	if (max < 0) max = 0; /* bio_add cannot handle a negative return */
	if (max <= biovec->bv_len && bio_sectors == 0)
		return biovec->bv_len;
	else 
		return max;
}

static sector_t raid0_size(mddev_t *mddev, sector_t sectors, int raid_disks)
{
	sector_t array_sectors = 0;
	mdk_rdev_t *rdev;

	WARN_ONCE(sectors || raid_disks,
		  "%s does not support generic reshape\n", __func__);

	list_for_each_entry(rdev, &mddev->disks, same_set)
		array_sectors += rdev->sectors;

	return array_sectors;
}

static int raid0_run(mddev_t *mddev)
{
	int ret;

	if (mddev->chunk_sectors == 0) {
		printk(KERN_ERR "md/raid0: chunk size must be set.\n");
		return -EINVAL;
	}
	if (md_check_no_bitmap(mddev))
		return -EINVAL;
	blk_queue_max_sectors(mddev->queue, mddev->chunk_sectors);
	mddev->queue->queue_lock = &mddev->queue->__queue_lock;

	ret = create_strip_zones(mddev);
	if (ret < 0)
		return ret;

	/* calculate array device size */
	md_set_array_sectors(mddev, raid0_size(mddev, 0, 0));

	printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
		(unsigned long long)mddev->array_sectors);
	/* calculate the max read-ahead size.
	 * For read-ahead of large files to be effective, we need to
	 * readahead at least twice a whole stripe. i.e. number of devices
	 * multiplied by chunk size times 2.
	 * If an individual device has an ra_pages greater than the
	 * chunk size, then we will not drive that device as hard as it
	 * wants.  We consider this a configuration error: a larger
	 * chunksize should be used in that case.
	 */
	{
		int stripe = mddev->raid_disks *
			(mddev->chunk_sectors << 9) / PAGE_SIZE;
		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
	}

	blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
	dump_zones(mddev);
	md_integrity_register(mddev);
	return 0;
}

static int raid0_stop(mddev_t *mddev)
{
	raid0_conf_t *conf = mddev->private;

	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
	kfree(conf->strip_zone);
	kfree(conf->devlist);
	kfree(conf);
	mddev->private = NULL;
	return 0;
}

/* Find the zone which holds a particular offset
 * Update *sectorp to be an offset in that zone
 */
static struct strip_zone *find_zone(struct raid0_private_data *conf,
				    sector_t *sectorp)
{
	int i;
	struct strip_zone *z = conf->strip_zone;
	sector_t sector = *sectorp;

	for (i = 0; i < conf->nr_strip_zones; i++)
		if (sector < z[i].zone_end) {
			if (i)
				*sectorp = sector - z[i-1].zone_end;
			return z + i;
		}
	BUG();
}

/*
 * remaps the bio to the target device. we separate two flows.
 * power 2 flow and a general flow for the sake of perfromance
*/
static mdk_rdev_t *map_sector(mddev_t *mddev, struct strip_zone *zone,
				sector_t sector, sector_t *sector_offset)
{
	unsigned int sect_in_chunk;
	sector_t chunk;
	raid0_conf_t *conf = mddev->private;
	unsigned int chunk_sects = mddev->chunk_sectors;

	if (is_power_of_2(chunk_sects)) {
		int chunksect_bits = ffz(~chunk_sects);
		/* find the sector offset inside the chunk */
		sect_in_chunk  = sector & (chunk_sects - 1);
		sector >>= chunksect_bits;
		/* chunk in zone */
		chunk = *sector_offset;
		/* quotient is the chunk in real device*/
		sector_div(chunk, zone->nb_dev << chunksect_bits);
	} else{
		sect_in_chunk = sector_div(sector, chunk_sects);
		chunk = *sector_offset;
		sector_div(chunk, chunk_sects * zone->nb_dev);
	}
	/*
	*  position the bio over the real device
	*  real sector = chunk in device + starting of zone
	*	+ the position in the chunk
	*/
	*sector_offset = (chunk * chunk_sects) + sect_in_chunk;
	return conf->devlist[(zone - conf->strip_zone)*mddev->raid_disks
			     + sector_div(sector, zone->nb_dev)];
}

/*
 * Is io distribute over 1 or more chunks ?
*/
static inline int is_io_in_chunk_boundary(mddev_t *mddev,
			unsigned int chunk_sects, struct bio *bio)
{
	if (likely(is_power_of_2(chunk_sects))) {
		return chunk_sects >= ((bio->bi_sector & (chunk_sects-1))
					+ (bio->bi_size >> 9));
	} else{
		sector_t sector = bio->bi_sector;
		return chunk_sects >= (sector_div(sector, chunk_sects)
						+ (bio->bi_size >> 9));
	}
}

static int raid0_make_request(struct request_queue *q, struct bio *bio)
{
	mddev_t *mddev = q->queuedata;
	unsigned int chunk_sects;
	sector_t sector_offset;
	struct strip_zone *zone;
	mdk_rdev_t *tmp_dev;
	const int rw = bio_data_dir(bio);
	int cpu;

	if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
		md_barrier_request(mddev, bio);
		return 0;
	}

	cpu = part_stat_lock();
	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
		      bio_sectors(bio));
	part_stat_unlock();

	chunk_sects = mddev->chunk_sectors;
	if (unlikely(!is_io_in_chunk_boundary(mddev, chunk_sects, bio))) {
		sector_t sector = bio->bi_sector;
		struct bio_pair *bp;
		/* Sanity check -- queue functions should prevent this happening */
		if (bio->bi_vcnt != 1 ||
		    bio->bi_idx != 0)
			goto bad_map;
		/* This is a one page bio that upper layers
		 * refuse to split for us, so we need to split it.
		 */
		if (likely(is_power_of_2(chunk_sects)))
			bp = bio_split(bio, chunk_sects - (sector &
							   (chunk_sects-1)));
		else
			bp = bio_split(bio, chunk_sects -
				       sector_div(sector, chunk_sects));
		if (raid0_make_request(q, &bp->bio1))
			generic_make_request(&bp->bio1);
		if (raid0_make_request(q, &bp->bio2))
			generic_make_request(&bp->bio2);

		bio_pair_release(bp);
		return 0;
	}

	sector_offset = bio->bi_sector;
	zone =  find_zone(mddev->private, &sector_offset);
	tmp_dev = map_sector(mddev, zone, bio->bi_sector,
			     &sector_offset);
	bio->bi_bdev = tmp_dev->bdev;
	bio->bi_sector = sector_offset + zone->dev_start +
		tmp_dev->data_offset;
	/*
	 * Let the main block layer submit the IO and resolve recursion:
	 */
	return 1;

bad_map:
	printk("raid0_make_request bug: can't convert block across chunks"
		" or bigger than %dk %llu %d\n", chunk_sects / 2,
		(unsigned long long)bio->bi_sector, bio->bi_size >> 10);

	bio_io_error(bio);
	return 0;
}

static void raid0_status(struct seq_file *seq, mddev_t *mddev)
{
#undef MD_DEBUG
#ifdef MD_DEBUG
	int j, k, h;
	char b[BDEVNAME_SIZE];
	raid0_conf_t *conf = mddev->private;

	sector_t zone_size;
	sector_t zone_start = 0;
	h = 0;

	for (j = 0; j < conf->nr_strip_zones; j++) {
		seq_printf(seq, "      z%d", j);
		seq_printf(seq, "=[");
		for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
			seq_printf(seq, "%s/", bdevname(
				conf->devlist[j*mddev->raid_disks + k]
						->bdev, b));

		zone_size  = conf->strip_zone[j].zone_end - zone_start;
		seq_printf(seq, "] ze=%lld ds=%lld s=%lld\n",
			(unsigned long long)zone_start>>1,
			(unsigned long long)conf->strip_zone[j].dev_start>>1,
			(unsigned long long)zone_size>>1);
		zone_start = conf->strip_zone[j].zone_end;
	}
#endif
	seq_printf(seq, " %dk chunks", mddev->chunk_sectors / 2);
	return;
}

static struct mdk_personality raid0_personality=
{
	.name		= "raid0",
	.level		= 0,
	.owner		= THIS_MODULE,
	.make_request	= raid0_make_request,
	.run		= raid0_run,
	.stop		= raid0_stop,
	.status		= raid0_status,
	.size		= raid0_size,
};

static int __init raid0_init (void)
{
	return register_md_personality (&raid0_personality);
}

static void raid0_exit (void)
{
	unregister_md_personality (&raid0_personality);
}

module_init(raid0_init);
module_exit(raid0_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RAID0 (striping) personality for MD");
MODULE_ALIAS("md-personality-2"); /* RAID0 */
MODULE_ALIAS("md-raid0");
MODULE_ALIAS("md-level-0");