Minix1.1/usr/src/kernel/wini.c

Compare this file to the similar file:
Show the results in this format:

/* This file contains a driver for the IBM or DTC winchester controller.
 * It was written by Adri Koppes.
 *
 * The driver supports two operations: read a block and
 * write a block.  It accepts two messages, one for reading and one for
 * writing, both using message format m2 and with the same parameters:
 *
 *    m_type      DEVICE    PROC_NR     COUNT    POSITION  ADRRESS
 * ----------------------------------------------------------------
 * |  DISK_READ | device  | proc nr |  bytes  |  offset | buf ptr |
 * |------------+---------+---------+---------+---------+---------|
 * | DISK_WRITE | device  | proc nr |  bytes  |  offset | buf ptr |
 * ----------------------------------------------------------------
 *
 * The file contains one entry point:
 *
 *   winchester_task:	main entry when system is brought up
 *
 */

#include "../h/const.h"
#include "../h/type.h"
#include "../h/callnr.h"
#include "../h/com.h"
#include "../h/error.h"
#include "const.h"
#include "type.h"
#include "proc.h"

/* I/O Ports used by winchester disk task. */
#define WIN_DATA       0x320	/* winchester disk controller data register */
#define WIN_STATUS     0x321	/* winchester disk controller status register */
#define WIN_SELECT     0x322	/* winchester disk controller select port */
#define WIN_DMA	       0x323	/* winchester disk controller dma register */
#define DMA_ADDR       0x006	/* port for low 16 bits of DMA address */
#define DMA_TOP        0x082	/* port for top 4 bits of 20-bit DMA addr */
#define DMA_COUNT      0x007	/* port for DMA count (count =  bytes - 1) */
#define DMA_M2         0x00C	/* DMA status port */
#define DMA_M1         0x00B	/* DMA status port */
#define DMA_INIT       0x00A	/* DMA init port */

/* Winchester disk controller command bytes. */
#define WIN_RECALIBRATE	0x01	/* command for the drive to recalibrate */
#define WIN_SENSE       0x03	/* command for the controller to get its status */
#define WIN_READ        0x08	/* command for the drive to read */
#define WIN_WRITE       0x0a	/* command for the drive to write */
#define WIN_SPECIFY     0x0C	/* command for the controller to accept params */
#define WIN_ECC_READ	0x0D	/* command for the controller to read ecc length */

#define DMA_INT		   3 /* Command with dma and interrupt */
#define INT		   2	/* Command with interrupt, no dma */
#define NO_DMA_INT	   0	/* Command without dma and interrupt */
#define CTRL_BYTE	   5 /* Control byte for controller */

/* DMA channel commands. */
#define DMA_READ        0x47	/* DMA read opcode */
#define DMA_WRITE       0x4B	/* DMA write opcode */

/* Parameters for the disk drive. */
#define SECTOR_SIZE      512	/* physical sector size in bytes */
#define NR_SECTORS      0x11	/* number of sectors per track */

/* Error codes */
#define ERR		  -1	/* general error */

/* Miscellaneous. */
#define MAX_ERRORS         4	/* how often to try rd/wt before quitting */
#define MAX_RESULTS        4	/* max number of bytes controller returns */
#define NR_DEVICES        10	/* maximum number of drives */
#define MAX_WIN_RETRY  10000	/* max # times to try to output to WIN */
#define PART_TABLE     0x1C6	/* IBM partition table starts here in sect 0 */
#define DEV_PER_DRIVE      5	/* hd0 + hd1 + hd2 + hd3 + hd4 = 5 */

/* Variables. */
PRIVATE struct wini {		/* main drive struct, one entry per drive */
  int wn_opcode;		/* DISK_READ or DISK_WRITE */
  int wn_procnr;		/* which proc wanted this operation? */
  int wn_drive;			/* drive number addressed */
  int wn_cylinder;		/* cylinder number addressed */
  int wn_sector;		/* sector addressed */
  int wn_head;			/* head number addressed */
  int wn_heads;			/* maximum number of heads */
  long wn_low;			/* lowest cylinder of partition */
  long wn_size;			/* size of partition in blocks */
  int wn_count;			/* byte count */
  vir_bytes wn_address;		/* user virtual address */
  char wn_results[MAX_RESULTS];	/* the controller can give lots of output */
} wini[NR_DEVICES];

PRIVATE int w_need_reset = FALSE;	 /* set to 1 when controller must be reset */
PRIVATE int nr_drives;		 /* Number of drives */

PRIVATE message w_mess;		/* message buffer for in and out */

PRIVATE int command[6];		/* Common command block */

PRIVATE unsigned char buf[BLOCK_SIZE]; /* Buffer used by the startup routine */

PRIVATE struct param {
	int nr_cyl;		/* Number of cylinders */
	int nr_heads;		/* Number of heads */
	int reduced_wr;		/* First cylinder with reduced write current */
	int wr_precomp;		/* First cylinder with write precompensation */
	int max_ecc;		/* Maximum ECC burst length */
} param0, param1;

/*===========================================================================*
 *				winchester_task				     * 
 *===========================================================================*/
PUBLIC winchester_task()
{
/* Main program of the winchester disk driver task. */

  int r, caller, proc_nr;

  /* First initialize the controller */
  init_param();

  /* Here is the main loop of the disk task.  It waits for a message, carries
   * it out, and sends a reply.
   */

  while (TRUE) {
	/* First wait for a request to read or write a disk block. */
	receive(ANY, &w_mess);	/* get a request to do some work */
	if (w_mess.m_source < 0) {
		printf("winchester task got message from %d ", w_mess.m_source);
		continue;
	}
	caller = w_mess.m_source;
	proc_nr = w_mess.PROC_NR;

	/* Now carry out the work. */
	switch(w_mess.m_type) {
	    case DISK_READ:
	    case DISK_WRITE:	r = w_do_rdwt(&w_mess);	break;
	    default:		r = EINVAL;		break;
	}

	/* Finally, prepare and send the reply message. */
	w_mess.m_type = TASK_REPLY;	
	w_mess.REP_PROC_NR = proc_nr;

	w_mess.REP_STATUS = r;	/* # of bytes transferred or error code */
	send(caller, &w_mess);	/* send reply to caller */
  }
}


/*===========================================================================*
 *				w_do_rdwt					     * 
 *===========================================================================*/
PRIVATE int w_do_rdwt(m_ptr)
message *m_ptr;			/* pointer to read or write w_message */
{
/* Carry out a read or write request from the disk. */
  register struct wini *wn;
  int r, device, errors = 0;
  long sector;

  /* Decode the w_message parameters. */
  device = m_ptr->DEVICE;
  if (device < 0 || device >= NR_DEVICES)
	return(EIO);
  if (m_ptr->COUNT != BLOCK_SIZE)
	return(EINVAL);
  wn = &wini[device];		/* 'wn' points to entry for this drive */
  wn->wn_drive = device/DEV_PER_DRIVE;	/* save drive number */
  if (wn->wn_drive >= nr_drives)
	return(EIO);
  wn->wn_opcode = m_ptr->m_type;	/* DISK_READ or DISK_WRITE */
  if (m_ptr->POSITION % BLOCK_SIZE != 0)
	return(EINVAL);
  sector = m_ptr->POSITION/SECTOR_SIZE;
  if ((sector+BLOCK_SIZE/SECTOR_SIZE) > wn->wn_size)
	return(EOF);
  sector += wn->wn_low;
  wn->wn_cylinder = sector / (wn->wn_heads * NR_SECTORS);
  wn->wn_sector =  (sector % NR_SECTORS);
  wn->wn_head = (sector % (wn->wn_heads * NR_SECTORS) )/NR_SECTORS;
  wn->wn_count = m_ptr->COUNT;
  wn->wn_address = (vir_bytes) m_ptr->ADDRESS;
  wn->wn_procnr = m_ptr->PROC_NR;

  /* This loop allows a failed operation to be repeated. */
  while (errors <= MAX_ERRORS) {
	errors++;		/* increment count once per loop cycle */
	if (errors >= MAX_ERRORS)
		return(EIO);

	/* First check to see if a reset is needed. */
	if (w_need_reset) w_reset();

	/* Now set up the DMA chip. */
	w_dma_setup(wn);

	/* Perform the transfer. */
	r = w_transfer(wn);
	if (r == OK) break;	/* if successful, exit loop */

  }

  return(r == OK ? BLOCK_SIZE : EIO);
}


/*===========================================================================*
 *				w_dma_setup				     * 
 *===========================================================================*/
PRIVATE w_dma_setup(wn)
struct wini *wn;		/* pointer to the drive struct */
{
/* The IBM PC can perform DMA operations by using the DMA chip.  To use it,
 * the DMA (Direct Memory Access) chip is loaded with the 20-bit memory address
 * to by read from or written to, the byte count minus 1, and a read or write
 * opcode.  This routine sets up the DMA chip.  Note that the chip is not
 * capable of doing a DMA across a 64K boundary (e.g., you can't read a 
 * 512-byte block starting at physical address 65520).
 */

  int mode, low_addr, high_addr, top_addr, low_ct, high_ct, top_end;
  vir_bytes vir, ct;
  phys_bytes user_phys;
  extern phys_bytes umap();

  mode = (wn->wn_opcode == DISK_READ ? DMA_READ : DMA_WRITE);
  vir = (vir_bytes) wn->wn_address;
  ct = (vir_bytes) wn->wn_count;
  user_phys = umap(proc_addr(wn->wn_procnr), D, vir, ct);
  low_addr  = (int) user_phys & BYTE;
  high_addr = (int) (user_phys >>  8) & BYTE;
  top_addr  = (int) (user_phys >> 16) & BYTE;
  low_ct  = (int) (ct - 1) & BYTE;
  high_ct = (int) ( (ct - 1) >> 8) & BYTE;

  /* Check to see if the transfer will require the DMA address counter to
   * go from one 64K segment to another.  If so, do not even start it, since
   * the hardware does not carry from bit 15 to bit 16 of the DMA address.
   * Also check for bad buffer address.  These errors mean FS contains a bug.
   */
  if (user_phys == 0) panic("FS gave winchester disk driver bad addr", (int) vir);
  top_end = (int) (((user_phys + ct - 1) >> 16) & BYTE);
  if (top_end != top_addr) panic("Trying to DMA across 64K boundary", top_addr);

  /* Now set up the DMA registers. */
  lock();
  port_out(DMA_M2, mode);	/* set the DMA mode */
  port_out(DMA_M1, mode);	/* set it again */
  port_out(DMA_ADDR, low_addr);	/* output low-order 8 bits */
  port_out(DMA_ADDR, high_addr);/* output next 8 bits */
  port_out(DMA_TOP, top_addr);	/* output highest 4 bits */
  port_out(DMA_COUNT, low_ct);	/* output low 8 bits of count - 1 */
  port_out(DMA_COUNT, high_ct);	/* output high 8 bits of count - 1 */
  unlock();
}

/*===========================================================================*
 *				w_transfer				     * 
 *===========================================================================*/
PRIVATE int w_transfer(wn)
register struct wini *wn;	/* pointer to the drive struct */
{
/* The drive is now on the proper cylinder.  Read or write 1 block. */

  /* The command is issued by outputing 6 bytes to the controller chip. */
  command[0] = (wn->wn_opcode == DISK_READ ? WIN_READ : WIN_WRITE);
  command[1] = (wn->wn_head | (wn->wn_drive << 5));
  command[2] = (((wn->wn_cylinder & 0x0300) >> 2) | wn->wn_sector);
  command[3] = (wn->wn_cylinder & 0xFF);
  command[4] = BLOCK_SIZE/SECTOR_SIZE;
  command[5] = CTRL_BYTE;
  if (com_out(DMA_INT) != OK)
	return(ERR);

  port_out(DMA_INIT, 3);	/* initialize DMA */
  /* Block, waiting for disk interrupt. */
  receive(HARDWARE, &w_mess);

  /* Get controller status and check for errors. */
  if (win_results(wn) == OK)
	return(OK);
  if ((wn->wn_results[0] & 63) == 24)
	read_ecc();
  else
	w_need_reset = TRUE;
  return(ERR);
}


/*===========================================================================*
 *				win_results				     * 
 *===========================================================================*/
PRIVATE int win_results(wn)
register struct wini *wn;	/* pointer to the drive struct */
{
/* Extract results from the controller after an operation. */

  register int i;
  int status;

  port_in(WIN_DATA, &status);
  port_out(WIN_DMA, 0);
  if (!(status & 2))
	return(OK);
  command[0] = WIN_SENSE;
  command[1] = (wn->wn_drive << 5);
  if (com_out(NO_DMA_INT) != OK)
	return(ERR);

  /* Loop, extracting bytes from WIN */
  for (i = 0; i < MAX_RESULTS; i++) {
	if (hd_wait(1) != OK)
		return(ERR);
	port_in(WIN_DATA, &status);
	wn->wn_results[i] = status & BYTE;
  }
  if (wn->wn_results[0] & 63)
	return(ERR);
  else
	return(OK);
}


/*===========================================================================*
 *				win_out					     * 
 *===========================================================================*/
PRIVATE win_out(val)
int val;			/* write this byte to winchester disk controller */
{
/* Output a byte to the controller.  This is not entirely trivial, since you
 * can only write to it when it is listening, and it decides when to listen.
 * If the controller refuses to listen, the WIN chip is given a hard reset.
 */

  if (w_need_reset) return;	/* if controller is not listening, return */
  if (hd_wait(1) == OK)
	port_out(WIN_DATA, val);
}

/*===========================================================================*
 *				w_reset					     * 
 *===========================================================================*/
PRIVATE w_reset()
{
/* Issue a reset to the controller.  This is done after any catastrophe,
 * like the controller refusing to respond.
 */

  int r = 1, i;

  /* Strobe reset bit low. */
  port_out(WIN_STATUS, r);
  for (i = 0; i < 10000; i++) {
	port_in(WIN_STATUS, &r);
	if ( (r&01) == 0)break;
  }
  if (r & 2) {
	printf("Hard disk won't reset\n");
	return(ERR);
  }

  /* Reset succeeded.  Tell WIN drive parameters. */
  w_need_reset = FALSE;

  return(win_init());
}

/*===========================================================================*
 *				win_init				     * 
 *===========================================================================*/
PRIVATE win_init()
{
/* Routine to initialize the drive parameters after boot or reset */

  register int i;

  command[0] = WIN_SPECIFY;		/* Specify some parameters */
  command[1] = 0;			/* Drive 0 */
  if (com_out(NO_DMA_INT) != OK)	/* Output command block */
	return(ERR);
  lock();

  /* No. of cylinders (high byte) */
  win_out(param0.nr_cyl >> 8);

  /* No. of cylinders (low byte) */
  win_out(param0.nr_cyl & 0xFF);

  /* No. of heads */
  win_out(param0.nr_heads);

  /* Start reduced write (high byte) */
  win_out(param0.reduced_wr >> 8);

  /* Start reduced write (low byte) */
  win_out(param0.reduced_wr & 0xFF);

  /* Start write precompensation (high byte) */
  win_out(param0.wr_precomp >> 8);

  /* Start write precompensation (low byte) */
  win_out(param0.wr_precomp & 0xFF);

  /* Ecc burst length */
  win_out(param0.max_ecc);
  unlock();

  if (check_init() != OK) {	/* See if controller accepted parameters */
	w_need_reset = TRUE;
	return(ERR);
  }

  if (nr_drives > 1) {
	command[1] = (1 << 5);			/* Drive 1 */
	if (com_out(NO_DMA_INT) != OK)		/* Output command block */
		return(ERR);
	lock();

	/* No. of cylinders (high byte) */
	win_out(param1.nr_cyl >> 8);

	/* No. of cylinders (low byte) */
	win_out(param1.nr_cyl & 0xFF);

	/* No. of heads */
	win_out(param1.nr_heads);

	/* Start reduced write (high byte) */
	win_out(param1.reduced_wr >> 8);

	/* Start reduced write (low byte) */
	win_out(param1.reduced_wr & 0xFF);

	/* Start write precompensation (high byte) */
	win_out(param1.wr_precomp >> 8);

	/* Start write precompensation (low byte) */
	win_out(param1.wr_precomp & 0xFF);

	/* Ecc burst length */
	win_out(param1.max_ecc);
	unlock();
	if (check_init() != OK) {  /* See if controller accepted parameters */
		w_need_reset = TRUE;
		return(ERR);
	}
  }
  for (i=0; i<nr_drives; i++) {
	command[0] = WIN_RECALIBRATE;
	command[1] = i << 5;
	command[5] = CTRL_BYTE;
	if (com_out(INT) != OK)
		return(ERR);
	receive(HARDWARE, &w_mess);
	if (win_results() != OK) {
		w_need_reset = TRUE;
		return(ERR);
	}
  }
  return(OK);
}

/*============================================================================*
 *				check_init				      *
 *============================================================================*/
PRIVATE check_init()
{
/* Routine to check if controller accepted the parameters */
  int r;

  if (hd_wait(2) == OK) {
	  port_in(WIN_DATA, &r);
	  if (r & 2)
		return(ERR);
	  else
		return(OK);
  }
}

/*============================================================================*
 *				read_ecc				      *
 *============================================================================*/
PRIVATE read_ecc()
{
/* Read the ecc burst-length and let the controller correct the data */

  int r;

  command[0] = WIN_ECC_READ;
  if (com_out(NO_DMA_INT) == OK && hd_wait(1) == OK) {
	port_in(WIN_DATA, &r);
	if (hd_wait(1) == OK) {
		port_in(WIN_DATA, &r);
		if (r & 1)
			w_need_reset = TRUE;
	}
  }
  return(ERR);
}

/*============================================================================*
 *				hd_wait					      *
 *============================================================================*/
PRIVATE hd_wait(bit)
register int bit;
{
/* Wait until the controller is ready to receive a command or send status */

  register int i = 0;
  int r;

  do {
	port_in(WIN_STATUS, &r);
	r &= bit;
  } while ((i++ < MAX_WIN_RETRY) && !r);

  if (i >= MAX_WIN_RETRY) {
	w_need_reset = TRUE;
	return(ERR);
  } else
	return(OK);
}

/*============================================================================*
 *				com_out					      *
 *============================================================================*/
PRIVATE com_out(mode)
int mode;
{
/* Output the command block to the winchester controller and return status */

	register int i = 0;
	int r;

	port_out(WIN_SELECT, mode);
	port_out(WIN_DMA, mode);
	for (i=0; i<MAX_WIN_RETRY; i++) {
		port_in(WIN_STATUS, &r);
		if ((r & 0x0F) == 0x0D)
			break;
	}
	if (i == MAX_WIN_RETRY) {
		w_need_reset = TRUE;
		return(ERR);
	}
	lock();
	for (i=0; i<6; i++)
		port_out(WIN_DATA, command[i]);
	unlock();
	port_in(WIN_STATUS, &r);
	if (r & 1) {
		w_need_reset = TRUE;
		return(ERR);
	} else
		return(OK);
}

/*============================================================================*
 *				init_params				      *
 *============================================================================*/
PRIVATE init_params()
{
/* This routine is called at startup to initialize the partition table,
 * the number of drives and the controller
*/
  unsigned int i, segment, offset;
  int type_0, type_1;
  phys_bytes address;
  extern phys_bytes umap();
  extern int vec_table[];

  /* Read the switches from the controller */
  port_in(WIN_SELECT, &i);

  /* Calculate the drive types */
  type_0 = (i >> 2) & 3;
  type_1 = i & 3;

  /* Copy the parameter vector from the saved vector table */
  offset = vec_table[2 * 0x41];
  segment = vec_table[2 * 0x41 + 1];

  /* Calculate the address off the parameters and copy them to buf */
  address = ((long)segment << 4) + offset;
  phys_copy(address, umap(proc_addr(WINCHESTER), D, buf, 64), 64L);

  /* Copy the parameters to the structures */
  copy_param((&buf[type_0 * 16]), &param0);
  copy_param((&buf[type_1 * 16]), &param1);

  /* Get the nummer of drives from the bios */
  phys_copy(0x475L, umap(proc_addr(WINCHESTER), D, buf, 1), 1L);
  nr_drives = (int) *buf;

  /* Set the parameters in the drive structure */
  for (i=0; i<5; i++)
	wini[i].wn_heads = param0.nr_heads;
  wini[0].wn_low = wini[5].wn_low = 0L;
  wini[0].wn_size = (long)((long)param0.nr_cyl * (long)param0.nr_heads * (long)NR_SECTORS);
  for (i=5; i<10; i++)
	wini[i].wn_heads = param1.nr_heads;
  wini[5].wn_size = (long)((long)param1.nr_cyl * (long)param1.nr_heads * (long)NR_SECTORS);


  /* Initialize the controller */
  if ((nr_drives > 0) && (win_init() != OK))
		nr_drives = 0;

  /* Read the partition table for each drive and save them */
  for (i = 0; i < nr_drives; i++) {
	w_mess.DEVICE = i * 5;
	w_mess.POSITION = 0L;
	w_mess.COUNT = BLOCK_SIZE;
	w_mess.ADDRESS = (char *) buf;
	w_mess.PROC_NR = WINCHESTER;
	w_mess.m_type = DISK_READ;
	if (w_do_rdwt(&w_mess) != BLOCK_SIZE)
		panic("Can't read partition table of winchester ", i);
	copy_prt(i * 5);
  }
}

/*============================================================================*
 *				copy_params				      *
 *============================================================================*/
PRIVATE copy_params(src, dest)
register unsigned char *src;
register struct param *dest;
{
/* This routine copies the parameters from src to dest
 * and sets the parameters for partition 0 and 5
*/

  dest->nr_cyl = *(int *)src;
  dest->nr_heads = (int)src[2];
  dest->reduced_wr = *(int *)&src[3];
  dest->wr_precomp = *(int *)&src[5];
  dest->max_ecc = (int)src[7];
}

/*============================================================================*
 *				copy_prt				      *
 *============================================================================*/
PRIVATE copy_prt(drive)
int drive;
{
/* This routine copies the partition table for the selected drive to
 * the variables wn_low and wn_size
 */

  register int i, offset;
  struct wini *wn;
  long adjust;

  for (i=0; i<4; i++) {
	adjust = 0;
	wn = &wini[i + drive + 1];
	offset = PART_TABLE + i * 0x10;
	wn->wn_low = *(long *)&buf[offset];
	if ((wn->wn_low % (BLOCK_SIZE/SECTOR_SIZE)) != 0) {
		adjust = wn->wn_low;
		wn->wn_low = (wn->wn_low/(BLOCK_SIZE/SECTOR_SIZE)+1)*(BLOCK_SIZE/SECTOR_SIZE);
		adjust = wn->wn_low - adjust;
	}
	wn->wn_size = *(long *)&buf[offset + sizeof(long)] - adjust;
  }
  sort(&wini[drive + 1]);
}

sort(wn)
register struct wini *wn;
{
  register int i,j;

  for (i=0; i<4; i++)
	for (j=0; j<3; j++)
		if ((wn[j].wn_low == 0) && (wn[j+1].wn_low != 0))
			swap(&wn[j], &wn[j+1]);
		else if (wn[j].wn_low > wn[j+1].wn_low && wn[j+1].wn_low != 0)
			swap(&wn[j], &wn[j+1]);
}

swap(first, second)
register struct wini *first, *second;
{
  register struct wini tmp;

  tmp = *first;
  *first = *second;
  *second = tmp;
}