Minix1.1/usr/src/mm/exec.c
/* This file handles the EXEC system call. It performs the work as follows:
* - see if the permissions allow the file to be executed
* - read the header and extract the sizes
* - fetch the initial args and environment from the user space
* - allocate the memory for the new process
* - copy the initial stack from MM to the process
* - read in the text and data segments and copy to the process
* - take care of setuid and setgid bits
* - fix up 'mproc' table
* - tell kernel about EXEC
*
* The only entry point is do_exec.
*/
#include "../h/const.h"
#include "../h/type.h"
#include "../h/callnr.h"
#include "../h/error.h"
#include "../h/stat.h"
#include "const.h"
#include "glo.h"
#include "mproc.h"
#include "param.h"
#define MAGIC 0x04000301L /* magic number with 2 bits masked off */
#define SEP 0x00200000L /* value for separate I & D */
#define TEXTB 2 /* location of text size in header */
#define DATAB 3 /* location of data size in header */
#define BSSB 4 /* location of bss size in header */
#define TOTB 6 /* location of total size in header */
/*===========================================================================*
* do_exec *
*===========================================================================*/
PUBLIC int do_exec()
{
/* Perform the exece(name, argv, envp) call. The user library builds a
* complete stack image, including pointers, args, environ, etc. The stack
* is copied to a buffer inside MM, and then to the new core image.
*/
register struct mproc *rmp;
int m, r, fd, ft;
char mbuf[MAX_ISTACK_BYTES]; /* buffer for stack and zeroes */
union u {
char name_buf[MAX_PATH]; /* the name of the file to exec */
char zb[ZEROBUF_SIZE]; /* used to zero bss */
} u;
char *new_sp;
vir_bytes src, dst, text_bytes, data_bytes, bss_bytes, stk_bytes, vsp;
phys_bytes tot_bytes; /* total space for program, including gap */
vir_clicks sc;
struct stat s_buf;
/* Do some validity checks. */
rmp = mp;
stk_bytes = (vir_bytes) stack_bytes;
if (stk_bytes > MAX_ISTACK_BYTES) return(ENOMEM); /* stack too big */
if (exec_len <= 0 || exec_len > MAX_PATH) return(EINVAL);
/* Get the exec file name and see if the file is executable. */
src = (vir_bytes) exec_name;
dst = (vir_bytes) u.name_buf;
r = mem_copy(who, D, (long) src, MM_PROC_NR, D, (long) dst, (long) exec_len);
if (r != OK) return(r); /* file name not in user data segment */
tell_fs(CHDIR, who, 0, 0); /* temporarily switch to user's directory */
fd = allowed(u.name_buf, &s_buf, X_BIT); /* is file executable? */
tell_fs(CHDIR, 0, 1, 0); /* switch back to MM's own directory */
if (fd < 0) return(fd); /* file was not executable */
/* Read the file header and extract the segment sizes. */
sc = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
m = read_header(fd, &ft, &text_bytes, &data_bytes, &bss_bytes, &tot_bytes,sc);
if (m < 0) {
close(fd); /* something wrong with header */
return(ENOEXEC);
}
/* Fetch the stack from the user before destroying the old core image. */
src = (vir_bytes) stack_ptr;
dst = (vir_bytes) mbuf;
r = mem_copy(who, D, (long) src, MM_PROC_NR, D, (long) dst, (long) stk_bytes);
if (r != OK) {
close(fd); /* can't fetch stack (e.g. bad virtual addr) */
return(EACCES);
}
/* Allocate new memory and release old memory. Fix map and tell kernel. */
r = new_mem(text_bytes, data_bytes, bss_bytes, stk_bytes, tot_bytes,
u.zb, ZEROBUF_SIZE);
if (r != OK) {
close(fd); /* insufficient core or program too big */
return(r);
}
/* Patch up stack and copy it from MM to new core image. */
vsp = (vir_bytes) rmp->mp_seg[S].mem_vir << CLICK_SHIFT;
patch_ptr(mbuf, vsp);
src = (vir_bytes) mbuf;
r = mem_copy(MM_PROC_NR, D, (long) src, who, D, (long) vsp, (long) stk_bytes);
if (r != OK) panic("do_exec stack copy err", NO_NUM);
/* Read in text and data segments. */
load_seg(fd, T, text_bytes);
load_seg(fd, D, data_bytes);
close(fd); /* don't need exec file any more */
/* Take care of setuid/setgid bits. */
if (s_buf.st_mode & I_SET_UID_BIT) {
rmp->mp_effuid = s_buf.st_uid;
tell_fs(SETUID, who, (int) rmp->mp_realuid, (int) rmp->mp_effuid);
}
if (s_buf.st_mode & I_SET_GID_BIT) {
rmp->mp_effgid = s_buf.st_gid;
tell_fs(SETGID, who, (int) rmp->mp_realgid, (int) rmp->mp_effgid);
}
/* Fix up some 'mproc' fields and tell kernel that exec is done. */
rmp->mp_catch = 0; /* reset all caught signals */
rmp->mp_flags &= ~SEPARATE; /* turn off SEPARATE bit */
rmp->mp_flags |= ft; /* turn it on for separate I & D files */
new_sp = (char *) vsp;
sys_exec(who, new_sp);
return(OK);
}
/*===========================================================================*
* read_header *
*===========================================================================*/
PRIVATE int read_header(fd, ft, text_bytes, data_bytes, bss_bytes, tot_bytes,sc)
int fd; /* file descriptor for reading exec file */
int *ft; /* place to return ft number */
vir_bytes *text_bytes; /* place to return text size */
vir_bytes *data_bytes; /* place to return initialized data size */
vir_bytes *bss_bytes; /* place to return bss size */
phys_bytes *tot_bytes; /* place to return total size */
vir_clicks sc; /* stack size in clicks */
{
/* Read the header and extract the text, data, bss and total sizes from it. */
int m, ct;
vir_clicks tc, dc, s_vir, dvir;
phys_clicks totc;
long buf[HDR_SIZE/sizeof(long)];
/* Read the header and check the magic number. The standard MINIX header
* consists of 8 longs, as follows:
* 0: 0x04100301L (combined I & D space) or 0x04200301L (separate I & D)
* 1: 0x00000020L
* 2: size of text segments in bytes
* 3: size of initialized data segment in bytes
* 4: size of bss in bytes
* 5: 0x00000000L
* 6: total memory allocated to program (text, data and stack, combined)
* 7: 0x00000000L
* The longs are represented low-order byte first and high-order byte last.
* The first byte of the header is always 0x01, followed by 0x03.
* The header is followed directly by the text and data segments, whose sizes
* are given in the header.
*/
if (read(fd, buf, HDR_SIZE) != HDR_SIZE) return(ENOEXEC);
if ( (buf[0] & 0xFF0FFFFFL) != MAGIC) return(ENOEXEC);
*ft = (buf[0] & SEP ? SEPARATE : 0); /* separate I & D or not */
/* Get text and data sizes. */
*text_bytes = (vir_bytes) buf[TEXTB]; /* text size in bytes */
*data_bytes = (vir_bytes) buf[DATAB]; /* data size in bytes */
if (*ft != SEPARATE) {
/* If I & D space is not separated, it is all considered data. Text=0 */
*data_bytes += *text_bytes;
*text_bytes = 0;
}
/* Get bss and total sizes. */
*bss_bytes = (vir_bytes) buf[BSSB]; /* bss size in bytes */
*tot_bytes = buf[TOTB]; /* total bytes to allocate for program */
if (*tot_bytes == 0) return(ENOEXEC);
/* Check to see if segment sizes are feasible. */
tc = (*text_bytes + CLICK_SHIFT - 1) >> CLICK_SHIFT;
dc = (*data_bytes + *bss_bytes + CLICK_SHIFT - 1) >> CLICK_SHIFT;
totc = (*tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
if (dc >= totc) return(ENOEXEC); /* stack must be at least 1 click */
dvir = (*ft == SEPARATE ? 0 : tc);
s_vir = dvir + (totc - sc);
m = size_ok(*ft, tc, dc, sc, dvir, s_vir);
ct = buf[1] & BYTE; /* header length */
if (ct > HDR_SIZE) read(fd, buf, ct - HDR_SIZE); /* skip unused hdr */
return(m);
}
/*===========================================================================*
* new_mem *
*===========================================================================*/
PRIVATE int new_mem(text_bytes, data_bytes, bss_bytes,stk_bytes,tot_bytes,bf,zs)
vir_bytes text_bytes; /* text segment size in bytes */
vir_bytes data_bytes; /* size of initialized data in bytes */
vir_bytes bss_bytes; /* size of bss in bytes */
vir_bytes stk_bytes; /* size of initial stack segment in bytes */
phys_bytes tot_bytes; /* total memory to allocate, including gap */
char bf[ZEROBUF_SIZE]; /* buffer to use for zeroing data segment */
int zs; /* true size of 'bf' */
{
/* Allocate new memory and release the old memory. Change the map and report
* the new map to the kernel. Zero the new core image's bss, gap and stack.
*/
register struct mproc *rmp;
char *rzp;
vir_bytes vzb;
vir_clicks text_clicks, data_clicks, gap_clicks, stack_clicks, tot_clicks;
phys_clicks new_base, old_clicks;
phys_bytes bytes, base, count, bss_offset;
extern phys_clicks alloc_mem();
extern phys_clicks max_hole();
/* Acquire the new memory. Each of the 4 parts: text, (data+bss), gap,
* and stack occupies an integral number of clicks, starting at click
* boundary. The data and bss parts are run together with no space.
*/
text_clicks = (text_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
data_clicks = (data_bytes + bss_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
stack_clicks = (stk_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
tot_clicks = (tot_bytes + CLICK_SIZE - 1) >> CLICK_SHIFT;
gap_clicks = tot_clicks - data_clicks - stack_clicks;
if ( (int) gap_clicks < 0) return(ENOMEM);
/* Check to see if there is a hole big enough. If so, we can risk first
* releasing the old core image before allocating the new one, since we
* know it will succeed. If there is not enough, return failure.
*/
if (text_clicks + tot_clicks > max_hole()) return(EAGAIN);
/* There is enough memory for the new core image. Release the old one. */
rmp = mp;
old_clicks = (phys_clicks) rmp->mp_seg[S].mem_vir + rmp->mp_seg[S].mem_len;
if (rmp->mp_flags & SEPARATE) old_clicks += rmp->mp_seg[T].mem_len;
free_mem(rmp->mp_seg[T].mem_phys, old_clicks); /* free the memory */
/* We have now passed the point of no return. The old core image has been
* forever lost. The call must go through now. Set up and report new map.
*/
new_base = alloc_mem(text_clicks + tot_clicks); /* new core image */
if (new_base == NO_MEM) panic("MM hole list is inconsistent", NO_NUM);
rmp->mp_seg[T].mem_vir = 0;
rmp->mp_seg[T].mem_len = text_clicks;
rmp->mp_seg[T].mem_phys = new_base;
rmp->mp_seg[D].mem_vir = 0;
rmp->mp_seg[D].mem_len = data_clicks;
rmp->mp_seg[D].mem_phys = new_base + text_clicks;
rmp->mp_seg[S].mem_vir = rmp->mp_seg[D].mem_vir + data_clicks + gap_clicks;
rmp->mp_seg[S].mem_len = stack_clicks;
rmp->mp_seg[S].mem_phys = rmp->mp_seg[D].mem_phys + data_clicks + gap_clicks;
sys_newmap(who, rmp->mp_seg); /* report new map to the kernel */
/* Zero the bss, gap, and stack segment. Start just above text. */
for (rzp = &bf[0]; rzp < &bf[zs]; rzp++) *rzp = 0; /* clear buffer */
bytes = (phys_bytes) (data_clicks + gap_clicks + stack_clicks) << CLICK_SHIFT;
vzb = (vir_bytes) bf;
base = (long) rmp->mp_seg[T].mem_phys + rmp->mp_seg[T].mem_len;
base = base << CLICK_SHIFT;
bss_offset = (data_bytes >> CLICK_SHIFT) << CLICK_SHIFT;
base += bss_offset;
bytes -= bss_offset;
while (bytes > 0) {
count = (long) MIN(bytes, (phys_bytes) zs);
if (mem_copy(MM_PROC_NR, D, (long) vzb, ABS, 0, base, count) != OK)
panic("new_mem can't zero", NO_NUM);
base += count;
bytes -= count;
}
return(OK);
}
/*===========================================================================*
* patch_ptr *
*===========================================================================*/
PRIVATE patch_ptr(stack, base)
char stack[MAX_ISTACK_BYTES]; /* pointer to stack image within MM */
vir_bytes base; /* virtual address of stack base inside user */
{
/* When doing an exec(name, argv, envp) call, the user builds up a stack
* image with arg and env pointers relative to the start of the stack. Now
* these pointers must be relocated, since the stack is not positioned at
* address 0 in the user's address space.
*/
char **ap, flag;
vir_bytes v;
flag = 0; /* counts number of 0-pointers seen */
ap = (char **) stack; /* points initially to 'nargs' */
ap++; /* now points to argv[0] */
while (flag < 2) {
if (ap >= (char **) &stack[MAX_ISTACK_BYTES]) return; /* too bad */
if (*ap != NIL_PTR) {
v = (vir_bytes) *ap; /* v is relative pointer */
v += base; /* relocate it */
*ap = (char *) v; /* put it back */
} else {
flag++;
}
ap++;
}
}
/*===========================================================================*
* load_seg *
*===========================================================================*/
PRIVATE load_seg(fd, seg, seg_bytes)
int fd; /* file descriptor to read from */
int seg; /* T or D */
vir_bytes seg_bytes; /* how big is the segment */
{
/* Read in text or data from the exec file and copy to the new core image.
* This procedure is a little bit tricky. The logical way to load a segment
* would be to read it block by block and copy each block to the user space
* one at a time. This is too slow, so we do something dirty here, namely
* send the user space and virtual address to the file system in the upper
* 10 bits of the file descriptor, and pass it the user virtual address
* instead of a MM address. The file system copies the whole segment
* directly to user space, bypassing MM completely.
*/
int new_fd, bytes;
char *ubuf_ptr;
if (seg_bytes == 0) return; /* text size for combined I & D is 0 */
new_fd = (who << 8) | (seg << 6) | fd;
ubuf_ptr = (char *) (mp->mp_seg[seg].mem_vir << CLICK_SHIFT);
bytes = (int) seg_bytes;
read(new_fd, ubuf_ptr, bytes);
}