Linux-2.6.33.2/drivers/net/chelsio/cxgb2.c

Compare this file to the similar file:
Show the results in this format:

/*****************************************************************************
 *                                                                           *
 * File: cxgb2.c                                                             *
 * $Revision: 1.25 $                                                         *
 * $Date: 2005/06/22 00:43:25 $                                              *
 * Description:                                                              *
 *  Chelsio 10Gb Ethernet Driver.                                            *
 *                                                                           *
 * This program is free software; you can redistribute it and/or modify      *
 * it under the terms of the GNU General Public License, version 2, as       *
 * published by the Free Software Foundation.                                *
 *                                                                           *
 * You should have received a copy of the GNU General Public License along   *
 * with this program; if not, write to the Free Software Foundation, Inc.,   *
 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
 *                                                                           *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
 *                                                                           *
 * http://www.chelsio.com                                                    *
 *                                                                           *
 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
 * All rights reserved.                                                      *
 *                                                                           *
 * Maintainers: maintainers@chelsio.com                                      *
 *                                                                           *
 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
 *          Tina Yang               <tainay@chelsio.com>                     *
 *          Felix Marti             <felix@chelsio.com>                      *
 *          Scott Bardone           <sbardone@chelsio.com>                   *
 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
 *          Frank DiMambro          <frank@chelsio.com>                      *
 *                                                                           *
 * History:                                                                  *
 *                                                                           *
 ****************************************************************************/

#include "common.h"
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/mii.h>
#include <linux/sockios.h>
#include <linux/dma-mapping.h>
#include <asm/uaccess.h>

#include "cpl5_cmd.h"
#include "regs.h"
#include "gmac.h"
#include "cphy.h"
#include "sge.h"
#include "tp.h"
#include "espi.h"
#include "elmer0.h"

#include <linux/workqueue.h>

static inline void schedule_mac_stats_update(struct adapter *ap, int secs)
{
	schedule_delayed_work(&ap->stats_update_task, secs * HZ);
}

static inline void cancel_mac_stats_update(struct adapter *ap)
{
	cancel_delayed_work(&ap->stats_update_task);
}

#define MAX_CMDQ_ENTRIES	16384
#define MAX_CMDQ1_ENTRIES	1024
#define MAX_RX_BUFFERS		16384
#define MAX_RX_JUMBO_BUFFERS	16384
#define MAX_TX_BUFFERS_HIGH	16384U
#define MAX_TX_BUFFERS_LOW	1536U
#define MAX_TX_BUFFERS		1460U
#define MIN_FL_ENTRIES		32

#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
			 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
			 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)

/*
 * The EEPROM is actually bigger but only the first few bytes are used so we
 * only report those.
 */
#define EEPROM_SIZE 32

MODULE_DESCRIPTION(DRV_DESCRIPTION);
MODULE_AUTHOR("Chelsio Communications");
MODULE_LICENSE("GPL");

static int dflt_msg_enable = DFLT_MSG_ENABLE;

module_param(dflt_msg_enable, int, 0);
MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T1 default message enable bitmap");

#define HCLOCK 0x0
#define LCLOCK 0x1

/* T1 cards powersave mode */
static int t1_clock(struct adapter *adapter, int mode);
static int t1powersave = 1;	/* HW default is powersave mode. */

module_param(t1powersave, int, 0);
MODULE_PARM_DESC(t1powersave, "Enable/Disable T1 powersaving mode");

static int disable_msi = 0;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");

static const char pci_speed[][4] = {
	"33", "66", "100", "133"
};

/*
 * Setup MAC to receive the types of packets we want.
 */
static void t1_set_rxmode(struct net_device *dev)
{
	struct adapter *adapter = dev->ml_priv;
	struct cmac *mac = adapter->port[dev->if_port].mac;
	struct t1_rx_mode rm;

	rm.dev = dev;
	rm.idx = 0;
	rm.list = dev->mc_list;
	mac->ops->set_rx_mode(mac, &rm);
}

static void link_report(struct port_info *p)
{
	if (!netif_carrier_ok(p->dev))
		printk(KERN_INFO "%s: link down\n", p->dev->name);
	else {
		const char *s = "10Mbps";

		switch (p->link_config.speed) {
			case SPEED_10000: s = "10Gbps"; break;
			case SPEED_1000:  s = "1000Mbps"; break;
			case SPEED_100:   s = "100Mbps"; break;
		}

		printk(KERN_INFO "%s: link up, %s, %s-duplex\n",
		       p->dev->name, s,
		       p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
	}
}

void t1_link_negotiated(struct adapter *adapter, int port_id, int link_stat,
			int speed, int duplex, int pause)
{
	struct port_info *p = &adapter->port[port_id];

	if (link_stat != netif_carrier_ok(p->dev)) {
		if (link_stat)
			netif_carrier_on(p->dev);
		else
			netif_carrier_off(p->dev);
		link_report(p);

		/* multi-ports: inform toe */
		if ((speed > 0) && (adapter->params.nports > 1)) {
			unsigned int sched_speed = 10;
			switch (speed) {
			case SPEED_1000:
				sched_speed = 1000;
				break;
			case SPEED_100:
				sched_speed = 100;
				break;
			case SPEED_10:
				sched_speed = 10;
				break;
			}
			t1_sched_update_parms(adapter->sge, port_id, 0, sched_speed);
		}
	}
}

static void link_start(struct port_info *p)
{
	struct cmac *mac = p->mac;

	mac->ops->reset(mac);
	if (mac->ops->macaddress_set)
		mac->ops->macaddress_set(mac, p->dev->dev_addr);
	t1_set_rxmode(p->dev);
	t1_link_start(p->phy, mac, &p->link_config);
	mac->ops->enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
}

static void enable_hw_csum(struct adapter *adapter)
{
	if (adapter->flags & TSO_CAPABLE)
		t1_tp_set_ip_checksum_offload(adapter->tp, 1);	/* for TSO only */
	if (adapter->flags & UDP_CSUM_CAPABLE)
		t1_tp_set_udp_checksum_offload(adapter->tp, 1);
	t1_tp_set_tcp_checksum_offload(adapter->tp, 1);
}

/*
 * Things to do upon first use of a card.
 * This must run with the rtnl lock held.
 */
static int cxgb_up(struct adapter *adapter)
{
	int err = 0;

	if (!(adapter->flags & FULL_INIT_DONE)) {
		err = t1_init_hw_modules(adapter);
		if (err)
			goto out_err;

		enable_hw_csum(adapter);
		adapter->flags |= FULL_INIT_DONE;
	}

	t1_interrupts_clear(adapter);

	adapter->params.has_msi = !disable_msi && !pci_enable_msi(adapter->pdev);
	err = request_irq(adapter->pdev->irq, t1_interrupt,
			  adapter->params.has_msi ? 0 : IRQF_SHARED,
			  adapter->name, adapter);
	if (err) {
		if (adapter->params.has_msi)
			pci_disable_msi(adapter->pdev);

		goto out_err;
	}

	t1_sge_start(adapter->sge);
	t1_interrupts_enable(adapter);
out_err:
	return err;
}

/*
 * Release resources when all the ports have been stopped.
 */
static void cxgb_down(struct adapter *adapter)
{
	t1_sge_stop(adapter->sge);
	t1_interrupts_disable(adapter);
	free_irq(adapter->pdev->irq, adapter);
	if (adapter->params.has_msi)
		pci_disable_msi(adapter->pdev);
}

static int cxgb_open(struct net_device *dev)
{
	int err;
	struct adapter *adapter = dev->ml_priv;
	int other_ports = adapter->open_device_map & PORT_MASK;

	napi_enable(&adapter->napi);
	if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) {
		napi_disable(&adapter->napi);
		return err;
	}

	__set_bit(dev->if_port, &adapter->open_device_map);
	link_start(&adapter->port[dev->if_port]);
	netif_start_queue(dev);
	if (!other_ports && adapter->params.stats_update_period)
		schedule_mac_stats_update(adapter,
					  adapter->params.stats_update_period);
	return 0;
}

static int cxgb_close(struct net_device *dev)
{
	struct adapter *adapter = dev->ml_priv;
	struct port_info *p = &adapter->port[dev->if_port];
	struct cmac *mac = p->mac;

	netif_stop_queue(dev);
	napi_disable(&adapter->napi);
	mac->ops->disable(mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
	netif_carrier_off(dev);

	clear_bit(dev->if_port, &adapter->open_device_map);
	if (adapter->params.stats_update_period &&
	    !(adapter->open_device_map & PORT_MASK)) {
		/* Stop statistics accumulation. */
		smp_mb__after_clear_bit();
		spin_lock(&adapter->work_lock);   /* sync with update task */
		spin_unlock(&adapter->work_lock);
		cancel_mac_stats_update(adapter);
	}

	if (!adapter->open_device_map)
		cxgb_down(adapter);
	return 0;
}

static struct net_device_stats *t1_get_stats(struct net_device *dev)
{
	struct adapter *adapter = dev->ml_priv;
	struct port_info *p = &adapter->port[dev->if_port];
	struct net_device_stats *ns = &p->netstats;
	const struct cmac_statistics *pstats;

	/* Do a full update of the MAC stats */
	pstats = p->mac->ops->statistics_update(p->mac,
						MAC_STATS_UPDATE_FULL);

	ns->tx_packets = pstats->TxUnicastFramesOK +
		pstats->TxMulticastFramesOK + pstats->TxBroadcastFramesOK;

	ns->rx_packets = pstats->RxUnicastFramesOK +
		pstats->RxMulticastFramesOK + pstats->RxBroadcastFramesOK;

	ns->tx_bytes = pstats->TxOctetsOK;
	ns->rx_bytes = pstats->RxOctetsOK;

	ns->tx_errors = pstats->TxLateCollisions + pstats->TxLengthErrors +
		pstats->TxUnderrun + pstats->TxFramesAbortedDueToXSCollisions;
	ns->rx_errors = pstats->RxDataErrors + pstats->RxJabberErrors +
		pstats->RxFCSErrors + pstats->RxAlignErrors +
		pstats->RxSequenceErrors + pstats->RxFrameTooLongErrors +
		pstats->RxSymbolErrors + pstats->RxRuntErrors;

	ns->multicast  = pstats->RxMulticastFramesOK;
	ns->collisions = pstats->TxTotalCollisions;

	/* detailed rx_errors */
	ns->rx_length_errors = pstats->RxFrameTooLongErrors +
		pstats->RxJabberErrors;
	ns->rx_over_errors   = 0;
	ns->rx_crc_errors    = pstats->RxFCSErrors;
	ns->rx_frame_errors  = pstats->RxAlignErrors;
	ns->rx_fifo_errors   = 0;
	ns->rx_missed_errors = 0;

	/* detailed tx_errors */
	ns->tx_aborted_errors   = pstats->TxFramesAbortedDueToXSCollisions;
	ns->tx_carrier_errors   = 0;
	ns->tx_fifo_errors      = pstats->TxUnderrun;
	ns->tx_heartbeat_errors = 0;
	ns->tx_window_errors    = pstats->TxLateCollisions;
	return ns;
}

static u32 get_msglevel(struct net_device *dev)
{
	struct adapter *adapter = dev->ml_priv;

	return adapter->msg_enable;
}

static void set_msglevel(struct net_device *dev, u32 val)
{
	struct adapter *adapter = dev->ml_priv;

	adapter->msg_enable = val;
}

static char stats_strings[][ETH_GSTRING_LEN] = {
	"TxOctetsOK",
	"TxOctetsBad",
	"TxUnicastFramesOK",
	"TxMulticastFramesOK",
	"TxBroadcastFramesOK",
	"TxPauseFrames",
	"TxFramesWithDeferredXmissions",
	"TxLateCollisions",
	"TxTotalCollisions",
	"TxFramesAbortedDueToXSCollisions",
	"TxUnderrun",
	"TxLengthErrors",
	"TxInternalMACXmitError",
	"TxFramesWithExcessiveDeferral",
	"TxFCSErrors",
	"TxJumboFramesOk",
	"TxJumboOctetsOk",
	
	"RxOctetsOK",
	"RxOctetsBad",
	"RxUnicastFramesOK",
	"RxMulticastFramesOK",
	"RxBroadcastFramesOK",
	"RxPauseFrames",
	"RxFCSErrors",
	"RxAlignErrors",
	"RxSymbolErrors",
	"RxDataErrors",
	"RxSequenceErrors",
	"RxRuntErrors",
	"RxJabberErrors",
	"RxInternalMACRcvError",
	"RxInRangeLengthErrors",
	"RxOutOfRangeLengthField",
	"RxFrameTooLongErrors",
	"RxJumboFramesOk",
	"RxJumboOctetsOk",

	/* Port stats */
	"RxCsumGood",
	"TxCsumOffload",
	"TxTso",
	"RxVlan",
	"TxVlan",
	"TxNeedHeadroom", 
	
	/* Interrupt stats */
	"rx drops",
	"pure_rsps",
	"unhandled irqs",
	"respQ_empty",
	"respQ_overflow",
	"freelistQ_empty",
	"pkt_too_big",
	"pkt_mismatch",
	"cmdQ_full0",
	"cmdQ_full1",

	"espi_DIP2ParityErr",
	"espi_DIP4Err",
	"espi_RxDrops",
	"espi_TxDrops",
	"espi_RxOvfl",
	"espi_ParityErr"
};

#define T2_REGMAP_SIZE (3 * 1024)

static int get_regs_len(struct net_device *dev)
{
	return T2_REGMAP_SIZE;
}

static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
	struct adapter *adapter = dev->ml_priv;

	strcpy(info->driver, DRV_NAME);
	strcpy(info->version, DRV_VERSION);
	strcpy(info->fw_version, "N/A");
	strcpy(info->bus_info, pci_name(adapter->pdev));
}

static int get_sset_count(struct net_device *dev, int sset)
{
	switch (sset) {
	case ETH_SS_STATS:
		return ARRAY_SIZE(stats_strings);
	default:
		return -EOPNOTSUPP;
	}
}

static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
	if (stringset == ETH_SS_STATS)
		memcpy(data, stats_strings, sizeof(stats_strings));
}

static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
		      u64 *data)
{
	struct adapter *adapter = dev->ml_priv;
	struct cmac *mac = adapter->port[dev->if_port].mac;
	const struct cmac_statistics *s;
	const struct sge_intr_counts *t;
	struct sge_port_stats ss;

	s = mac->ops->statistics_update(mac, MAC_STATS_UPDATE_FULL);
	t = t1_sge_get_intr_counts(adapter->sge);
	t1_sge_get_port_stats(adapter->sge, dev->if_port, &ss);

	*data++ = s->TxOctetsOK;
	*data++ = s->TxOctetsBad;
	*data++ = s->TxUnicastFramesOK;
	*data++ = s->TxMulticastFramesOK;
	*data++ = s->TxBroadcastFramesOK;
	*data++ = s->TxPauseFrames;
	*data++ = s->TxFramesWithDeferredXmissions;
	*data++ = s->TxLateCollisions;
	*data++ = s->TxTotalCollisions;
	*data++ = s->TxFramesAbortedDueToXSCollisions;
	*data++ = s->TxUnderrun;
	*data++ = s->TxLengthErrors;
	*data++ = s->TxInternalMACXmitError;
	*data++ = s->TxFramesWithExcessiveDeferral;
	*data++ = s->TxFCSErrors;
	*data++ = s->TxJumboFramesOK;
	*data++ = s->TxJumboOctetsOK;

	*data++ = s->RxOctetsOK;
	*data++ = s->RxOctetsBad;
	*data++ = s->RxUnicastFramesOK;
	*data++ = s->RxMulticastFramesOK;
	*data++ = s->RxBroadcastFramesOK;
	*data++ = s->RxPauseFrames;
	*data++ = s->RxFCSErrors;
	*data++ = s->RxAlignErrors;
	*data++ = s->RxSymbolErrors;
	*data++ = s->RxDataErrors;
	*data++ = s->RxSequenceErrors;
	*data++ = s->RxRuntErrors;
	*data++ = s->RxJabberErrors;
	*data++ = s->RxInternalMACRcvError;
	*data++ = s->RxInRangeLengthErrors;
	*data++ = s->RxOutOfRangeLengthField;
	*data++ = s->RxFrameTooLongErrors;
	*data++ = s->RxJumboFramesOK;
	*data++ = s->RxJumboOctetsOK;

	*data++ = ss.rx_cso_good;
	*data++ = ss.tx_cso;
	*data++ = ss.tx_tso;
	*data++ = ss.vlan_xtract;
	*data++ = ss.vlan_insert;
	*data++ = ss.tx_need_hdrroom;
	
	*data++ = t->rx_drops;
	*data++ = t->pure_rsps;
	*data++ = t->unhandled_irqs;
	*data++ = t->respQ_empty;
	*data++ = t->respQ_overflow;
	*data++ = t->freelistQ_empty;
	*data++ = t->pkt_too_big;
	*data++ = t->pkt_mismatch;
	*data++ = t->cmdQ_full[0];
	*data++ = t->cmdQ_full[1];

	if (adapter->espi) {
		const struct espi_intr_counts *e;

		e = t1_espi_get_intr_counts(adapter->espi);
		*data++ = e->DIP2_parity_err;
		*data++ = e->DIP4_err;
		*data++ = e->rx_drops;
		*data++ = e->tx_drops;
		*data++ = e->rx_ovflw;
		*data++ = e->parity_err;
	}
}

static inline void reg_block_dump(struct adapter *ap, void *buf,
				  unsigned int start, unsigned int end)
{
	u32 *p = buf + start;

	for ( ; start <= end; start += sizeof(u32))
		*p++ = readl(ap->regs + start);
}

static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
		     void *buf)
{
	struct adapter *ap = dev->ml_priv;

	/*
	 * Version scheme: bits 0..9: chip version, bits 10..15: chip revision
	 */
	regs->version = 2;

	memset(buf, 0, T2_REGMAP_SIZE);
	reg_block_dump(ap, buf, 0, A_SG_RESPACCUTIMER);
	reg_block_dump(ap, buf, A_MC3_CFG, A_MC4_INT_CAUSE);
	reg_block_dump(ap, buf, A_TPI_ADDR, A_TPI_PAR);
	reg_block_dump(ap, buf, A_TP_IN_CONFIG, A_TP_TX_DROP_COUNT);
	reg_block_dump(ap, buf, A_RAT_ROUTE_CONTROL, A_RAT_INTR_CAUSE);
	reg_block_dump(ap, buf, A_CSPI_RX_AE_WM, A_CSPI_INTR_ENABLE);
	reg_block_dump(ap, buf, A_ESPI_SCH_TOKEN0, A_ESPI_GOSTAT);
	reg_block_dump(ap, buf, A_ULP_ULIMIT, A_ULP_PIO_CTRL);
	reg_block_dump(ap, buf, A_PL_ENABLE, A_PL_CAUSE);
	reg_block_dump(ap, buf, A_MC5_CONFIG, A_MC5_MASK_WRITE_CMD);
}

static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct adapter *adapter = dev->ml_priv;
	struct port_info *p = &adapter->port[dev->if_port];

	cmd->supported = p->link_config.supported;
	cmd->advertising = p->link_config.advertising;

	if (netif_carrier_ok(dev)) {
		cmd->speed = p->link_config.speed;
		cmd->duplex = p->link_config.duplex;
	} else {
		cmd->speed = -1;
		cmd->duplex = -1;
	}

	cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
	cmd->phy_address = p->phy->mdio.prtad;
	cmd->transceiver = XCVR_EXTERNAL;
	cmd->autoneg = p->link_config.autoneg;
	cmd->maxtxpkt = 0;
	cmd->maxrxpkt = 0;
	return 0;
}

static int speed_duplex_to_caps(int speed, int duplex)
{
	int cap = 0;

	switch (speed) {
	case SPEED_10:
		if (duplex == DUPLEX_FULL)
			cap = SUPPORTED_10baseT_Full;
		else
			cap = SUPPORTED_10baseT_Half;
		break;
	case SPEED_100:
		if (duplex == DUPLEX_FULL)
			cap = SUPPORTED_100baseT_Full;
		else
			cap = SUPPORTED_100baseT_Half;
		break;
	case SPEED_1000:
		if (duplex == DUPLEX_FULL)
			cap = SUPPORTED_1000baseT_Full;
		else
			cap = SUPPORTED_1000baseT_Half;
		break;
	case SPEED_10000:
		if (duplex == DUPLEX_FULL)
			cap = SUPPORTED_10000baseT_Full;
	}
	return cap;
}

#define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
		      ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
		      ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
		      ADVERTISED_10000baseT_Full)

static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
	struct adapter *adapter = dev->ml_priv;
	struct port_info *p = &adapter->port[dev->if_port];
	struct link_config *lc = &p->link_config;

	if (!(lc->supported & SUPPORTED_Autoneg))
		return -EOPNOTSUPP;             /* can't change speed/duplex */

	if (cmd->autoneg == AUTONEG_DISABLE) {
		int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);

		if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
			return -EINVAL;
		lc->requested_speed = cmd->speed;
		lc->requested_duplex = cmd->duplex;
		lc->advertising = 0;
	} else {
		cmd->advertising &= ADVERTISED_MASK;
		if (cmd->advertising & (cmd->advertising - 1))
			cmd->advertising = lc->supported;
		cmd->advertising &= lc->supported;
		if (!cmd->advertising)
			return -EINVAL;
		lc->requested_speed = SPEED_INVALID;
		lc->requested_duplex = DUPLEX_INVALID;
		lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
	}
	lc->autoneg = cmd->autoneg;
	if (netif_running(dev))
		t1_link_start(p->phy, p->mac, lc);
	return 0;
}

static void get_pauseparam(struct net_device *dev,
			   struct ethtool_pauseparam *epause)
{
	struct adapter *adapter = dev->ml_priv;
	struct port_info *p = &adapter->port[dev->if_port];

	epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
	epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
	epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
}

static int set_pauseparam(struct net_device *dev,
			  struct ethtool_pauseparam *epause)
{
	struct adapter *adapter = dev->ml_priv;
	struct port_info *p = &adapter->port[dev->if_port];
	struct link_config *lc = &p->link_config;

	if (epause->autoneg == AUTONEG_DISABLE)
		lc->requested_fc = 0;
	else if (lc->supported & SUPPORTED_Autoneg)
		lc->requested_fc = PAUSE_AUTONEG;
	else
		return -EINVAL;

	if (epause->rx_pause)
		lc->requested_fc |= PAUSE_RX;
	if (epause->tx_pause)
		lc->requested_fc |= PAUSE_TX;
	if (lc->autoneg == AUTONEG_ENABLE) {
		if (netif_running(dev))
			t1_link_start(p->phy, p->mac, lc);
	} else {
		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
		if (netif_running(dev))
			p->mac->ops->set_speed_duplex_fc(p->mac, -1, -1,
							 lc->fc);
	}
	return 0;
}

static u32 get_rx_csum(struct net_device *dev)
{
	struct adapter *adapter = dev->ml_priv;

	return (adapter->flags & RX_CSUM_ENABLED) != 0;
}

static int set_rx_csum(struct net_device *dev, u32 data)
{
	struct adapter *adapter = dev->ml_priv;

	if (data)
		adapter->flags |= RX_CSUM_ENABLED;
	else
		adapter->flags &= ~RX_CSUM_ENABLED;
	return 0;
}

static int set_tso(struct net_device *dev, u32 value)
{
	struct adapter *adapter = dev->ml_priv;

	if (!(adapter->flags & TSO_CAPABLE))
		return value ? -EOPNOTSUPP : 0;
	return ethtool_op_set_tso(dev, value);
}

static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
{
	struct adapter *adapter = dev->ml_priv;
	int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;

	e->rx_max_pending = MAX_RX_BUFFERS;
	e->rx_mini_max_pending = 0;
	e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
	e->tx_max_pending = MAX_CMDQ_ENTRIES;

	e->rx_pending = adapter->params.sge.freelQ_size[!jumbo_fl];
	e->rx_mini_pending = 0;
	e->rx_jumbo_pending = adapter->params.sge.freelQ_size[jumbo_fl];
	e->tx_pending = adapter->params.sge.cmdQ_size[0];
}

static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
{
	struct adapter *adapter = dev->ml_priv;
	int jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;

	if (e->rx_pending > MAX_RX_BUFFERS || e->rx_mini_pending ||
	    e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
	    e->tx_pending > MAX_CMDQ_ENTRIES ||
	    e->rx_pending < MIN_FL_ENTRIES ||
	    e->rx_jumbo_pending < MIN_FL_ENTRIES ||
	    e->tx_pending < (adapter->params.nports + 1) * (MAX_SKB_FRAGS + 1))
		return -EINVAL;

	if (adapter->flags & FULL_INIT_DONE)
		return -EBUSY;

	adapter->params.sge.freelQ_size[!jumbo_fl] = e->rx_pending;
	adapter->params.sge.freelQ_size[jumbo_fl] = e->rx_jumbo_pending;
	adapter->params.sge.cmdQ_size[0] = e->tx_pending;
	adapter->params.sge.cmdQ_size[1] = e->tx_pending > MAX_CMDQ1_ENTRIES ?
		MAX_CMDQ1_ENTRIES : e->tx_pending;
	return 0;
}

static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
{
	struct adapter *adapter = dev->ml_priv;

	adapter->params.sge.rx_coalesce_usecs = c->rx_coalesce_usecs;
	adapter->params.sge.coalesce_enable = c->use_adaptive_rx_coalesce;
	adapter->params.sge.sample_interval_usecs = c->rate_sample_interval;
	t1_sge_set_coalesce_params(adapter->sge, &adapter->params.sge);
	return 0;
}

static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
{
	struct adapter *adapter = dev->ml_priv;

	c->rx_coalesce_usecs = adapter->params.sge.rx_coalesce_usecs;
	c->rate_sample_interval = adapter->params.sge.sample_interval_usecs;
	c->use_adaptive_rx_coalesce = adapter->params.sge.coalesce_enable;
	return 0;
}

static int get_eeprom_len(struct net_device *dev)
{
	struct adapter *adapter = dev->ml_priv;

	return t1_is_asic(adapter) ? EEPROM_SIZE : 0;
}

#define EEPROM_MAGIC(ap) \
	(PCI_VENDOR_ID_CHELSIO | ((ap)->params.chip_version << 16))

static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
		      u8 *data)
{
	int i;
	u8 buf[EEPROM_SIZE] __attribute__((aligned(4)));
	struct adapter *adapter = dev->ml_priv;

	e->magic = EEPROM_MAGIC(adapter);
	for (i = e->offset & ~3; i < e->offset + e->len; i += sizeof(u32))
		t1_seeprom_read(adapter, i, (__le32 *)&buf[i]);
	memcpy(data, buf + e->offset, e->len);
	return 0;
}

static const struct ethtool_ops t1_ethtool_ops = {
	.get_settings      = get_settings,
	.set_settings      = set_settings,
	.get_drvinfo       = get_drvinfo,
	.get_msglevel      = get_msglevel,
	.set_msglevel      = set_msglevel,
	.get_ringparam     = get_sge_param,
	.set_ringparam     = set_sge_param,
	.get_coalesce      = get_coalesce,
	.set_coalesce      = set_coalesce,
	.get_eeprom_len    = get_eeprom_len,
	.get_eeprom        = get_eeprom,
	.get_pauseparam    = get_pauseparam,
	.set_pauseparam    = set_pauseparam,
	.get_rx_csum       = get_rx_csum,
	.set_rx_csum       = set_rx_csum,
	.set_tx_csum       = ethtool_op_set_tx_csum,
	.set_sg            = ethtool_op_set_sg,
	.get_link          = ethtool_op_get_link,
	.get_strings       = get_strings,
	.get_sset_count	   = get_sset_count,
	.get_ethtool_stats = get_stats,
	.get_regs_len      = get_regs_len,
	.get_regs          = get_regs,
	.set_tso           = set_tso,
};

static int t1_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
	struct adapter *adapter = dev->ml_priv;
	struct mdio_if_info *mdio = &adapter->port[dev->if_port].phy->mdio;

	return mdio_mii_ioctl(mdio, if_mii(req), cmd);
}

static int t1_change_mtu(struct net_device *dev, int new_mtu)
{
	int ret;
	struct adapter *adapter = dev->ml_priv;
	struct cmac *mac = adapter->port[dev->if_port].mac;

	if (!mac->ops->set_mtu)
		return -EOPNOTSUPP;
	if (new_mtu < 68)
		return -EINVAL;
	if ((ret = mac->ops->set_mtu(mac, new_mtu)))
		return ret;
	dev->mtu = new_mtu;
	return 0;
}

static int t1_set_mac_addr(struct net_device *dev, void *p)
{
	struct adapter *adapter = dev->ml_priv;
	struct cmac *mac = adapter->port[dev->if_port].mac;
	struct sockaddr *addr = p;

	if (!mac->ops->macaddress_set)
		return -EOPNOTSUPP;

	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
	mac->ops->macaddress_set(mac, dev->dev_addr);
	return 0;
}

#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
static void t1_vlan_rx_register(struct net_device *dev,
				   struct vlan_group *grp)
{
	struct adapter *adapter = dev->ml_priv;

	spin_lock_irq(&adapter->async_lock);
	adapter->vlan_grp = grp;
	t1_set_vlan_accel(adapter, grp != NULL);
	spin_unlock_irq(&adapter->async_lock);
}
#endif

#ifdef CONFIG_NET_POLL_CONTROLLER
static void t1_netpoll(struct net_device *dev)
{
	unsigned long flags;
	struct adapter *adapter = dev->ml_priv;

	local_irq_save(flags);
	t1_interrupt(adapter->pdev->irq, adapter);
	local_irq_restore(flags);
}
#endif

/*
 * Periodic accumulation of MAC statistics.  This is used only if the MAC
 * does not have any other way to prevent stats counter overflow.
 */
static void mac_stats_task(struct work_struct *work)
{
	int i;
	struct adapter *adapter =
		container_of(work, struct adapter, stats_update_task.work);

	for_each_port(adapter, i) {
		struct port_info *p = &adapter->port[i];

		if (netif_running(p->dev))
			p->mac->ops->statistics_update(p->mac,
						       MAC_STATS_UPDATE_FAST);
	}

	/* Schedule the next statistics update if any port is active. */
	spin_lock(&adapter->work_lock);
	if (adapter->open_device_map & PORT_MASK)
		schedule_mac_stats_update(adapter,
					  adapter->params.stats_update_period);
	spin_unlock(&adapter->work_lock);
}

/*
 * Processes elmer0 external interrupts in process context.
 */
static void ext_intr_task(struct work_struct *work)
{
	struct adapter *adapter =
		container_of(work, struct adapter, ext_intr_handler_task);

	t1_elmer0_ext_intr_handler(adapter);

	/* Now reenable external interrupts */
	spin_lock_irq(&adapter->async_lock);
	adapter->slow_intr_mask |= F_PL_INTR_EXT;
	writel(F_PL_INTR_EXT, adapter->regs + A_PL_CAUSE);
	writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
		   adapter->regs + A_PL_ENABLE);
	spin_unlock_irq(&adapter->async_lock);
}

/*
 * Interrupt-context handler for elmer0 external interrupts.
 */
void t1_elmer0_ext_intr(struct adapter *adapter)
{
	/*
	 * Schedule a task to handle external interrupts as we require
	 * a process context.  We disable EXT interrupts in the interim
	 * and let the task reenable them when it's done.
	 */
	adapter->slow_intr_mask &= ~F_PL_INTR_EXT;
	writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA,
		   adapter->regs + A_PL_ENABLE);
	schedule_work(&adapter->ext_intr_handler_task);
}

void t1_fatal_err(struct adapter *adapter)
{
	if (adapter->flags & FULL_INIT_DONE) {
		t1_sge_stop(adapter->sge);
		t1_interrupts_disable(adapter);
	}
	CH_ALERT("%s: encountered fatal error, operation suspended\n",
		 adapter->name);
}

static const struct net_device_ops cxgb_netdev_ops = {
	.ndo_open		= cxgb_open,
	.ndo_stop		= cxgb_close,
	.ndo_start_xmit		= t1_start_xmit,
	.ndo_get_stats		= t1_get_stats,
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_set_multicast_list	= t1_set_rxmode,
	.ndo_do_ioctl		= t1_ioctl,
	.ndo_change_mtu		= t1_change_mtu,
	.ndo_set_mac_address	= t1_set_mac_addr,
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
	.ndo_vlan_rx_register	= t1_vlan_rx_register,
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= t1_netpoll,
#endif
};

static int __devinit init_one(struct pci_dev *pdev,
			      const struct pci_device_id *ent)
{
	static int version_printed;

	int i, err, pci_using_dac = 0;
	unsigned long mmio_start, mmio_len;
	const struct board_info *bi;
	struct adapter *adapter = NULL;
	struct port_info *pi;

	if (!version_printed) {
		printk(KERN_INFO "%s - version %s\n", DRV_DESCRIPTION,
		       DRV_VERSION);
		++version_printed;
	}

	err = pci_enable_device(pdev);
	if (err)
		return err;

	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
		CH_ERR("%s: cannot find PCI device memory base address\n",
		       pci_name(pdev));
		err = -ENODEV;
		goto out_disable_pdev;
	}

	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
		pci_using_dac = 1;

		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
			CH_ERR("%s: unable to obtain 64-bit DMA for "
			       "consistent allocations\n", pci_name(pdev));
			err = -ENODEV;
			goto out_disable_pdev;
		}

	} else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
		CH_ERR("%s: no usable DMA configuration\n", pci_name(pdev));
		goto out_disable_pdev;
	}

	err = pci_request_regions(pdev, DRV_NAME);
	if (err) {
		CH_ERR("%s: cannot obtain PCI resources\n", pci_name(pdev));
		goto out_disable_pdev;
	}

	pci_set_master(pdev);

	mmio_start = pci_resource_start(pdev, 0);
	mmio_len = pci_resource_len(pdev, 0);
	bi = t1_get_board_info(ent->driver_data);

	for (i = 0; i < bi->port_number; ++i) {
		struct net_device *netdev;

		netdev = alloc_etherdev(adapter ? 0 : sizeof(*adapter));
		if (!netdev) {
			err = -ENOMEM;
			goto out_free_dev;
		}

		SET_NETDEV_DEV(netdev, &pdev->dev);

		if (!adapter) {
			adapter = netdev_priv(netdev);
			adapter->pdev = pdev;
			adapter->port[0].dev = netdev;  /* so we don't leak it */

			adapter->regs = ioremap(mmio_start, mmio_len);
			if (!adapter->regs) {
				CH_ERR("%s: cannot map device registers\n",
				       pci_name(pdev));
				err = -ENOMEM;
				goto out_free_dev;
			}

			if (t1_get_board_rev(adapter, bi, &adapter->params)) {
				err = -ENODEV;	  /* Can't handle this chip rev */
				goto out_free_dev;
			}

			adapter->name = pci_name(pdev);
			adapter->msg_enable = dflt_msg_enable;
			adapter->mmio_len = mmio_len;

			spin_lock_init(&adapter->tpi_lock);
			spin_lock_init(&adapter->work_lock);
			spin_lock_init(&adapter->async_lock);
			spin_lock_init(&adapter->mac_lock);

			INIT_WORK(&adapter->ext_intr_handler_task,
				  ext_intr_task);
			INIT_DELAYED_WORK(&adapter->stats_update_task,
					  mac_stats_task);

			pci_set_drvdata(pdev, netdev);
		}

		pi = &adapter->port[i];
		pi->dev = netdev;
		netif_carrier_off(netdev);
		netdev->irq = pdev->irq;
		netdev->if_port = i;
		netdev->mem_start = mmio_start;
		netdev->mem_end = mmio_start + mmio_len - 1;
		netdev->ml_priv = adapter;
		netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
		netdev->features |= NETIF_F_LLTX;

		adapter->flags |= RX_CSUM_ENABLED | TCP_CSUM_CAPABLE;
		if (pci_using_dac)
			netdev->features |= NETIF_F_HIGHDMA;
		if (vlan_tso_capable(adapter)) {
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
			adapter->flags |= VLAN_ACCEL_CAPABLE;
			netdev->features |=
				NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
#endif

			/* T204: disable TSO */
			if (!(is_T2(adapter)) || bi->port_number != 4) {
				adapter->flags |= TSO_CAPABLE;
				netdev->features |= NETIF_F_TSO;
			}
		}

		netdev->netdev_ops = &cxgb_netdev_ops;
		netdev->hard_header_len += (adapter->flags & TSO_CAPABLE) ?
			sizeof(struct cpl_tx_pkt_lso) : sizeof(struct cpl_tx_pkt);

		netif_napi_add(netdev, &adapter->napi, t1_poll, 64);

		SET_ETHTOOL_OPS(netdev, &t1_ethtool_ops);
	}

	if (t1_init_sw_modules(adapter, bi) < 0) {
		err = -ENODEV;
		goto out_free_dev;
	}

	/*
	 * The card is now ready to go.  If any errors occur during device
	 * registration we do not fail the whole card but rather proceed only
	 * with the ports we manage to register successfully.  However we must
	 * register at least one net device.
	 */
	for (i = 0; i < bi->port_number; ++i) {
		err = register_netdev(adapter->port[i].dev);
		if (err)
			CH_WARN("%s: cannot register net device %s, skipping\n",
				pci_name(pdev), adapter->port[i].dev->name);
		else {
			/*
			 * Change the name we use for messages to the name of
			 * the first successfully registered interface.
			 */
			if (!adapter->registered_device_map)
				adapter->name = adapter->port[i].dev->name;

			__set_bit(i, &adapter->registered_device_map);
		}
	}
	if (!adapter->registered_device_map) {
		CH_ERR("%s: could not register any net devices\n",
		       pci_name(pdev));
		goto out_release_adapter_res;
	}

	printk(KERN_INFO "%s: %s (rev %d), %s %dMHz/%d-bit\n", adapter->name,
	       bi->desc, adapter->params.chip_revision,
	       adapter->params.pci.is_pcix ? "PCIX" : "PCI",
	       adapter->params.pci.speed, adapter->params.pci.width);

	/*
	 * Set the T1B ASIC and memory clocks.
	 */
	if (t1powersave)
		adapter->t1powersave = LCLOCK;	/* HW default is powersave mode. */
	else
		adapter->t1powersave = HCLOCK;
	if (t1_is_T1B(adapter))
		t1_clock(adapter, t1powersave);

	return 0;

out_release_adapter_res:
	t1_free_sw_modules(adapter);
out_free_dev:
	if (adapter) {
		if (adapter->regs)
			iounmap(adapter->regs);
		for (i = bi->port_number - 1; i >= 0; --i)
			if (adapter->port[i].dev)
				free_netdev(adapter->port[i].dev);
	}
	pci_release_regions(pdev);
out_disable_pdev:
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
	return err;
}

static void bit_bang(struct adapter *adapter, int bitdata, int nbits)
{
	int data;
	int i;
	u32 val;

	enum {
		S_CLOCK = 1 << 3,
		S_DATA = 1 << 4
	};

	for (i = (nbits - 1); i > -1; i--) {

		udelay(50);

		data = ((bitdata >> i) & 0x1);
		__t1_tpi_read(adapter, A_ELMER0_GPO, &val);

		if (data)
			val |= S_DATA;
		else
			val &= ~S_DATA;

		udelay(50);

		/* Set SCLOCK low */
		val &= ~S_CLOCK;
		__t1_tpi_write(adapter, A_ELMER0_GPO, val);

		udelay(50);

		/* Write SCLOCK high */
		val |= S_CLOCK;
		__t1_tpi_write(adapter, A_ELMER0_GPO, val);

	}
}

static int t1_clock(struct adapter *adapter, int mode)
{
	u32 val;
	int M_CORE_VAL;
	int M_MEM_VAL;

	enum {
		M_CORE_BITS	= 9,
		T_CORE_VAL	= 0,
		T_CORE_BITS	= 2,
		N_CORE_VAL	= 0,
		N_CORE_BITS	= 2,
		M_MEM_BITS	= 9,
		T_MEM_VAL	= 0,
		T_MEM_BITS	= 2,
		N_MEM_VAL	= 0,
		N_MEM_BITS	= 2,
		NP_LOAD		= 1 << 17,
		S_LOAD_MEM	= 1 << 5,
		S_LOAD_CORE	= 1 << 6,
		S_CLOCK		= 1 << 3
	};

	if (!t1_is_T1B(adapter))
		return -ENODEV;	/* Can't re-clock this chip. */

	if (mode & 2)
		return 0;	/* show current mode. */

	if ((adapter->t1powersave & 1) == (mode & 1))
		return -EALREADY;	/* ASIC already running in mode. */

	if ((mode & 1) == HCLOCK) {
		M_CORE_VAL = 0x14;
		M_MEM_VAL = 0x18;
		adapter->t1powersave = HCLOCK;	/* overclock */
	} else {
		M_CORE_VAL = 0xe;
		M_MEM_VAL = 0x10;
		adapter->t1powersave = LCLOCK;	/* underclock */
	}

	/* Don't interrupt this serial stream! */
	spin_lock(&adapter->tpi_lock);

	/* Initialize for ASIC core */
	__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
	val |= NP_LOAD;
	udelay(50);
	__t1_tpi_write(adapter, A_ELMER0_GPO, val);
	udelay(50);
	__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
	val &= ~S_LOAD_CORE;
	val &= ~S_CLOCK;
	__t1_tpi_write(adapter, A_ELMER0_GPO, val);
	udelay(50);

	/* Serial program the ASIC clock synthesizer */
	bit_bang(adapter, T_CORE_VAL, T_CORE_BITS);
	bit_bang(adapter, N_CORE_VAL, N_CORE_BITS);
	bit_bang(adapter, M_CORE_VAL, M_CORE_BITS);
	udelay(50);

	/* Finish ASIC core */
	__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
	val |= S_LOAD_CORE;
	udelay(50);
	__t1_tpi_write(adapter, A_ELMER0_GPO, val);
	udelay(50);
	__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
	val &= ~S_LOAD_CORE;
	udelay(50);
	__t1_tpi_write(adapter, A_ELMER0_GPO, val);
	udelay(50);

	/* Initialize for memory */
	__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
	val |= NP_LOAD;
	udelay(50);
	__t1_tpi_write(adapter, A_ELMER0_GPO, val);
	udelay(50);
	__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
	val &= ~S_LOAD_MEM;
	val &= ~S_CLOCK;
	udelay(50);
	__t1_tpi_write(adapter, A_ELMER0_GPO, val);
	udelay(50);

	/* Serial program the memory clock synthesizer */
	bit_bang(adapter, T_MEM_VAL, T_MEM_BITS);
	bit_bang(adapter, N_MEM_VAL, N_MEM_BITS);
	bit_bang(adapter, M_MEM_VAL, M_MEM_BITS);
	udelay(50);

	/* Finish memory */
	__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
	val |= S_LOAD_MEM;
	udelay(50);
	__t1_tpi_write(adapter, A_ELMER0_GPO, val);
	udelay(50);
	__t1_tpi_read(adapter, A_ELMER0_GPO, &val);
	val &= ~S_LOAD_MEM;
	udelay(50);
	__t1_tpi_write(adapter, A_ELMER0_GPO, val);

	spin_unlock(&adapter->tpi_lock);

	return 0;
}

static inline void t1_sw_reset(struct pci_dev *pdev)
{
	pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 3);
	pci_write_config_dword(pdev, A_PCICFG_PM_CSR, 0);
}

static void __devexit remove_one(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct adapter *adapter = dev->ml_priv;
	int i;

	for_each_port(adapter, i) {
		if (test_bit(i, &adapter->registered_device_map))
			unregister_netdev(adapter->port[i].dev);
	}

	t1_free_sw_modules(adapter);
	iounmap(adapter->regs);

	while (--i >= 0) {
		if (adapter->port[i].dev)
			free_netdev(adapter->port[i].dev);
	}

	pci_release_regions(pdev);
	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
	t1_sw_reset(pdev);
}

static struct pci_driver driver = {
	.name     = DRV_NAME,
	.id_table = t1_pci_tbl,
	.probe    = init_one,
	.remove   = __devexit_p(remove_one),
};

static int __init t1_init_module(void)
{
	return pci_register_driver(&driver);
}

static void __exit t1_cleanup_module(void)
{
	pci_unregister_driver(&driver);
}

module_init(t1_init_module);
module_exit(t1_cleanup_module);