NetBSD-5.0.2/sys/arch/alpha/alpha/machdep.c
/* $NetBSD: machdep.c,v 1.307.4.1.2.1 2009/10/31 13:29:53 sborrill Exp $ */
/*-
* Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center and by Chris G. Demetriou.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
* All rights reserved.
*
* Author: Chris G. Demetriou
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_multiprocessor.h"
#include "opt_dec_3000_300.h"
#include "opt_dec_3000_500.h"
#include "opt_compat_osf1.h"
#include "opt_compat_netbsd.h"
#include "opt_execfmt.h"
#include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
__KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.307.4.1.2.1 2009/10/31 13:29:53 sborrill Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/proc.h>
#include <sys/ras.h>
#include <sys/sa.h>
#include <sys/savar.h>
#include <sys/sched.h>
#include <sys/reboot.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/msgbuf.h>
#include <sys/ioctl.h>
#include <sys/tty.h>
#include <sys/user.h>
#include <sys/exec.h>
#include <sys/exec_ecoff.h>
#include <sys/core.h>
#include <sys/kcore.h>
#include <sys/ucontext.h>
#include <sys/conf.h>
#include <sys/ksyms.h>
#include <sys/kauth.h>
#include <sys/atomic.h>
#include <sys/cpu.h>
#include <machine/kcore.h>
#include <machine/fpu.h>
#include <sys/mount.h>
#include <sys/syscallargs.h>
#include <uvm/uvm_extern.h>
#include <sys/sysctl.h>
#include <dev/cons.h>
#include <machine/autoconf.h>
#include <machine/reg.h>
#include <machine/rpb.h>
#include <machine/prom.h>
#include <machine/cpuconf.h>
#include <machine/ieeefp.h>
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_access.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <ddb/db_interface.h>
#endif
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#ifdef DEBUG
#include <machine/sigdebug.h>
#endif
#include <machine/alpha.h>
#include "ksyms.h"
struct vm_map *mb_map = NULL;
struct vm_map *phys_map = NULL;
void *msgbufaddr;
int maxmem; /* max memory per process */
int totalphysmem; /* total amount of physical memory in system */
int physmem; /* physical memory used by NetBSD + some rsvd */
int resvmem; /* amount of memory reserved for PROM */
int unusedmem; /* amount of memory for OS that we don't use */
int unknownmem; /* amount of memory with an unknown use */
int cputype; /* system type, from the RPB */
int bootdev_debug = 0; /* patchable, or from DDB */
/*
* XXX We need an address to which we can assign things so that they
* won't be optimized away because we didn't use the value.
*/
u_int32_t no_optimize;
/* the following is used externally (sysctl_hw) */
char machine[] = MACHINE; /* from <machine/param.h> */
char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
char cpu_model[128];
struct user *proc0paddr;
/* Number of machine cycles per microsecond */
u_int64_t cycles_per_usec;
/* number of CPUs in the box. really! */
int ncpus;
struct bootinfo_kernel bootinfo;
/* For built-in TCDS */
#if defined(DEC_3000_300) || defined(DEC_3000_500)
u_int8_t dec_3000_scsiid[2], dec_3000_scsifast[2];
#endif
struct platform platform;
#if NKSYMS || defined(DDB) || defined(LKM)
/* start and end of kernel symbol table */
void *ksym_start, *ksym_end;
#endif
/* for cpu_sysctl() */
int alpha_unaligned_print = 1; /* warn about unaligned accesses */
int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
/*
* XXX This should be dynamically sized, but we have the chicken-egg problem!
* XXX it should also be larger than it is, because not all of the mddt
* XXX clusters end up being used for VM.
*/
phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
int mem_cluster_cnt;
int cpu_dump __P((void));
int cpu_dumpsize __P((void));
u_long cpu_dump_mempagecnt __P((void));
void dumpsys __P((void));
void identifycpu __P((void));
void printregs __P((struct reg *));
void
alpha_init(pfn, ptb, bim, bip, biv)
u_long pfn; /* first free PFN number */
u_long ptb; /* PFN of current level 1 page table */
u_long bim; /* bootinfo magic */
u_long bip; /* bootinfo pointer */
u_long biv; /* bootinfo version */
{
extern char kernel_text[], _end[];
struct mddt *mddtp;
struct mddt_cluster *memc;
int i, mddtweird;
struct vm_physseg *vps;
vaddr_t kernstart, kernend;
paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
cpuid_t cpu_id;
struct cpu_info *ci;
char *p;
const char *bootinfo_msg;
const struct cpuinit *c;
/* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
/*
* Turn off interrupts (not mchecks) and floating point.
* Make sure the instruction and data streams are consistent.
*/
(void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
alpha_pal_wrfen(0);
ALPHA_TBIA();
alpha_pal_imb();
/* Initialize the SCB. */
scb_init();
cpu_id = cpu_number();
#if defined(MULTIPROCESSOR)
/*
* Set our SysValue to the address of our cpu_info structure.
* Secondary processors do this in their spinup trampoline.
*/
alpha_pal_wrval((u_long)&cpu_info_primary);
cpu_info[cpu_id] = &cpu_info_primary;
#endif
ci = curcpu();
ci->ci_cpuid = cpu_id;
/*
* Get critical system information (if possible, from the
* information provided by the boot program).
*/
bootinfo_msg = NULL;
if (bim == BOOTINFO_MAGIC) {
if (biv == 0) { /* backward compat */
biv = *(u_long *)bip;
bip += 8;
}
switch (biv) {
case 1: {
struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
bootinfo.ssym = v1p->ssym;
bootinfo.esym = v1p->esym;
/* hwrpb may not be provided by boot block in v1 */
if (v1p->hwrpb != NULL) {
bootinfo.hwrpb_phys =
((struct rpb *)v1p->hwrpb)->rpb_phys;
bootinfo.hwrpb_size = v1p->hwrpbsize;
} else {
bootinfo.hwrpb_phys =
((struct rpb *)HWRPB_ADDR)->rpb_phys;
bootinfo.hwrpb_size =
((struct rpb *)HWRPB_ADDR)->rpb_size;
}
memcpy(bootinfo.boot_flags, v1p->boot_flags,
min(sizeof v1p->boot_flags,
sizeof bootinfo.boot_flags));
memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
min(sizeof v1p->booted_kernel,
sizeof bootinfo.booted_kernel));
/* booted dev not provided in bootinfo */
init_prom_interface((struct rpb *)
ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
sizeof bootinfo.booted_dev);
break;
}
default:
bootinfo_msg = "unknown bootinfo version";
goto nobootinfo;
}
} else {
bootinfo_msg = "boot program did not pass bootinfo";
nobootinfo:
bootinfo.ssym = (u_long)_end;
bootinfo.esym = (u_long)_end;
bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
init_prom_interface((struct rpb *)HWRPB_ADDR);
prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
sizeof bootinfo.boot_flags);
prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
sizeof bootinfo.booted_kernel);
prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
sizeof bootinfo.booted_dev);
}
/*
* Initialize the kernel's mapping of the RPB. It's needed for
* lots of things.
*/
hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
#if defined(DEC_3000_300) || defined(DEC_3000_500)
if (hwrpb->rpb_type == ST_DEC_3000_300 ||
hwrpb->rpb_type == ST_DEC_3000_500) {
prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
sizeof(dec_3000_scsiid));
prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
sizeof(dec_3000_scsifast));
}
#endif
/*
* Remember how many cycles there are per microsecond,
* so that we can use delay(). Round up, for safety.
*/
cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
/*
* Initialize the (temporary) bootstrap console interface, so
* we can use printf until the VM system starts being setup.
* The real console is initialized before then.
*/
init_bootstrap_console();
/* OUTPUT NOW ALLOWED */
/* delayed from above */
if (bootinfo_msg)
printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
bootinfo_msg, bim, bip, biv);
/* Initialize the trap vectors on the primary processor. */
trap_init();
/*
* Find out this system's page size, and initialize
* PAGE_SIZE-dependent variables.
*/
if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
panic("page size %lu != %d?!", hwrpb->rpb_page_size,
ALPHA_PGBYTES);
uvmexp.pagesize = hwrpb->rpb_page_size;
uvm_setpagesize();
/*
* Find out what hardware we're on, and do basic initialization.
*/
cputype = hwrpb->rpb_type;
if (cputype < 0) {
/*
* At least some white-box systems have SRM which
* reports a systype that's the negative of their
* blue-box counterpart.
*/
cputype = -cputype;
}
c = platform_lookup(cputype);
if (c == NULL) {
platform_not_supported();
/* NOTREACHED */
}
(*c->init)();
strcpy(cpu_model, platform.model);
/*
* Initialize the real console, so that the bootstrap console is
* no longer necessary.
*/
(*platform.cons_init)();
#ifdef DIAGNOSTIC
/* Paranoid sanity checking */
/* We should always be running on the primary. */
assert(hwrpb->rpb_primary_cpu_id == cpu_id);
/*
* On single-CPU systypes, the primary should always be CPU 0,
* except on Alpha 8200 systems where the CPU id is related
* to the VID, which is related to the Turbo Laser node id.
*/
if (cputype != ST_DEC_21000)
assert(hwrpb->rpb_primary_cpu_id == 0);
#endif
/* NO MORE FIRMWARE ACCESS ALLOWED */
#ifdef _PMAP_MAY_USE_PROM_CONSOLE
/*
* XXX (unless _PMAP_MAY_USE_PROM_CONSOLE is defined and
* XXX pmap_uses_prom_console() evaluates to non-zero.)
*/
#endif
/*
* Find the beginning and end of the kernel (and leave a
* bit of space before the beginning for the bootstrap
* stack).
*/
kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
#if NKSYMS || defined(DDB) || defined(LKM)
ksym_start = (void *)bootinfo.ssym;
ksym_end = (void *)bootinfo.esym;
kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
#else
kernend = (vaddr_t)round_page((vaddr_t)_end);
#endif
kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
/*
* Find out how much memory is available, by looking at
* the memory cluster descriptors. This also tries to do
* its best to detect things things that have never been seen
* before...
*/
mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
/* MDDT SANITY CHECKING */
mddtweird = 0;
if (mddtp->mddt_cluster_cnt < 2) {
mddtweird = 1;
printf("WARNING: weird number of mem clusters: %lu\n",
mddtp->mddt_cluster_cnt);
}
#if 0
printf("Memory cluster count: %d\n", mddtp->mddt_cluster_cnt);
#endif
for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
memc = &mddtp->mddt_clusters[i];
#if 0
printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
#endif
totalphysmem += memc->mddt_pg_cnt;
if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
mem_clusters[mem_cluster_cnt].start =
ptoa(memc->mddt_pfn);
mem_clusters[mem_cluster_cnt].size =
ptoa(memc->mddt_pg_cnt);
if (memc->mddt_usage & MDDT_mbz ||
memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
memc->mddt_usage & MDDT_PALCODE)
mem_clusters[mem_cluster_cnt].size |=
PROT_READ;
else
mem_clusters[mem_cluster_cnt].size |=
PROT_READ | PROT_WRITE | PROT_EXEC;
mem_cluster_cnt++;
}
if (memc->mddt_usage & MDDT_mbz) {
mddtweird = 1;
printf("WARNING: mem cluster %d has weird "
"usage 0x%lx\n", i, memc->mddt_usage);
unknownmem += memc->mddt_pg_cnt;
continue;
}
if (memc->mddt_usage & MDDT_NONVOLATILE) {
/* XXX should handle these... */
printf("WARNING: skipping non-volatile mem "
"cluster %d\n", i);
unusedmem += memc->mddt_pg_cnt;
continue;
}
if (memc->mddt_usage & MDDT_PALCODE) {
resvmem += memc->mddt_pg_cnt;
continue;
}
/*
* We have a memory cluster available for system
* software use. We must determine if this cluster
* holds the kernel.
*/
#ifdef _PMAP_MAY_USE_PROM_CONSOLE
/*
* XXX If the kernel uses the PROM console, we only use the
* XXX memory after the kernel in the first system segment,
* XXX to avoid clobbering prom mapping, data, etc.
*/
if (!pmap_uses_prom_console() || physmem == 0) {
#endif /* _PMAP_MAY_USE_PROM_CONSOLE */
physmem += memc->mddt_pg_cnt;
pfn0 = memc->mddt_pfn;
pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
/*
* Must compute the location of the kernel
* within the segment.
*/
#if 0
printf("Cluster %d contains kernel\n", i);
#endif
#ifdef _PMAP_MAY_USE_PROM_CONSOLE
if (!pmap_uses_prom_console()) {
#endif /* _PMAP_MAY_USE_PROM_CONSOLE */
if (pfn0 < kernstartpfn) {
/*
* There is a chunk before the kernel.
*/
#if 0
printf("Loading chunk before kernel: "
"0x%lx / 0x%lx\n", pfn0, kernstartpfn);
#endif
uvm_page_physload(pfn0, kernstartpfn,
pfn0, kernstartpfn, VM_FREELIST_DEFAULT);
}
#ifdef _PMAP_MAY_USE_PROM_CONSOLE
}
#endif /* _PMAP_MAY_USE_PROM_CONSOLE */
if (kernendpfn < pfn1) {
/*
* There is a chunk after the kernel.
*/
#if 0
printf("Loading chunk after kernel: "
"0x%lx / 0x%lx\n", kernendpfn, pfn1);
#endif
uvm_page_physload(kernendpfn, pfn1,
kernendpfn, pfn1, VM_FREELIST_DEFAULT);
}
} else {
/*
* Just load this cluster as one chunk.
*/
#if 0
printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
pfn0, pfn1);
#endif
uvm_page_physload(pfn0, pfn1, pfn0, pfn1,
VM_FREELIST_DEFAULT);
}
#ifdef _PMAP_MAY_USE_PROM_CONSOLE
}
#endif /* _PMAP_MAY_USE_PROM_CONSOLE */
}
/*
* Dump out the MDDT if it looks odd...
*/
if (mddtweird) {
printf("\n");
printf("complete memory cluster information:\n");
for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
printf("mddt %d:\n", i);
printf("\tpfn %lx\n",
mddtp->mddt_clusters[i].mddt_pfn);
printf("\tcnt %lx\n",
mddtp->mddt_clusters[i].mddt_pg_cnt);
printf("\ttest %lx\n",
mddtp->mddt_clusters[i].mddt_pg_test);
printf("\tbva %lx\n",
mddtp->mddt_clusters[i].mddt_v_bitaddr);
printf("\tbpa %lx\n",
mddtp->mddt_clusters[i].mddt_p_bitaddr);
printf("\tbcksum %lx\n",
mddtp->mddt_clusters[i].mddt_bit_cksum);
printf("\tusage %lx\n",
mddtp->mddt_clusters[i].mddt_usage);
}
printf("\n");
}
if (totalphysmem == 0)
panic("can't happen: system seems to have no memory!");
maxmem = physmem;
#if 0
printf("totalphysmem = %d\n", totalphysmem);
printf("physmem = %d\n", physmem);
printf("resvmem = %d\n", resvmem);
printf("unusedmem = %d\n", unusedmem);
printf("unknownmem = %d\n", unknownmem);
#endif
/*
* Initialize error message buffer (at end of core).
*/
{
vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
vsize_t reqsz = sz;
vps = &vm_physmem[vm_nphysseg - 1];
/* shrink so that it'll fit in the last segment */
if ((vps->avail_end - vps->avail_start) < atop(sz))
sz = ptoa(vps->avail_end - vps->avail_start);
vps->end -= atop(sz);
vps->avail_end -= atop(sz);
msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(vps->end));
initmsgbuf(msgbufaddr, sz);
/* Remove the last segment if it now has no pages. */
if (vps->start == vps->end)
vm_nphysseg--;
/* warn if the message buffer had to be shrunk */
if (sz != reqsz)
printf("WARNING: %ld bytes not available for msgbuf "
"in last cluster (%ld used)\n", reqsz, sz);
}
/*
* NOTE: It is safe to use uvm_pageboot_alloc() before
* pmap_bootstrap() because our pmap_virtual_space()
* returns compile-time constants.
*/
/*
* Init mapping for u page(s) for proc 0
*/
lwp0.l_addr = proc0paddr =
(struct user *)uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
/*
* Initialize the virtual memory system, and set the
* page table base register in proc 0's PCB.
*/
pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
/*
* Initialize the rest of proc 0's PCB, and cache its physical
* address.
*/
lwp0.l_md.md_pcbpaddr =
(struct pcb *)ALPHA_K0SEG_TO_PHYS((vaddr_t)&proc0paddr->u_pcb);
/*
* Set the kernel sp, reserving space for an (empty) trapframe,
* and make proc0's trapframe pointer point to it for sanity.
*/
proc0paddr->u_pcb.pcb_hw.apcb_ksp =
(u_int64_t)proc0paddr + USPACE - sizeof(struct trapframe);
lwp0.l_md.md_tf =
(struct trapframe *)proc0paddr->u_pcb.pcb_hw.apcb_ksp;
simple_lock_init(&proc0paddr->u_pcb.pcb_fpcpu_slock);
/* Indicate that proc0 has a CPU. */
lwp0.l_cpu = ci;
/*
* Look at arguments passed to us and compute boothowto.
*/
boothowto = RB_SINGLE;
#ifdef KADB
boothowto |= RB_KDB;
#endif
for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
/*
* Note that we'd really like to differentiate case here,
* but the Alpha AXP Architecture Reference Manual
* says that we shouldn't.
*/
switch (*p) {
case 'a': /* autoboot */
case 'A':
boothowto &= ~RB_SINGLE;
break;
#ifdef DEBUG
case 'c': /* crash dump immediately after autoconfig */
case 'C':
boothowto |= RB_DUMP;
break;
#endif
#if defined(KGDB) || defined(DDB)
case 'd': /* break into the kernel debugger ASAP */
case 'D':
boothowto |= RB_KDB;
break;
#endif
case 'h': /* always halt, never reboot */
case 'H':
boothowto |= RB_HALT;
break;
#if 0
case 'm': /* mini root present in memory */
case 'M':
boothowto |= RB_MINIROOT;
break;
#endif
case 'n': /* askname */
case 'N':
boothowto |= RB_ASKNAME;
break;
case 's': /* single-user (default, supported for sanity) */
case 'S':
boothowto |= RB_SINGLE;
break;
case 'q': /* quiet boot */
case 'Q':
boothowto |= AB_QUIET;
break;
case 'v': /* verbose boot */
case 'V':
boothowto |= AB_VERBOSE;
break;
case '-':
/*
* Just ignore this. It's not required, but it's
* common for it to be passed regardless.
*/
break;
default:
printf("Unrecognized boot flag '%c'.\n", *p);
break;
}
}
/*
* Perform any initial kernel patches based on the running system.
* We may perform more later if we attach additional CPUs.
*/
alpha_patch(false);
/*
* Figure out the number of CPUs in the box, from RPB fields.
* Really. We mean it.
*/
for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
struct pcs *pcsp;
pcsp = LOCATE_PCS(hwrpb, i);
if ((pcsp->pcs_flags & PCS_PP) != 0)
ncpus++;
}
/*
* Initialize debuggers, and break into them if appropriate.
*/
#if NKSYMS || defined(DDB) || defined(LKM)
ksyms_init((int)((u_int64_t)ksym_end - (u_int64_t)ksym_start),
ksym_start, ksym_end);
#endif
if (boothowto & RB_KDB) {
#if defined(KGDB)
kgdb_debug_init = 1;
kgdb_connect(1);
#elif defined(DDB)
Debugger();
#endif
}
#ifdef DIAGNOSTIC
/*
* Check our clock frequency, from RPB fields.
*/
if ((hwrpb->rpb_intr_freq >> 12) != 1024)
printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
hwrpb->rpb_intr_freq, hz);
#endif
}
void
consinit()
{
/*
* Everything related to console initialization is done
* in alpha_init().
*/
#if defined(DIAGNOSTIC) && defined(_PMAP_MAY_USE_PROM_CONSOLE)
printf("consinit: %susing prom console\n",
pmap_uses_prom_console() ? "" : "not ");
#endif
}
void
cpu_startup()
{
vaddr_t minaddr, maxaddr;
char pbuf[9];
#if defined(DEBUG)
extern int pmapdebug;
int opmapdebug = pmapdebug;
pmapdebug = 0;
#endif
/*
* Good {morning,afternoon,evening,night}.
*/
printf("%s%s", copyright, version);
identifycpu();
format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
printf("total memory = %s\n", pbuf);
format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
printf("(%s reserved for PROM, ", pbuf);
format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
printf("%s used by NetBSD)\n", pbuf);
if (unusedmem) {
format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
printf("WARNING: unused memory = %s\n", pbuf);
}
if (unknownmem) {
format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
printf("WARNING: %s of memory with unknown purpose\n", pbuf);
}
minaddr = 0;
/*
* Allocate a submap for physio
*/
phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
VM_PHYS_SIZE, 0, false, NULL);
/*
* No need to allocate an mbuf cluster submap. Mbuf clusters
* are allocated via the pool allocator, and we use K0SEG to
* map those pages.
*/
#if defined(DEBUG)
pmapdebug = opmapdebug;
#endif
format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
printf("avail memory = %s\n", pbuf);
#if 0
{
extern u_long pmap_pages_stolen;
format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
printf("stolen memory for VM structures = %s\n", pbuf);
}
#endif
/*
* Set up the HWPCB so that it's safe to configure secondary
* CPUs.
*/
hwrpb_primary_init();
}
/*
* Retrieve the platform name from the DSR.
*/
const char *
alpha_dsr_sysname()
{
struct dsrdb *dsr;
const char *sysname;
/*
* DSR does not exist on early HWRPB versions.
*/
if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
return (NULL);
dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
sizeof(u_int64_t)));
return (sysname);
}
/*
* Lookup the system specified system variation in the provided table,
* returning the model string on match.
*/
const char *
alpha_variation_name(variation, avtp)
u_int64_t variation;
const struct alpha_variation_table *avtp;
{
int i;
for (i = 0; avtp[i].avt_model != NULL; i++)
if (avtp[i].avt_variation == variation)
return (avtp[i].avt_model);
return (NULL);
}
/*
* Generate a default platform name based for unknown system variations.
*/
const char *
alpha_unknown_sysname()
{
static char s[128]; /* safe size */
sprintf(s, "%s family, unknown model variation 0x%lx",
platform.family, hwrpb->rpb_variation & SV_ST_MASK);
return ((const char *)s);
}
void
identifycpu()
{
char *s;
int i;
/*
* print out CPU identification information.
*/
printf("%s", cpu_model);
for(s = cpu_model; *s; ++s)
if(strncasecmp(s, "MHz", 3) == 0)
goto skipMHz;
printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
skipMHz:
printf(", s/n ");
for (i = 0; i < 10; i++)
printf("%c", hwrpb->rpb_ssn[i]);
printf("\n");
printf("%ld byte page size, %d processor%s.\n",
hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
#if 0
/* this isn't defined for any systems that we run on? */
printf("serial number 0x%lx 0x%lx\n",
((long *)hwrpb->rpb_ssn)[0], ((long *)hwrpb->rpb_ssn)[1]);
/* and these aren't particularly useful! */
printf("variation: 0x%lx, revision 0x%lx\n",
hwrpb->rpb_variation, *(long *)hwrpb->rpb_revision);
#endif
}
int waittime = -1;
struct pcb dumppcb;
void
cpu_reboot(howto, bootstr)
int howto;
char *bootstr;
{
#if defined(MULTIPROCESSOR)
u_long cpu_id = cpu_number();
u_long wait_mask;
int i;
#endif
/* If "always halt" was specified as a boot flag, obey. */
if ((boothowto & RB_HALT) != 0)
howto |= RB_HALT;
boothowto = howto;
/* If system is cold, just halt. */
if (cold) {
boothowto |= RB_HALT;
goto haltsys;
}
if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
waittime = 0;
vfs_shutdown();
/*
* If we've been adjusting the clock, the todr
* will be out of synch; adjust it now.
*/
resettodr();
}
/* Disable interrupts. */
splhigh();
#if defined(MULTIPROCESSOR)
/*
* Halt all other CPUs. If we're not the primary, the
* primary will spin, waiting for us to halt.
*/
cpu_id = cpu_number(); /* may have changed cpu */
wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
alpha_broadcast_ipi(ALPHA_IPI_HALT);
/* Ensure any CPUs paused by DDB resume execution so they can halt */
cpus_paused = 0;
for (i = 0; i < 10000; i++) {
alpha_mb();
if (cpus_running == wait_mask)
break;
delay(1000);
}
alpha_mb();
if (cpus_running != wait_mask)
printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
cpus_running);
#endif /* MULTIPROCESSOR */
/* If rebooting and a dump is requested do it. */
#if 0
if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
#else
if (boothowto & RB_DUMP)
#endif
dumpsys();
haltsys:
/* run any shutdown hooks */
doshutdownhooks();
#ifdef BOOTKEY
printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
cnpollc(1); /* for proper keyboard command handling */
cngetc();
cnpollc(0);
printf("\n");
#endif
/* Finally, powerdown/halt/reboot the system. */
if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
platform.powerdown != NULL) {
(*platform.powerdown)();
printf("WARNING: powerdown failed!\n");
}
printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
#if defined(MULTIPROCESSOR)
if (cpu_id != hwrpb->rpb_primary_cpu_id)
cpu_halt();
else
#endif
prom_halt(boothowto & RB_HALT);
/*NOTREACHED*/
}
/*
* These variables are needed by /sbin/savecore
*/
u_int32_t dumpmag = 0x8fca0101; /* magic number */
int dumpsize = 0; /* pages */
long dumplo = 0; /* blocks */
/*
* cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
*/
int
cpu_dumpsize()
{
int size;
size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
if (roundup(size, dbtob(1)) != dbtob(1))
return -1;
return (1);
}
/*
* cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
*/
u_long
cpu_dump_mempagecnt()
{
u_long i, n;
n = 0;
for (i = 0; i < mem_cluster_cnt; i++)
n += atop(mem_clusters[i].size);
return (n);
}
/*
* cpu_dump: dump machine-dependent kernel core dump headers.
*/
int
cpu_dump()
{
int (*dump) __P((dev_t, daddr_t, void *, size_t));
char buf[dbtob(1)];
kcore_seg_t *segp;
cpu_kcore_hdr_t *cpuhdrp;
phys_ram_seg_t *memsegp;
const struct bdevsw *bdev;
int i;
bdev = bdevsw_lookup(dumpdev);
if (bdev == NULL)
return (ENXIO);
dump = bdev->d_dump;
memset(buf, 0, sizeof buf);
segp = (kcore_seg_t *)buf;
cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
ALIGN(sizeof(*cpuhdrp))];
/*
* Generate a segment header.
*/
CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
/*
* Add the machine-dependent header info.
*/
cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
cpuhdrp->page_size = PAGE_SIZE;
cpuhdrp->nmemsegs = mem_cluster_cnt;
/*
* Fill in the memory segment descriptors.
*/
for (i = 0; i < mem_cluster_cnt; i++) {
memsegp[i].start = mem_clusters[i].start;
memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
}
return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
}
/*
* This is called by main to set dumplo and dumpsize.
* Dumps always skip the first PAGE_SIZE of disk space
* in case there might be a disk label stored there.
* If there is extra space, put dump at the end to
* reduce the chance that swapping trashes it.
*/
void
cpu_dumpconf()
{
const struct bdevsw *bdev;
int nblks, dumpblks; /* size of dump area */
if (dumpdev == NODEV)
goto bad;
bdev = bdevsw_lookup(dumpdev);
if (bdev == NULL) {
dumpdev = NODEV;
goto bad;
}
if (bdev->d_psize == NULL)
goto bad;
nblks = (*bdev->d_psize)(dumpdev);
if (nblks <= ctod(1))
goto bad;
dumpblks = cpu_dumpsize();
if (dumpblks < 0)
goto bad;
dumpblks += ctod(cpu_dump_mempagecnt());
/* If dump won't fit (incl. room for possible label), punt. */
if (dumpblks > (nblks - ctod(1)))
goto bad;
/* Put dump at end of partition */
dumplo = nblks - dumpblks;
/* dumpsize is in page units, and doesn't include headers. */
dumpsize = cpu_dump_mempagecnt();
return;
bad:
dumpsize = 0;
return;
}
/*
* Dump the kernel's image to the swap partition.
*/
#define BYTES_PER_DUMP PAGE_SIZE
void
dumpsys()
{
const struct bdevsw *bdev;
u_long totalbytesleft, bytes, i, n, memcl;
u_long maddr;
int psize;
daddr_t blkno;
int (*dump) __P((dev_t, daddr_t, void *, size_t));
int error;
/* Save registers. */
savectx(&dumppcb);
if (dumpdev == NODEV)
return;
bdev = bdevsw_lookup(dumpdev);
if (bdev == NULL || bdev->d_psize == NULL)
return;
/*
* For dumps during autoconfiguration,
* if dump device has already configured...
*/
if (dumpsize == 0)
cpu_dumpconf();
if (dumplo <= 0) {
printf("\ndump to dev %u,%u not possible\n", major(dumpdev),
minor(dumpdev));
return;
}
printf("\ndumping to dev %u,%u offset %ld\n", major(dumpdev),
minor(dumpdev), dumplo);
psize = (*bdev->d_psize)(dumpdev);
printf("dump ");
if (psize == -1) {
printf("area unavailable\n");
return;
}
/* XXX should purge all outstanding keystrokes. */
if ((error = cpu_dump()) != 0)
goto err;
totalbytesleft = ptoa(cpu_dump_mempagecnt());
blkno = dumplo + cpu_dumpsize();
dump = bdev->d_dump;
error = 0;
for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
maddr = mem_clusters[memcl].start;
bytes = mem_clusters[memcl].size & ~PAGE_MASK;
for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
/* Print out how many MBs we to go. */
if ((totalbytesleft % (1024*1024)) == 0)
printf_nolog("%ld ",
totalbytesleft / (1024 * 1024));
/* Limit size for next transfer. */
n = bytes - i;
if (n > BYTES_PER_DUMP)
n = BYTES_PER_DUMP;
error = (*dump)(dumpdev, blkno,
(void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
if (error)
goto err;
maddr += n;
blkno += btodb(n); /* XXX? */
/* XXX should look for keystrokes, to cancel. */
}
}
err:
switch (error) {
case ENXIO:
printf("device bad\n");
break;
case EFAULT:
printf("device not ready\n");
break;
case EINVAL:
printf("area improper\n");
break;
case EIO:
printf("i/o error\n");
break;
case EINTR:
printf("aborted from console\n");
break;
case 0:
printf("succeeded\n");
break;
default:
printf("error %d\n", error);
break;
}
printf("\n\n");
delay(1000);
}
void
frametoreg(framep, regp)
const struct trapframe *framep;
struct reg *regp;
{
regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
/* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
regp->r_regs[R_ZERO] = 0;
}
void
regtoframe(regp, framep)
const struct reg *regp;
struct trapframe *framep;
{
framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
/* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
/* ??? = regp->r_regs[R_ZERO]; */
}
void
printregs(regp)
struct reg *regp;
{
int i;
for (i = 0; i < 32; i++)
printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
i & 1 ? "\n" : "\t");
}
void
regdump(framep)
struct trapframe *framep;
{
struct reg reg;
frametoreg(framep, ®);
reg.r_regs[R_SP] = alpha_pal_rdusp();
printf("REGISTERS:\n");
printregs(®);
}
void *
getframe(const struct lwp *l, int sig, int *onstack)
{
void *frame;
/* Do we need to jump onto the signal stack? */
*onstack =
(l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
(SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
if (*onstack)
frame = (void *)((char *)l->l_sigstk.ss_sp +
l->l_sigstk.ss_size);
else
frame = (void *)(alpha_pal_rdusp());
return (frame);
}
void
buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
{
struct trapframe *tf = l->l_md.md_tf;
tf->tf_regs[FRAME_RA] = (u_int64_t)tramp;
tf->tf_regs[FRAME_PC] = (u_int64_t)catcher;
tf->tf_regs[FRAME_T12] = (u_int64_t)catcher;
alpha_pal_wrusp((unsigned long)fp);
}
/*
* Send an interrupt to process, new style
*/
void
sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
{
struct lwp *l = curlwp;
struct proc *p = l->l_proc;
struct sigacts *ps = p->p_sigacts;
int onstack, sig = ksi->ksi_signo, error;
struct sigframe_siginfo *fp, frame;
struct trapframe *tf;
sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
tf = l->l_md.md_tf;
/* Allocate space for the signal handler context. */
fp--;
/* Build stack frame for signal trampoline. */
switch (ps->sa_sigdesc[sig].sd_vers) {
case 0: /* handled by sendsig_sigcontext */
case 1: /* handled by sendsig_sigcontext */
default: /* unknown version */
printf("nsendsig: bad version %d\n",
ps->sa_sigdesc[sig].sd_vers);
sigexit(l, SIGILL);
case 2:
break;
}
#ifdef DEBUG
if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
sig, &onstack, fp);
#endif
/* Build stack frame for signal trampoline. */
frame.sf_si._info = ksi->ksi_info;
frame.sf_uc.uc_flags = _UC_SIGMASK;
frame.sf_uc.uc_sigmask = *mask;
frame.sf_uc.uc_link = l->l_ctxlink;
memset(&frame.sf_uc.uc_stack, 0, sizeof(frame.sf_uc.uc_stack));
sendsig_reset(l, sig);
mutex_exit(p->p_lock);
cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
error = copyout(&frame, fp, sizeof(frame));
mutex_enter(p->p_lock);
if (error != 0) {
/*
* Process has trashed its stack; give it an illegal
* instruction to halt it in its tracks.
*/
#ifdef DEBUG
if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
p->p_pid, sig);
#endif
sigexit(l, SIGILL);
/* NOTREACHED */
}
#ifdef DEBUG
if (sigdebug & SDB_FOLLOW)
printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
p->p_pid, sig, fp, ksi->ksi_code);
#endif
/*
* Set up the registers to directly invoke the signal handler. The
* signal trampoline is then used to return from the signal. Note
* the trampoline version numbers are coordinated with machine-
* dependent code in libc.
*/
tf->tf_regs[FRAME_A0] = sig;
tf->tf_regs[FRAME_A1] = (u_int64_t)&fp->sf_si;
tf->tf_regs[FRAME_A2] = (u_int64_t)&fp->sf_uc;
buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
/* Remember that we're now on the signal stack. */
if (onstack)
l->l_sigstk.ss_flags |= SS_ONSTACK;
#ifdef DEBUG
if (sigdebug & SDB_FOLLOW)
printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
printf("sendsig_siginfo(%d): sig %d returns\n",
p->p_pid, sig);
#endif
}
void
sendsig(const ksiginfo_t *ksi, const sigset_t *mask)
{
#ifdef COMPAT_16
if (curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers < 2) {
sendsig_sigcontext(ksi, mask);
} else {
#endif
#ifdef DEBUG
if (sigdebug & SDB_FOLLOW)
printf("sendsig: sendsig called: sig %d vers %d\n",
ksi->ksi_signo,
curproc->p_sigacts->sa_sigdesc[ksi->ksi_signo].sd_vers);
#endif
sendsig_siginfo(ksi, mask);
#ifdef COMPAT_16
}
#endif
}
void
cpu_upcall(struct lwp *l, int type, int nevents, int ninterrupted, void *sas, void *ap, void *sp, sa_upcall_t upcall)
{
struct trapframe *tf;
tf = l->l_md.md_tf;
tf->tf_regs[FRAME_PC] = (u_int64_t)upcall;
tf->tf_regs[FRAME_RA] = 0;
tf->tf_regs[FRAME_A0] = type;
tf->tf_regs[FRAME_A1] = (u_int64_t)sas;
tf->tf_regs[FRAME_A2] = nevents;
tf->tf_regs[FRAME_A3] = ninterrupted;
tf->tf_regs[FRAME_A4] = (u_int64_t)ap;
tf->tf_regs[FRAME_T12] = (u_int64_t)upcall; /* t12 is pv */
alpha_pal_wrusp((unsigned long)sp);
}
/*
* machine dependent system variables.
*/
SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "console_device", NULL,
sysctl_consdev, 0, NULL, sizeof(dev_t),
CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "root_device", NULL,
sysctl_root_device, 0, NULL, 0,
CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "unaligned_print", NULL,
NULL, 0, &alpha_unaligned_print, 0,
CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "unaligned_fix", NULL,
NULL, 0, &alpha_unaligned_fix, 0,
CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "unaligned_sigbus", NULL,
NULL, 0, &alpha_unaligned_sigbus, 0,
CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "booted_kernel", NULL,
NULL, 0, bootinfo.booted_kernel, 0,
CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "fp_sync_complete", NULL,
NULL, 0, &alpha_fp_sync_complete, 0,
CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
}
/*
* Set registers on exec.
*/
void
setregs(l, pack, stack)
register struct lwp *l;
struct exec_package *pack;
u_long stack;
{
struct trapframe *tfp = l->l_md.md_tf;
#ifdef DEBUG
int i;
#endif
#ifdef DEBUG
/*
* Crash and dump, if the user requested it.
*/
if (boothowto & RB_DUMP)
panic("crash requested by boot flags");
#endif
#ifdef DEBUG
for (i = 0; i < FRAME_SIZE; i++)
tfp->tf_regs[i] = 0xbabefacedeadbeef;
#else
memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
#endif
memset(&l->l_addr->u_pcb.pcb_fp, 0, sizeof l->l_addr->u_pcb.pcb_fp);
alpha_pal_wrusp(stack);
tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
tfp->tf_regs[FRAME_A3] = (u_int64_t)l->l_proc->p_psstr; /* a3 = ps_strings */
tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
l->l_md.md_flags &= ~MDP_FPUSED;
if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
l->l_md.md_flags &= ~MDP_FP_C;
l->l_addr->u_pcb.pcb_fp.fpr_cr = FPCR_DYN(FP_RN);
}
if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
fpusave_proc(l, 0);
}
/*
* Release the FPU.
*/
void
fpusave_cpu(struct cpu_info *ci, int save)
{
struct lwp *l;
#if defined(MULTIPROCESSOR)
int s;
#endif
KDASSERT(ci == curcpu());
#if defined(MULTIPROCESSOR)
s = splhigh(); /* block IPIs for the duration */
atomic_or_ulong(&ci->ci_flags, CPUF_FPUSAVE);
#endif
l = ci->ci_fpcurlwp;
if (l == NULL)
goto out;
if (save) {
alpha_pal_wrfen(1);
savefpstate(&l->l_addr->u_pcb.pcb_fp);
}
alpha_pal_wrfen(0);
FPCPU_LOCK(&l->l_addr->u_pcb);
l->l_addr->u_pcb.pcb_fpcpu = NULL;
ci->ci_fpcurlwp = NULL;
FPCPU_UNLOCK(&l->l_addr->u_pcb);
out:
#if defined(MULTIPROCESSOR)
atomic_and_ulong(&ci->ci_flags, ~CPUF_FPUSAVE);
splx(s);
#endif
return;
}
/*
* Synchronize FP state for this process.
*/
void
fpusave_proc(struct lwp *l, int save)
{
struct cpu_info *ci = curcpu();
struct cpu_info *oci;
#if defined(MULTIPROCESSOR)
u_long ipi = save ? ALPHA_IPI_SYNCH_FPU : ALPHA_IPI_DISCARD_FPU;
int s, spincount;
#endif
KDASSERT(l->l_addr != NULL);
#if defined(MULTIPROCESSOR)
s = splhigh(); /* block IPIs for the duration */
#endif
FPCPU_LOCK(&l->l_addr->u_pcb);
oci = l->l_addr->u_pcb.pcb_fpcpu;
if (oci == NULL) {
FPCPU_UNLOCK(&l->l_addr->u_pcb);
#if defined(MULTIPROCESSOR)
splx(s);
#endif
return;
}
#if defined(MULTIPROCESSOR)
if (oci == ci) {
KASSERT(ci->ci_fpcurlwp == l);
FPCPU_UNLOCK(&l->l_addr->u_pcb);
splx(s);
fpusave_cpu(ci, save);
return;
}
KASSERT(oci->ci_fpcurlwp == l);
alpha_send_ipi(oci->ci_cpuid, ipi);
FPCPU_UNLOCK(&l->l_addr->u_pcb);
spincount = 0;
while (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
spincount++;
delay(1000); /* XXX */
if (spincount > 10000)
panic("fpsave ipi didn't");
}
#else
KASSERT(ci->ci_fpcurlwp == l);
FPCPU_UNLOCK(&l->l_addr->u_pcb);
fpusave_cpu(ci, save);
#endif /* MULTIPROCESSOR */
}
/*
* Wait "n" microseconds.
*/
void
delay(n)
unsigned long n;
{
unsigned long pcc0, pcc1, curcycle, cycles, usec;
if (n == 0)
return;
pcc0 = alpha_rpcc() & 0xffffffffUL;
cycles = 0;
usec = 0;
while (usec <= n) {
/*
* Get the next CPU cycle count- assumes that we cannot
* have had more than one 32 bit overflow.
*/
pcc1 = alpha_rpcc() & 0xffffffffUL;
if (pcc1 < pcc0)
curcycle = (pcc1 + 0x100000000UL) - pcc0;
else
curcycle = pcc1 - pcc0;
/*
* We now have the number of processor cycles since we
* last checked. Add the current cycle count to the
* running total. If it's over cycles_per_usec, increment
* the usec counter.
*/
cycles += curcycle;
while (cycles > cycles_per_usec) {
usec++;
cycles -= cycles_per_usec;
}
pcc0 = pcc1;
}
}
#ifdef EXEC_ECOFF
void
cpu_exec_ecoff_setregs(l, epp, stack)
struct lwp *l;
struct exec_package *epp;
u_long stack;
{
struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
}
/*
* cpu_exec_ecoff_hook():
* cpu-dependent ECOFF format hook for execve().
*
* Do any machine-dependent diddling of the exec package when doing ECOFF.
*
*/
int
cpu_exec_ecoff_probe(l, epp)
struct lwp *l;
struct exec_package *epp;
{
struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
int error;
if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
error = 0;
else
error = ENOEXEC;
return (error);
}
#endif /* EXEC_ECOFF */
int
alpha_pa_access(pa)
u_long pa;
{
int i;
for (i = 0; i < mem_cluster_cnt; i++) {
if (pa < mem_clusters[i].start)
continue;
if ((pa - mem_clusters[i].start) >=
(mem_clusters[i].size & ~PAGE_MASK))
continue;
return (mem_clusters[i].size & PAGE_MASK); /* prot */
}
/*
* Address is not a memory address. If we're secure, disallow
* access. Otherwise, grant read/write.
*/
if (kauth_authorize_machdep(kauth_cred_get(),
KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL) != 0)
return (PROT_NONE);
else
return (PROT_READ | PROT_WRITE);
}
/* XXX XXX BEGIN XXX XXX */
paddr_t alpha_XXX_dmamap_or; /* XXX */
/* XXX */
paddr_t /* XXX */
alpha_XXX_dmamap(v) /* XXX */
vaddr_t v; /* XXX */
{ /* XXX */
/* XXX */
return (vtophys(v) | alpha_XXX_dmamap_or); /* XXX */
} /* XXX */
/* XXX XXX END XXX XXX */
char *
dot_conv(x)
unsigned long x;
{
int i;
char *xc;
static int next;
static char space[2][20];
xc = space[next ^= 1] + sizeof space[0];
*--xc = '\0';
for (i = 0;; ++i) {
if (i && (i & 3) == 0)
*--xc = '.';
*--xc = hexdigits[x & 0xf];
x >>= 4;
if (x == 0)
break;
}
return xc;
}
void
cpu_getmcontext(l, mcp, flags)
struct lwp *l;
mcontext_t *mcp;
unsigned int *flags;
{
struct trapframe *frame = l->l_md.md_tf;
__greg_t *gr = mcp->__gregs;
__greg_t ras_pc;
/* Save register context. */
frametoreg(frame, (struct reg *)gr);
/* XXX if there's a better, general way to get the USP of
* an LWP that might or might not be curlwp, I'd like to know
* about it.
*/
if (l == curlwp) {
gr[_REG_SP] = alpha_pal_rdusp();
gr[_REG_UNIQUE] = alpha_pal_rdunique();
} else {
gr[_REG_SP] = l->l_addr->u_pcb.pcb_hw.apcb_usp;
gr[_REG_UNIQUE] = l->l_addr->u_pcb.pcb_hw.apcb_unique;
}
gr[_REG_PC] = frame->tf_regs[FRAME_PC];
gr[_REG_PS] = frame->tf_regs[FRAME_PS];
if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
(void *) gr[_REG_PC])) != -1)
gr[_REG_PC] = ras_pc;
*flags |= _UC_CPU | _UC_UNIQUE;
/* Save floating point register context, if any, and copy it. */
if (l->l_md.md_flags & MDP_FPUSED) {
fpusave_proc(l, 1);
(void)memcpy(&mcp->__fpregs, &l->l_addr->u_pcb.pcb_fp,
sizeof (mcp->__fpregs));
mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
*flags |= _UC_FPU;
}
}
int
cpu_setmcontext(l, mcp, flags)
struct lwp *l;
const mcontext_t *mcp;
unsigned int flags;
{
struct trapframe *frame = l->l_md.md_tf;
const __greg_t *gr = mcp->__gregs;
/* Restore register context, if any. */
if (flags & _UC_CPU) {
/* Check for security violations first. */
if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
(gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
return (EINVAL);
regtoframe((const struct reg *)gr, l->l_md.md_tf);
if (l == curlwp)
alpha_pal_wrusp(gr[_REG_SP]);
else
l->l_addr->u_pcb.pcb_hw.apcb_usp = gr[_REG_SP];
frame->tf_regs[FRAME_PC] = gr[_REG_PC];
frame->tf_regs[FRAME_PS] = gr[_REG_PS];
}
if (flags & _UC_UNIQUE) {
if (l == curlwp)
alpha_pal_wrunique(gr[_REG_UNIQUE]);
else
l->l_addr->u_pcb.pcb_hw.apcb_unique = gr[_REG_UNIQUE];
}
/* Restore floating point register context, if any. */
if (flags & _UC_FPU) {
/* If we have an FP register context, get rid of it. */
if (l->l_addr->u_pcb.pcb_fpcpu != NULL)
fpusave_proc(l, 0);
(void)memcpy(&l->l_addr->u_pcb.pcb_fp, &mcp->__fpregs,
sizeof (l->l_addr->u_pcb.pcb_fp));
l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDP_FP_C;
l->l_md.md_flags |= MDP_FPUSED;
}
return (0);
}
/*
* Preempt the current process if in interrupt from user mode,
* or after the current trap/syscall if in system mode.
*/
void
cpu_need_resched(struct cpu_info *ci, int flags)
{
#if defined(MULTIPROCESSOR)
bool immed = (flags & RESCHED_IMMED) != 0;
#endif /* defined(MULTIPROCESSOR) */
aston(ci->ci_data.cpu_onproc);
ci->ci_want_resched = 1;
if (ci->ci_data.cpu_onproc != ci->ci_data.cpu_idlelwp) {
#if defined(MULTIPROCESSOR)
if (immed && ci != curcpu()) {
alpha_send_ipi(ci->ci_cpuid, 0);
}
#endif /* defined(MULTIPROCESSOR) */
}
}