Linux0.96c/kernel/sys.c
/*
* linux/kernel/sys.c
*
* (C) 1991 Linus Torvalds
*/
#include <errno.h>
#include <linux/sched.h>
#include <linux/tty.h>
#include <linux/kernel.h>
#include <linux/config.h>
#include <asm/segment.h>
#include <sys/times.h>
#include <linux/utsname.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <linux/string.h>
/*
* this indicates wether you can reboot with ctrl-alt-del: the deault is yes
*/
static int C_A_D = 1;
/*
* The timezone where the local system is located. Used as a default by some
* programs who obtain this value by using gettimeofday.
*/
struct timezone sys_tz = { 0, 0};
extern int session_of_pgrp(int pgrp);
#define PZERO 15
static int proc_sel(struct task_struct *p, int which, int who)
{
switch (which) {
case PRIO_PROCESS:
if (!who && p == current)
return 1;
return(p->pid == who);
case PRIO_PGRP:
if (!who)
who = current->pgrp;
return(p->pgrp == who);
case PRIO_USER:
if (!who)
who = current->uid;
return(p->uid == who);
}
return 0;
}
int sys_setpriority(int which, int who, int niceval)
{
struct task_struct **p;
int error = ESRCH;
int priority;
if (which > 2 || which < 0)
return -EINVAL;
if ((priority = PZERO - niceval) <= 0)
priority = 1;
for(p = &LAST_TASK; p > &FIRST_TASK; --p) {
if (!*p || !proc_sel(*p, which, who))
continue;
if ((*p)->uid != current->euid &&
(*p)->uid != current->uid && !suser()) {
error = EPERM;
continue;
}
if (error == ESRCH)
error = 0;
if (priority > (*p)->priority && !suser())
error = EACCES;
else
(*p)->priority = priority;
}
return -error;
}
int sys_getpriority(int which, int who)
{
struct task_struct **p;
int max_prio = 0;
if (which > 2 || which < 0)
return -EINVAL;
for(p = &LAST_TASK; p > &FIRST_TASK; --p) {
if (!*p || !proc_sel(*p, which, who))
continue;
if ((*p)->priority > max_prio)
max_prio = (*p)->priority;
}
return(max_prio ? max_prio : -ESRCH);
}
int sys_profil()
{
return -ENOSYS;
}
int sys_ftime()
{
return -ENOSYS;
}
int sys_break()
{
return -ENOSYS;
}
int sys_stty()
{
return -ENOSYS;
}
int sys_gtty()
{
return -ENOSYS;
}
int sys_prof()
{
return -ENOSYS;
}
extern void hard_reset_now(void);
/*
* Reboot system call: for obvious reasons only root may call it,
* and even root needs to set up some magic numbers in the registers
* so that some mistake won't make this reboot the whole machine.
* You can also set the meaning of the ctrl-alt-del-key here.
*
* reboot doesn't sync: do that yourself before calling this.
*/
int sys_reboot(int magic, int magic_too, int flag)
{
if (!suser())
return -EPERM;
if (magic != 0xfee1dead || magic_too != 672274793)
return -EINVAL;
if (flag == 0x01234567)
hard_reset_now();
else if (flag == 0x89ABCDEF)
C_A_D = 1;
else if (!flag)
C_A_D = 0;
else
return -EINVAL;
return (0);
}
/*
* This function gets called by ctrl-alt-del - ie the keyboard interrupt.
* As it's called within an interrupt, it may NOT sync: the only choice
* is wether to reboot at once, or just ignore the ctrl-alt-del.
*/
void ctrl_alt_del(void)
{
if (C_A_D)
hard_reset_now();
else
if (task[1])
send_sig(SIGINT,task[1],1);
}
/*
* This is done BSD-style, with no consideration of the saved gid, except
* that if you set the effective gid, it sets the saved gid too. This
* makes it possible for a setgid program to completely drop its privileges,
* which is often a useful assertion to make when you are doing a security
* audit over a program.
*
* The general idea is that a program which uses just setregid() will be
* 100% compatible with BSD. A program which uses just setgid() will be
* 100% compatible with POSIX w/ Saved ID's.
*/
int sys_setregid(int rgid, int egid)
{
if (rgid >= 0) {
if ((current->gid == rgid) ||
suser())
current->gid = rgid;
else
return(-EPERM);
}
if (egid >= 0) {
if ((current->gid == egid) ||
(current->egid == egid) ||
suser()) {
current->egid = egid;
current->sgid = egid;
} else
return(-EPERM);
}
return 0;
}
/*
* setgid() is implemeneted like SysV w/ SAVED_IDS
*/
int sys_setgid(int gid)
{
if (suser())
current->gid = current->egid = current->sgid = gid;
else if ((gid == current->gid) || (gid == current->sgid))
current->egid = gid;
else
return -EPERM;
return 0;
}
int sys_acct()
{
return -ENOSYS;
}
int sys_phys()
{
return -ENOSYS;
}
int sys_lock()
{
return -ENOSYS;
}
int sys_mpx()
{
return -ENOSYS;
}
int sys_ulimit()
{
return -ENOSYS;
}
int sys_time(long * tloc)
{
int i;
i = CURRENT_TIME;
if (tloc) {
verify_area(tloc,4);
put_fs_long(i,(unsigned long *)tloc);
}
return i;
}
/*
* Unprivileged users may change the real user id to the effective uid
* or vice versa. (BSD-style)
*
* When you set the effective uid, it sets the saved uid too. This
* makes it possible for a setuid program to completely drop its privileges,
* which is often a useful assertion to make when you are doing a security
* audit over a program.
*
* The general idea is that a program which uses just setreuid() will be
* 100% compatible with BSD. A program which uses just setuid() will be
* 100% compatible with POSIX w/ Saved ID's.
*/
int sys_setreuid(int ruid, int euid)
{
int old_ruid = current->uid;
if (ruid >= 0) {
if ((current->euid==ruid) ||
(old_ruid == ruid) ||
suser())
current->uid = ruid;
else
return(-EPERM);
}
if (euid >= 0) {
if ((old_ruid == euid) ||
(current->euid == euid) ||
suser()) {
current->euid = euid;
current->suid = euid;
} else {
current->uid = old_ruid;
return(-EPERM);
}
}
return 0;
}
/*
* setuid() is implemeneted like SysV w/ SAVED_IDS
*
* Note that SAVED_ID's is deficient in that a setuid root program
* like sendmail, for example, cannot set its uid to be a normal
* user and then switch back, because if you're root, setuid() sets
* the saved uid too. If you don't like this, blame the bright people
* in the POSIX commmittee and/or USG. Note that the BSD-style setreuid()
* will allow a root program to temporarily drop privileges and be able to
* regain them by swapping the real and effective uid.
*/
int sys_setuid(int uid)
{
if (suser())
current->uid = current->euid = current->suid = uid;
else if ((uid == current->uid) || (uid == current->suid))
current->euid = uid;
else
return -EPERM;
return(0);
}
int sys_stime(long * tptr)
{
if (!suser())
return -EPERM;
startup_time = get_fs_long((unsigned long *)tptr) - jiffies/HZ;
jiffies_offset = 0;
return 0;
}
int sys_times(struct tms * tbuf)
{
if (tbuf) {
verify_area(tbuf,sizeof *tbuf);
put_fs_long(current->utime,(unsigned long *)&tbuf->tms_utime);
put_fs_long(current->stime,(unsigned long *)&tbuf->tms_stime);
put_fs_long(current->cutime,(unsigned long *)&tbuf->tms_cutime);
put_fs_long(current->cstime,(unsigned long *)&tbuf->tms_cstime);
}
return jiffies;
}
int sys_brk(unsigned long end_data_seg)
{
if (end_data_seg >= current->end_code &&
end_data_seg < current->start_stack - 16384)
current->brk = end_data_seg;
return current->brk;
}
/*
* This needs some heave checking ...
* I just haven't get the stomach for it. I also don't fully
* understand sessions/pgrp etc. Let somebody who does explain it.
*
* OK, I think I have the protection semantics right.... this is really
* only important on a multi-user system anyway, to make sure one user
* can't send a signal to a process owned by another. -TYT, 12/12/91
*/
int sys_setpgid(int pid, int pgid)
{
int i;
if (!pid)
pid = current->pid;
if (!pgid)
pgid = current->pid;
if (pgid < 0)
return -EINVAL;
for (i=0 ; i<NR_TASKS ; i++)
if (task[i] && (task[i]->pid == pid) &&
((task[i]->p_pptr == current) ||
(task[i] == current))) {
if (task[i]->leader)
return -EPERM;
if ((task[i]->session != current->session) ||
((pgid != pid) &&
(session_of_pgrp(pgid) != current->session)))
return -EPERM;
task[i]->pgrp = pgid;
return 0;
}
return -ESRCH;
}
int sys_getpgrp(void)
{
return current->pgrp;
}
int sys_setsid(void)
{
if (current->leader && !suser())
return -EPERM;
current->leader = 1;
current->session = current->pgrp = current->pid;
current->tty = -1;
return current->pgrp;
}
/*
* Supplementary group ID's
*/
int sys_getgroups(int gidsetsize, gid_t *grouplist)
{
int i;
if (gidsetsize)
verify_area(grouplist, sizeof(gid_t) * gidsetsize);
for (i = 0; (i < NGROUPS) && (current->groups[i] != NOGROUP);
i++, grouplist++) {
if (gidsetsize) {
if (i >= gidsetsize)
return -EINVAL;
put_fs_word(current->groups[i], (short *) grouplist);
}
}
return(i);
}
int sys_setgroups(int gidsetsize, gid_t *grouplist)
{
int i;
if (!suser())
return -EPERM;
if (gidsetsize > NGROUPS)
return -EINVAL;
for (i = 0; i < gidsetsize; i++, grouplist++) {
current->groups[i] = get_fs_word((unsigned short *) grouplist);
}
if (i < NGROUPS)
current->groups[i] = NOGROUP;
return 0;
}
int in_group_p(gid_t grp)
{
int i;
if (grp == current->egid)
return 1;
for (i = 0; i < NGROUPS; i++) {
if (current->groups[i] == NOGROUP)
break;
if (current->groups[i] == grp)
return 1;
}
return 0;
}
static struct new_utsname thisname = {
UTS_SYSNAME, UTS_NODENAME, UTS_RELEASE, UTS_VERSION, UTS_MACHINE
};
int sys_newuname(struct new_utsname * name)
{
if (!name)
return -EFAULT;
verify_area(name, sizeof *name);
memcpy_tofs(name,&thisname,sizeof *name);
return 0;
}
int sys_uname(struct old_utsname * name)
{
if (!name)
return -EINVAL;
verify_area(name,sizeof *name);
memcpy_tofs(&name->sysname,&thisname.sysname,__OLD_UTS_LEN);
put_fs_byte(0,name->sysname+__OLD_UTS_LEN);
memcpy_tofs(&name->nodename,&thisname.nodename,__OLD_UTS_LEN);
put_fs_byte(0,name->nodename+__OLD_UTS_LEN);
memcpy_tofs(&name->release,&thisname.release,__OLD_UTS_LEN);
put_fs_byte(0,name->release+__OLD_UTS_LEN);
memcpy_tofs(&name->version,&thisname.version,__OLD_UTS_LEN);
put_fs_byte(0,name->version+__OLD_UTS_LEN);
memcpy_tofs(&name->machine,&thisname.machine,__OLD_UTS_LEN);
put_fs_byte(0,name->machine+__OLD_UTS_LEN);
return 0;
}
/*
* Only sethostname; gethostname can be implemented by calling uname()
*/
int sys_sethostname(char *name, int len)
{
int i;
if (!suser())
return -EPERM;
if (len > __NEW_UTS_LEN)
return -EINVAL;
for (i=0; i < len; i++) {
if ((thisname.nodename[i] = get_fs_byte(name+i)) == 0)
return 0;
}
thisname.nodename[i] = 0;
return 0;
}
int sys_getrlimit(int resource, struct rlimit *rlim)
{
if (resource >= RLIM_NLIMITS)
return -EINVAL;
verify_area(rlim,sizeof *rlim);
put_fs_long(current->rlim[resource].rlim_cur,
(unsigned long *) rlim);
put_fs_long(current->rlim[resource].rlim_max,
((unsigned long *) rlim)+1);
return 0;
}
int sys_setrlimit(int resource, struct rlimit *rlim)
{
struct rlimit new, *old;
if (resource >= RLIM_NLIMITS)
return -EINVAL;
old = current->rlim + resource;
new.rlim_cur = get_fs_long((unsigned long *) rlim);
new.rlim_max = get_fs_long(((unsigned long *) rlim)+1);
if (((new.rlim_cur > old->rlim_max) ||
(new.rlim_max > old->rlim_max)) &&
!suser())
return -EPERM;
*old = new;
return 0;
}
/*
* It would make sense to put struct rusuage in the task_struct,
* except that would make the task_struct be *really big*. After
* task_struct gets moved into malloc'ed memory, it would
* make sense to do this. It will make moving the rest of the information
* a lot simpler! (Which we're not doing right now because we're not
* measuring them yet).
*/
int sys_getrusage(int who, struct rusage *ru)
{
struct rusage r;
unsigned long *lp, *lpend, *dest;
if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN)
return -EINVAL;
verify_area(ru, sizeof *ru);
memset((char *) &r, 0, sizeof(r));
if (who == RUSAGE_SELF) {
r.ru_utime.tv_sec = CT_TO_SECS(current->utime);
r.ru_utime.tv_usec = CT_TO_USECS(current->utime);
r.ru_stime.tv_sec = CT_TO_SECS(current->stime);
r.ru_stime.tv_usec = CT_TO_USECS(current->stime);
r.ru_minflt = current->min_flt;
r.ru_majflt = current->maj_flt;
} else {
r.ru_utime.tv_sec = CT_TO_SECS(current->cutime);
r.ru_utime.tv_usec = CT_TO_USECS(current->cutime);
r.ru_stime.tv_sec = CT_TO_SECS(current->cstime);
r.ru_stime.tv_usec = CT_TO_USECS(current->cstime);
r.ru_minflt = current->cmin_flt;
r.ru_majflt = current->cmaj_flt;
}
lp = (unsigned long *) &r;
lpend = (unsigned long *) (&r+1);
dest = (unsigned long *) ru;
for (; lp < lpend; lp++, dest++)
put_fs_long(*lp, dest);
return(0);
}
int sys_gettimeofday(struct timeval *tv, struct timezone *tz)
{
if (tv) {
verify_area(tv, sizeof *tv);
put_fs_long(startup_time + CT_TO_SECS(jiffies+jiffies_offset),
(unsigned long *) tv);
put_fs_long(CT_TO_USECS(jiffies+jiffies_offset),
((unsigned long *) tv)+1);
}
if (tz) {
verify_area(tz, sizeof *tz);
put_fs_long(sys_tz.tz_minuteswest, (unsigned long *) tz);
put_fs_long(sys_tz.tz_dsttime, ((unsigned long *) tz)+1);
}
return 0;
}
/*
* The first time we set the timezone, we will warp the clock so that
* it is ticking GMT time instead of local time. Presumably,
* if someone is setting the timezone then we are running in an
* environment where the programs understand about timezones.
* This should be done at boot time in the /etc/rc script, as
* soon as possible, so that the clock can be set right. Otherwise,
* various programs will get confused when the clock gets warped.
*/
int sys_settimeofday(struct timeval *tv, struct timezone *tz)
{
static int firsttime = 1;
void adjust_clock();
if (!suser())
return -EPERM;
if (tz) {
sys_tz.tz_minuteswest = get_fs_long((unsigned long *) tz);
sys_tz.tz_dsttime = get_fs_long(((unsigned long *) tz)+1);
if (firsttime) {
firsttime = 0;
if (!tv)
adjust_clock();
}
}
if (tv) {
int sec, usec;
sec = get_fs_long((unsigned long *)tv);
usec = get_fs_long(((unsigned long *)tv)+1);
startup_time = sec - jiffies/HZ;
jiffies_offset = usec * HZ / 1000000 - jiffies%HZ;
}
return 0;
}
/*
* Adjust the time obtained from the CMOS to be GMT time instead of
* local time.
*
* This is ugly, but preferable to the alternatives. Otherwise we
* would either need to write a program to do it in /etc/rc (and risk
* confusion if the program gets run more than once; it would also be
* hard to make the program warp the clock precisely n hours) or
* compile in the timezone information into the kernel. Bad, bad....
*
* XXX Currently does not adjust for daylight savings time. May not
* need to do anything, depending on how smart (dumb?) the BIOS
* is. Blast it all.... the best thing to do not depend on the CMOS
* clock at all, but get the time via NTP or timed if you're on a
* network.... - TYT, 1/1/92
*/
void adjust_clock()
{
startup_time += sys_tz.tz_minuteswest*60;
}
int sys_umask(int mask)
{
int old = current->umask;
current->umask = mask & 0777;
return (old);
}