NetBSD-5.0.2/sys/arch/atari/vme/if_le_vme.c

Compare this file to the similar file:
Show the results in this format:

/*	$NetBSD: if_le_vme.c,v 1.24 2008/06/28 05:26:33 isaki Exp $	*/

/*-
 * Copyright (c) 1998 maximum entropy.  All rights reserved.
 * Copyright (c) 1997 Leo Weppelman.  All rights reserved.
 * Copyright (c) 1992, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Ralph Campbell and Rick Macklem.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
 */

/*-
 * Copyright (c) 1995 Charles M. Hannum.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Ralph Campbell and Rick Macklem.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)if_le.c	8.2 (Berkeley) 11/16/93
 */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_le_vme.c,v 1.24 2008/06/28 05:26:33 isaki Exp $");

#include "opt_inet.h"
#include "bpfilter.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/device.h>

#include <net/if.h>
#include <net/if_media.h>
#include <net/if_ether.h>

#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif

#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/iomap.h>
#include <machine/scu.h>

#include <atari/atari/device.h>
#include <atari/atari/intr.h>

#include <dev/ic/lancereg.h>
#include <dev/ic/lancevar.h>
#include <dev/ic/am7990reg.h>
#include <dev/ic/am7990var.h>

#include <atari/vme/vmevar.h>
#include <atari/vme/if_levar.h>

/*
 * All cards except BVME410 have 64KB RAM. However.... On the Riebl cards the
 * area between the offsets 0xee70-0xeec0 is used to store config data.
 */
struct le_addresses {
	u_long	reg_addr;
	u_long	mem_addr;
	int	irq;
	int	reg_size;
	int	mem_size;
	int	type_hint;
} lestd[] = {
	{ 0xfe00fff0, 0xfe010000, IRQUNK, 16, 64*1024,
				LE_OLD_RIEBL|LE_NEW_RIEBL }, /* Riebl	*/
	{ 0xffcffff0, 0xffcf0000,      5, 16, 64*1024,
				LE_PAM },		     /* PAM	*/
	{ 0xfecffff0, 0xfecf0000,      5, 16, 64*1024,
				LE_ROTHRON },		     /* Rhotron	*/
	{ 0xfeff4100, 0xfe000000,      4,  8, VMECF_MEMSIZ_DEFAULT,
				LE_BVME410 }		     /* BVME410 */
};

#define	NLESTD	__arraycount(lestd)

/*
 * Default mac for RIEBL cards without a (working) battery. The first 4 bytes
 * are the manufacturer id.
 */
static u_char riebl_def_mac[] = {
	0x00, 0x00, 0x36, 0x04, 0x00, 0x00
};

static int le_intr(struct le_softc *, int);
static void lepseudointr(struct le_softc *, void *);
static int le_vme_match(device_t, cfdata_t, void *);
static void le_vme_attach(device_t, device_t, void *);
static int probe_addresses(bus_space_tag_t *, bus_space_tag_t *,
			   bus_space_handle_t *, bus_space_handle_t *);
static void riebl_skip_reserved_area(struct lance_softc *);
static int nm93c06_read(bus_space_tag_t, bus_space_handle_t, int);
static int bvme410_probe(bus_space_tag_t, bus_space_handle_t);
static int bvme410_mem_size(bus_space_tag_t, u_long);
static void bvme410_copytobuf(struct lance_softc *, void *, int, int);
static void bvme410_zerobuf(struct lance_softc *, int, int);

CFATTACH_DECL_NEW(le_vme, sizeof(struct le_softc),
    le_vme_match, le_vme_attach, NULL, NULL);

#if defined(_KERNEL_OPT)
#include "opt_ddb.h"
#endif

#ifdef DDB
#define	integrate
#define hide
#else
#define	integrate	static inline
#define hide		static
#endif

hide void lewrcsr(struct lance_softc *, uint16_t, uint16_t);
hide uint16_t lerdcsr(struct lance_softc *, uint16_t);

hide void
lewrcsr(struct lance_softc *sc, uint16_t port, uint16_t val)
{
	struct le_softc		*lesc = (struct le_softc *)sc;
	int			s;

	s = splhigh();
	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP, val);
	splx(s);
}

hide uint16_t
lerdcsr(struct lance_softc *sc, uint16_t port)
{
	struct le_softc		*lesc = (struct le_softc *)sc;
	uint16_t		val;
	int			s;

	s = splhigh();
	bus_space_write_2(lesc->sc_iot, lesc->sc_ioh, LER_RAP, port);
	val = bus_space_read_2(lesc->sc_iot, lesc->sc_ioh, LER_RDP); 
	splx(s);

	return (val);
}

static int
le_vme_match(device_t parent, cfdata_t cfp, void *aux)
{
	struct vme_attach_args	*va = aux;
	int			i;
	bus_space_tag_t		iot;
	bus_space_tag_t		memt;
	bus_space_handle_t	ioh;
	bus_space_handle_t	memh;

	iot  = va->va_iot;
	memt = va->va_memt;

	for (i = 0; i < NLESTD; i++) {
		struct le_addresses	*le_ap = &lestd[i];
		int			found  = 0;

		if ((va->va_iobase != IOBASEUNK)
		     && (va->va_iobase != le_ap->reg_addr))
			continue;

		if ((va->va_maddr != MADDRUNK)
		     && (va->va_maddr != le_ap->mem_addr))
			continue;

		if ((le_ap->irq != IRQUNK) && (va->va_irq != le_ap->irq))
			continue;

		if (bus_space_map(iot, le_ap->reg_addr, le_ap->reg_size, 0, &ioh)) {
			aprint_error("leprobe: cannot map io-area\n");
			return (0);
		}
		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
			if (bvme410_probe(iot, ioh)) {
				bus_space_write_2(iot, ioh, BVME410_BAR, 0x1); /* XXX */
				le_ap->mem_size = bvme410_mem_size(memt, le_ap->mem_addr);
			}
		}
		if (le_ap->mem_size == VMECF_MEMSIZ_DEFAULT) {
			bus_space_unmap(iot, ioh, le_ap->reg_size);
			continue;
		}

		if (bus_space_map(memt, le_ap->mem_addr, le_ap->mem_size, 0, &memh)) {
			bus_space_unmap(iot, ioh, le_ap->reg_size);
			aprint_error("leprobe: cannot map memory-area\n");
			return (0);
		}
		found = probe_addresses(&iot, &memt, &ioh, &memh);
		bus_space_unmap(iot, ioh, le_ap->reg_size);
		bus_space_unmap(memt, memh, le_ap->mem_size);

		if (found) {
			va->va_iobase = le_ap->reg_addr;
			va->va_iosize = le_ap->reg_size;
			va->va_maddr  = le_ap->mem_addr;
			va->va_msize  = le_ap->mem_size;
			va->va_aux    = le_ap;
			if (va->va_irq == IRQUNK)
				va->va_irq = le_ap->irq;
			return 1;
		}
    }
    return (0);
}

static int
probe_addresses(bus_space_tag_t	*iot, bus_space_tag_t *memt,
    bus_space_handle_t *ioh, bus_space_handle_t *memh)
{

	/*
	 * Test accesibility of register and memory area
	 */
	if (!bus_space_peek_2(*iot, *ioh, LER_RDP))
		return 0;
	if (!bus_space_peek_1(*memt, *memh, 0))
		return 0;

	/*
	 * Test for writable memory
	 */
	bus_space_write_2(*memt, *memh, 0, 0xa5a5);
	if (bus_space_read_2(*memt, *memh, 0) != 0xa5a5)
		return 0;

	/*
	 * Test writability of selector port.
	 */
	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR1);
	if (bus_space_read_2(*iot, *ioh, LER_RAP) != LE_CSR1)
		return 0;

	/*
	 * Do a small register test
	 */
	bus_space_write_2(*iot, *ioh, LER_RAP, LE_CSR0);
	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_INIT | LE_C0_STOP);
	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
		return 0;

	bus_space_write_2(*iot, *ioh, LER_RDP, LE_C0_STOP);
	if (bus_space_read_2(*iot, *ioh, LER_RDP) != LE_C0_STOP)
		return 0;

	return 1;
}

/*
 * Interrupt mess. Because the card's interrupt is hardwired to either
 * ipl5 or ipl3 (mostly on ipl5) and raising splnet to spl5() just won't do
 * (it kills the serial at the least), we use a 2-level interrupt scheme. The
 * card interrupt is routed to 'le_intr'. If the previous ipl was below
 * splnet, just call the mi-function. If not, save the interrupt status,
 * turn off card interrupts (the card is *very* persistent) and arrange
 * for a softint 'callback' through 'lepseudointr'.
 */
static int
le_intr(struct le_softc *lesc, int sr)
{
	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
	uint16_t		csr0;

	if ((sr & PSL_IPL) < (ipl2psl_table[IPL_NET] & PSL_IPL))
		am7990_intr(sc);
	else {
		sc->sc_saved_csr0 = csr0 = lerdcsr(sc, LE_CSR0);
		lewrcsr(sc, LE_CSR0, csr0 & ~LE_C0_INEA);
		add_sicallback((si_farg)lepseudointr, lesc, sc);
	}
	return 1;
}


static void
lepseudointr(struct le_softc *lesc, void *sc)
{
	int	s;

	s = splx(lesc->sc_splval);
	am7990_intr(sc);
	splx(s);
}

static void
le_vme_attach(device_t parent, device_t self, void *aux)
{
	struct le_softc		*lesc = device_private(self);
	struct lance_softc	*sc = &lesc->sc_am7990.lsc;
	struct vme_attach_args	*va = aux;
	bus_space_handle_t	ioh;
	bus_space_handle_t	memh;
	struct le_addresses	*le_ap;
	int			i;

	sc->sc_dev = self;
	aprint_normal("\n%s: ", device_xname(self));

	if (bus_space_map(va->va_iot, va->va_iobase, va->va_iosize, 0, &ioh))
		panic("leattach: cannot map io-area");
	if (bus_space_map(va->va_memt, va->va_maddr, va->va_msize, 0, &memh))
		panic("leattach: cannot map mem-area");

	lesc->sc_iot    = va->va_iot;
	lesc->sc_ioh    = ioh;
	lesc->sc_memt   = va->va_memt;
	lesc->sc_memh   = memh;
	lesc->sc_splval = (va->va_irq << 8) | PSL_S; /* XXX */
	le_ap           = (struct le_addresses *)va->va_aux;

	/*
	 * Go on to find board type
	 */
	if ((le_ap->type_hint & LE_PAM)
		&& bus_space_peek_1(va->va_iot, ioh, LER_EEPROM)) {
		aprint_normal("PAM card");
		lesc->sc_type = LE_PAM;
		bus_space_read_1(va->va_iot, ioh, LER_MEME);
	}
	else if((le_ap->type_hint & LE_BVME410)
		&& bvme410_probe(va->va_iot, ioh)) {
		aprint_normal("BVME410");
		lesc->sc_type = LE_BVME410;
	}
	else if (le_ap->type_hint & (LE_NEW_RIEBL|LE_OLD_RIEBL)) {
		aprint_normal("Riebl card");
		if(bus_space_read_4(va->va_memt, memh, RIEBL_MAGIC_ADDR)
								== RIEBL_MAGIC)
			lesc->sc_type = LE_NEW_RIEBL;
		else {
			aprint_normal("(without battery) ");
			lesc->sc_type = LE_OLD_RIEBL;
		}
	}
	else
		aprint_error("le_vme_attach: Unsupported card!");

	switch (lesc->sc_type) {
	    case LE_BVME410:
		sc->sc_copytodesc   = bvme410_copytobuf;
		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
		sc->sc_copytobuf    = bvme410_copytobuf;
		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
		sc->sc_zerobuf      = bvme410_zerobuf;
		break;
	    default:
		sc->sc_copytodesc   = lance_copytobuf_contig;
		sc->sc_copyfromdesc = lance_copyfrombuf_contig;
		sc->sc_copytobuf    = lance_copytobuf_contig;
		sc->sc_copyfrombuf  = lance_copyfrombuf_contig;
		sc->sc_zerobuf      = lance_zerobuf_contig;
		break;
	}

	sc->sc_rdcsr   = lerdcsr;
	sc->sc_wrcsr   = lewrcsr;
	sc->sc_hwinit  = NULL;
	sc->sc_conf3   = LE_C3_BSWP;
	sc->sc_addr    = 0;
	sc->sc_memsize = va->va_msize;
	sc->sc_mem     = (void *)memh; /* XXX */

	/*
	 * Get MAC address
	 */
	switch (lesc->sc_type) {
	    case LE_OLD_RIEBL:
		bcopy(riebl_def_mac, sc->sc_enaddr,
					sizeof(sc->sc_enaddr));
		break;
	    case LE_NEW_RIEBL:
		for (i = 0; i < sizeof(sc->sc_enaddr); i++)
		    sc->sc_enaddr[i] =
			bus_space_read_1(va->va_memt, memh, i + RIEBL_MAC_ADDR);
			break;
	    case LE_PAM:
		i = bus_space_read_1(va->va_iot, ioh, LER_EEPROM);
		for (i = 0; i < sizeof(sc->sc_enaddr); i++) {
		    sc->sc_enaddr[i] =
			(bus_space_read_2(va->va_memt, memh, 2 * i) << 4) |
			(bus_space_read_2(va->va_memt, memh, 2 * i + 1) & 0xf);
		}
		i = bus_space_read_1(va->va_iot, ioh, LER_MEME);
		break;
	    case LE_BVME410:
		for (i = 0; i < (sizeof(sc->sc_enaddr) >> 1); i++) {
		    uint16_t tmp;

		    tmp = nm93c06_read(va->va_iot, ioh, i);
		    sc->sc_enaddr[2 * i] = (tmp >> 8) & 0xff;
		    sc->sc_enaddr[2 * i + 1] = tmp & 0xff;
		}
		bus_space_write_2(va->va_iot, ioh, BVME410_BAR, 0x1); /* XXX */
	}

	am7990_config(&lesc->sc_am7990);

	if ((lesc->sc_type == LE_OLD_RIEBL) || (lesc->sc_type == LE_NEW_RIEBL))
		riebl_skip_reserved_area(sc);

	/*
	 * XXX: We always use uservector 64....
	 */
	if ((lesc->sc_intr = intr_establish(64, USER_VEC, 0, 
				(hw_ifun_t)le_intr, lesc)) == NULL) {
		aprint_error("le_vme_attach: Can't establish interrupt\n");
		return;
	}

	/*
	 * Notify the card of the vector
	 */
	switch (lesc->sc_type) {
		case LE_OLD_RIEBL:
		case LE_NEW_RIEBL:
			bus_space_write_2(va->va_memt, memh, RIEBL_IVEC_ADDR,
								64 + 64);
			break;
		case LE_PAM:
			bus_space_write_1(va->va_iot, ioh, LER_IVEC, 64 + 64);
			break;
		case LE_BVME410:
			bus_space_write_2(va->va_iot, ioh, BVME410_IVEC, 64 + 64);
			break;
	}

	/*
	 * Unmask the VME-interrupt we're on
	 */
	if (machineid & ATARI_TT)
		SCU->vme_mask |= 1 << va->va_irq;
}

/*
 * True if 'addr' containe within [start,len]
 */
#define WITHIN(start, len, addr)	\
		((addr >= start) && ((addr) <= ((start) + (len))))
static void
riebl_skip_reserved_area(struct lance_softc *sc)
{
	int	offset = 0;
	int	i;

	for(i = 0; i < sc->sc_nrbuf; i++) {
		if (WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_START)
		    || WITHIN(sc->sc_rbufaddr[i], LEBLEN, RIEBL_RES_END)) {
			offset = RIEBL_RES_END - sc->sc_rbufaddr[i];
		}
		sc->sc_rbufaddr[i] += offset;
	}

	for(i = 0; i < sc->sc_ntbuf; i++) {
		if (WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_START)
		    || WITHIN(sc->sc_tbufaddr[i], LEBLEN, RIEBL_RES_END)) {
			offset = RIEBL_RES_END - sc->sc_tbufaddr[i];
		}
		sc->sc_tbufaddr[i] += offset;
	}
}

static int
nm93c06_read(bus_space_tag_t iot, bus_space_handle_t ioh, int nm93c06reg)
{
	int bar;
	int shift;
	int bits = 0x180 | (nm93c06reg & 0xf);
	int data = 0;

	bar = 1 << BVME410_CS_SHIFT;
	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
	delay(1); /* tCSS = 1 us */
	for (shift = 9; shift >= 0; shift--) {
		if (((bits >> shift) & 1) == 1)
			bar |= 1 << BVME410_DIN_SHIFT;
		else
			bar &= ~(1 << BVME410_DIN_SHIFT);
		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
		delay(1); /* tDIS = 0.4 us */
		bar |= 1 << BVME410_CLK_SHIFT;
		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
		bar &= ~(1 << BVME410_CLK_SHIFT);
		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
	}
	bar &= ~(1 << BVME410_DIN_SHIFT);
	for (shift = 15; shift >= 0; shift--) {
		delay(1); /* tDIS = 100 ns, BVM manual says 0.4 us */
		bar |= 1 << BVME410_CLK_SHIFT;
		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
		delay(2); /* tSKH = 1 us, tSKH + tSKL >= 4 us */
		data |= (bus_space_read_2(iot, ioh, BVME410_BAR) & 1) << shift;
		bar &= ~(1 << BVME410_CLK_SHIFT);
		bus_space_write_2(iot, ioh, BVME410_BAR, bar);
		delay(2); /* tSKL = 1 us, tSKH + tSKL >= 4 us */
	}
	bar &= ~(1 << BVME410_CS_SHIFT);
	bus_space_write_2(iot, ioh, BVME410_BAR, bar);
	delay(1); /* tCS = 1 us */
	return data;
}

static int
bvme410_probe(bus_space_tag_t iot, bus_space_handle_t ioh)
{

	if (!bus_space_peek_2(iot, ioh, BVME410_IVEC))
		return 0;

	bus_space_write_2(iot, ioh, BVME410_IVEC, 0x0000);
	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xff00)
		return 0;
	
	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xffff);
	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffff)
		return 0;

	bus_space_write_2(iot, ioh, BVME410_IVEC, 0xa5a5);
	if (bus_space_read_2(iot, ioh, BVME410_IVEC) != 0xffa5)
		return 0;

	return 1;
}

static int
bvme410_mem_size(bus_space_tag_t memt, u_long mem_addr)
{
	bus_space_handle_t memh;
	int r;

	if (bus_space_map(memt, mem_addr, 256 * 1024, 0, &memh))
		return VMECF_MEMSIZ_DEFAULT;
	if (!bus_space_peek_1(memt, memh, 0)) {
		bus_space_unmap(memt, memh, 256 * 1024);
		return VMECF_MEMSIZ_DEFAULT;
	}
	bus_space_write_1(memt, memh, 0, 128);
	bus_space_write_1(memt, memh, 64 * 1024, 32);
	bus_space_write_1(memt, memh, 32 * 1024, 8);
	r = (int)(bus_space_read_1(memt, memh, 0) * 2048);
	bus_space_unmap(memt, memh, 256 * 1024);
	return r;
}

/*
 * Need to be careful when writing to the bvme410 dual port memory.
 * Continue writing each byte until it reads back the same.
 */

static void
bvme410_copytobuf(struct lance_softc *sc, void *from, int boff, int len)
{
	volatile char *buf = (volatile char *)sc->sc_mem;
	char *f = (char *)from;

	for (buf += boff; len; buf++,f++,len--)
		do {
 			*buf = *f;
		} while (*buf != *f);
}

static void
bvme410_zerobuf(struct lance_softc *sc, int boff, int len)
{
	volatile char *buf = (volatile char *)sc->sc_mem;

	for (buf += boff; len; buf++,len--)
		do {
 			*buf = '\0';
		} while (*buf != '\0');
}