/* $NetBSD: rge.c,v 1.13 2008/05/30 14:54:16 nisimura Exp $ */ /*- * Copyright (c) 2007 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Tohru Nishimura. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <sys/param.h> #include <netinet/in.h> #include <netinet/in_systm.h> #include <lib/libsa/stand.h> #include <lib/libsa/net.h> #include "globals.h" /* * - reverse endian access every CSR. * - no vtophys() translation, vaddr_t == paddr_t. * - PIPT writeback cache aware. */ #define CSR_WRITE_1(l, r, v) *(volatile uint8_t *)((l)->csr+(r)) = (v) #define CSR_READ_1(l, r) *(volatile uint8_t *)((l)->csr+(r)) #define CSR_WRITE_2(l, r, v) out16rb((l)->csr+(r), (v)) #define CSR_READ_2(l, r) in16rb((l)->csr+(r)) #define CSR_WRITE_4(l, r, v) out32rb((l)->csr+(r), (v)) #define CSR_READ_4(l, r) in32rb((l)->csr+(r)) #define VTOPHYS(va) (uint32_t)(va) #define DEVTOV(pa) (uint32_t)(pa) #define wbinv(adr, siz) _wbinv(VTOPHYS(adr), (uint32_t)(siz)) #define inv(adr, siz) _inv(VTOPHYS(adr), (uint32_t)(siz)) #define DELAY(n) delay(n) #define ALLOC(T,A) (T *)((unsigned)alloc(sizeof(T) + (A)) &~ ((A) - 1)) void *rge_init(unsigned, void *); int rge_send(void *, char *, unsigned); int rge_recv(void *, char *, unsigned, unsigned); struct desc { uint32_t xd0, xd1, xd2, xd3; }; #define T0_OWN 0x80000000 /* loaded for HW to send */ #define T0_EOR 0x40000000 /* end of ring */ #define T0_FS 0x20000000 /* first descriptor */ #define T0_LS 0x10000000 /* last descriptor */ #define T0_LSGEN 0x08000000 /* TCP segmentation offload */ #define T0_IPCS 0x00040000 /* generate IP checksum */ #define T0_UDPCS 0x00020000 /* generate UDP checksum */ #define T0_TCPCS 0x00010000 /* generate TCP checksum */ #define T0_FRMASK 0x0000ffff #define T1_TAGC 0x00020000 /* insert VTAG */ #define T1_VTAG 0x0000ffff /* VTAG value */ #define R0_OWN 0x80000000 /* empty for HW to load anew */ #define R0_EOR 0x40000000 /* end mark to form a ring */ #define R0_BUFLEN 0x00003ff8 /* max frag. size to receive */ /* RX status upon Rx completed */ #define R0_FS 0x20000000 /* start of frame */ #define R0_LS 0x10000000 /* end of frame */ #define R0_RES 0x00200000 /* Rx error summary */ #define R0_RUNT 0x00100000 /* runt frame received */ #define R0_CRC 0x00080000 /* CRC error found */ #define R0_PID 0x00060000 /* protocol type; 1:TCP, 2:UDP, 3:IP */ #define R0_IPF 0x00010000 /* IP checksum bad */ #define R0_UDPF 0x00008000 /* UDP checksum bad */ #define R0_TCPF 0x00004000 /* TCP checksum bad */ #define R0_FRMASK 0x00003fff /* 13:0 frame length */ #define R1_TAVA 0x00010000 /* VTAG exists */ #define R1_VTAG 0x0000ffff /* TAG value */ #define RGE_IDR0 0x00 /* MAC address [0] */ #define RGE_IDR1 0x01 /* MAC address [1] */ #define RGE_IDR2 0x02 /* MAC address [2] */ #define RGE_IDR3 0x03 /* MAC address [3] */ #define RGE_IDR4 0x04 /* MAC address [4] */ #define RGE_IDR5 0x05 /* MAC address [5] */ #define RGE_MAR0 0x08 /* multicast filter [31:00] */ #define RGE_MAR1 0x0c /* multicast filter [63:32] */ #define RGE_TNPDS 0x20 /* Tx descriptor base paddr */ #define RGE_THPDS 0x28 /* high pro. Tx des. base paddr */ #define RGE_CR 0x37 /* command */ #define CR_RESET (1U << 4) /* reset S1C */ #define CR_RXEN (1U << 3) /* Rx enable */ #define CR_TXEN (1U << 2) /* Tx enable */ #define RGE_TPPOLL 0x38 /* activate desc polling */ #define RGE_IMR 0x3c /* interrupt mask */ #define RGE_ISR 0x3e /* interrupt status */ #define ISR_TXERR 0x0088 /* Tx error conditions */ #define ISR_RXERR 0x0072 /* Rx error conditions */ #define ISR_LNKCHG (1U << 5) /* link status change found */ #define ISR_TXOK (1U << 2) /* Tx done */ #define ISR_RXOK (1U << 0) /* Rx frame available */ #define RGE_TCR 0x40 /* Tx control */ #define TCR_MAXDMA 0x0700 /* 10:8 Tx DMA burst size */ #define RGE_RCR 0x44 /* Rx control */ #define RCR_RXTFH 0xe000 /* 15:13 Rx FIFO threshold */ #define RCR_MAXDMA 0x0700 /* 10:8 Rx DMA burst size */ #define RCR_AE (1U << 5) /* accept error frame */ #define RCR_RE (1U << 4) /* accept runt frame */ #define RCR_AB (1U << 3) /* accept broadcast frame */ #define RCR_AM (1U << 2) /* accept multicast frame */ #define RCR_APM (1U << 1) /* accept unicast frame */ #define RCR_AAP (1U << 0) /* promiscuous */ #define RGE_PHYAR 0x60 /* PHY access */ #define RGE_PHYSR 0x6c /* PHY status */ #define RGE_RMS 0xda /* Rx maximum frame size */ #define RGE_CCCR 0xe0 /* C+CR */ #define CCCR_VLAN (1U << 6) /* Rx VTAG removal */ #define CCCR_CSUM (1U << 5) /* Rx checksum offload */ #define RGE_RDSAR 0xe4 /* Rx descriptor base paddr */ #define RGE_ETTHR 0xec /* Tx threshold */ #define FRAMESIZE 1536 struct local { struct desc txd; struct desc rxd[2]; uint8_t rxstore[2][FRAMESIZE]; unsigned csr, rx; unsigned phy, bmsr, anlpar; unsigned tcr, rcr; }; static int mii_read(struct local *, int, int); static void mii_write(struct local *, int, int, int); static void mii_initphy(struct local *); static void mii_dealan(struct local *, unsigned); int rge_match(unsigned tag, void *data) { unsigned v; v = pcicfgread(tag, PCI_ID_REG); switch (v) { case PCI_DEVICE(0x10ec, 0x8169): return 1; } return 0; } void * rge_init(unsigned tag, void *data) { unsigned val; struct local *l; struct desc *txd, *rxd; uint8_t *en = data; val = pcicfgread(tag, PCI_ID_REG); if (PCI_DEVICE(0x10ec, 0x8169) != val) return NULL; l = ALLOC(struct local, 256); /* desc alignment */ memset(l, 0, sizeof(struct local)); l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */ CSR_WRITE_1(l, RGE_CR, CR_RESET); do { val = CSR_READ_1(l, RGE_CR); } while (val & CR_RESET); mii_initphy(l); en = data; en[0] = CSR_READ_1(l, RGE_IDR0); en[1] = CSR_READ_1(l, RGE_IDR1); en[2] = CSR_READ_1(l, RGE_IDR2); en[3] = CSR_READ_1(l, RGE_IDR3); en[4] = CSR_READ_1(l, RGE_IDR4); en[5] = CSR_READ_1(l, RGE_IDR5); printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n", en[0], en[1], en[2], en[3], en[4], en[5]); printf("PHY %d (%04x.%04x)\n", l->phy, mii_read(l, l->phy, 2), mii_read(l, l->phy, 3)); mii_dealan(l, 5); /* speed and duplexity can be seen in PHYSR */ val = CSR_READ_1(l, RGE_PHYSR); if (val & (1U << 4)) printf("1000Mbps"); if (val & (1U << 3)) printf("100Mbps"); if (val & (1U << 2)) printf("10Mbps"); if (val & (1U << 0)) printf("-FDX\n"); txd = &l->txd; rxd = &l->rxd[0]; rxd[0].xd0 = htole32(R0_OWN | FRAMESIZE); rxd[0].xd2 = htole32(VTOPHYS(l->rxstore[0])); rxd[1].xd0 = htole32(R0_OWN | R0_EOR | FRAMESIZE); rxd[1].xd2 = htole32(VTOPHYS(l->rxstore[1])); wbinv(l, sizeof(struct local)); l->rx = 0; l->tcr = (03 << 24) | (07 << 8); l->rcr = (07 << 13) | (07 << 8) | RCR_APM; CSR_WRITE_1(l, RGE_CR, CR_TXEN | CR_RXEN); CSR_WRITE_1(l, RGE_ETTHR, 0x3f); CSR_WRITE_2(l, RGE_RMS, 0x8000); CSR_WRITE_4(l, RGE_TCR, l->tcr); CSR_WRITE_4(l, RGE_RCR, l->rcr); CSR_WRITE_4(l, RGE_TNPDS, VTOPHYS(txd)); CSR_WRITE_4(l, RGE_RDSAR, VTOPHYS(rxd)); CSR_WRITE_4(l, RGE_TNPDS + 4, 0); CSR_WRITE_4(l, RGE_RDSAR + 4, 0); CSR_WRITE_2(l, RGE_ISR, ~0); CSR_WRITE_2(l, RGE_IMR, 0); return l; } int rge_send(void *dev, char *buf, unsigned len) { struct local *l = dev; volatile struct desc *txd; unsigned loop; wbinv(buf, len); txd = &l->txd; txd->xd2 = htole32(VTOPHYS(buf)); txd->xd1 = 0; txd->xd0 = htole32(T0_OWN|T0_EOR|T0_FS|T0_LS| (len & T0_FRMASK)); wbinv(txd, sizeof(struct desc)); CSR_WRITE_1(l, RGE_TPPOLL, 0x40); loop = 100; do { if ((le32toh(txd->xd0) & T0_OWN) == 0) goto done; DELAY(10); inv(txd, sizeof(struct desc)); } while (--loop > 0); printf("xmit failed\n"); return -1; done: return len; } int rge_recv(void *dev, char *buf, unsigned maxlen, unsigned timo) { struct local *l = dev; volatile struct desc *rxd; unsigned bound, rxstat, len; uint8_t *ptr; bound = 1000 * timo; printf("recving with %u sec. timeout\n", timo); again: rxd = &l->rxd[l->rx]; do { inv(rxd, sizeof(struct desc)); rxstat = le32toh(rxd->xd0); if ((rxstat & R0_OWN) == 0) goto gotone; DELAY(1000); /* 1 milli second */ } while (--bound > 0); errno = 0; return -1; gotone: if (rxstat & R0_RES) { rxd->xd0 &= htole32(R0_EOR); rxd->xd0 |= htole32(R0_OWN | FRAMESIZE); wbinv(rxd, sizeof(struct desc)); l->rx ^= 1; goto again; } len = rxstat & R0_FRMASK; if (len > maxlen) len = maxlen; ptr = l->rxstore[l->rx]; inv(ptr, len); memcpy(buf, ptr, len); rxd->xd0 &= htole32(R0_EOR); rxd->xd0 |= htole32(R0_OWN | FRAMESIZE); wbinv(rxd, sizeof(struct desc)); l->rx ^= 1; return len; } static int mii_read(struct local *l, int phy, int reg) { unsigned v, loop; v = reg << 16; CSR_WRITE_4(l, RGE_PHYAR, v); loop = 100; do { v = CSR_READ_4(l, RGE_PHYAR); } while ((v & (1U << 31)) == 0); /* wait for 0 -> 1 */ return v; } static void mii_write(struct local *l, int phy, int reg, int data) { unsigned v; v = (reg << 16) | (data & 0xffff) | (1U << 31); CSR_WRITE_4(l, RGE_PHYAR, v); do { v = CSR_READ_4(l, RGE_PHYAR); } while (v & (1U << 31)); /* wait for 1 -> 0 */ } #define MII_BMCR 0x00 /* Basic mode control register (rw) */ #define BMCR_RESET 0x8000 /* reset */ #define BMCR_AUTOEN 0x1000 /* autonegotiation enable */ #define BMCR_ISO 0x0400 /* isolate */ #define BMCR_STARTNEG 0x0200 /* restart autonegotiation */ #define MII_BMSR 0x01 /* Basic mode status register (ro) */ #define BMSR_ACOMP 0x0020 /* Autonegotiation complete */ #define BMSR_LINK 0x0004 /* Link status */ #define MII_ANAR 0x04 /* Autonegotiation advertisement (rw) */ #define ANAR_FC 0x0400 /* local device supports PAUSE */ #define ANAR_TX_FD 0x0100 /* local device supports 100bTx FD */ #define ANAR_TX 0x0080 /* local device supports 100bTx */ #define ANAR_10_FD 0x0040 /* local device supports 10bT FD */ #define ANAR_10 0x0020 /* local device supports 10bT */ #define ANAR_CSMA 0x0001 /* protocol selector CSMA/CD */ #define MII_ANLPAR 0x05 /* Autonegotiation lnk partner abilities (rw) */ #define MII_GTCR 0x09 /* 1000baseT control */ #define GANA_1000TFDX 0x0200 /* advertise 1000baseT FDX */ #define GANA_1000THDX 0x0100 /* advertise 1000baseT HDX */ #define MII_GTSR 0x0a /* 1000baseT status */ #define GLPA_1000TFDX 0x0800 /* link partner 1000baseT FDX capable */ #define GLPA_1000THDX 0x0400 /* link partner 1000baseT HDX capable */ #define GLPA_ASM_DIR 0x0200 /* link partner asym. pause dir. capable */ static void mii_initphy(struct local *l) { int phy, ctl, sts, bound; for (phy = 0; phy < 32; phy++) { ctl = mii_read(l, phy, MII_BMCR); sts = mii_read(l, phy, MII_BMSR); if (ctl != 0xffff && sts != 0xffff) goto found; } printf("MII: no PHY found\n"); return; found: ctl = mii_read(l, phy, MII_BMCR); mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET); bound = 100; do { DELAY(10); ctl = mii_read(l, phy, MII_BMCR); if (ctl == 0xffff) { printf("MII: PHY %d has died after reset\n", phy); return; } } while (bound-- > 0 && (ctl & BMCR_RESET)); if (bound == 0) { printf("PHY %d reset failed\n", phy); } ctl &= ~BMCR_ISO; mii_write(l, phy, MII_BMCR, ctl); sts = mii_read(l, phy, MII_BMSR) | mii_read(l, phy, MII_BMSR); /* read twice */ l->phy = phy; l->bmsr = sts; } void mii_dealan(struct local *l, unsigned timo) { unsigned anar, gtcr, bound; anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA; anar |= ANAR_FC; gtcr = GANA_1000TFDX | GANA_1000THDX; mii_write(l, l->phy, MII_ANAR, anar); mii_write(l, l->phy, MII_GTCR, gtcr); mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); l->anlpar = 0; bound = getsecs() + timo; do { l->bmsr = mii_read(l, l->phy, MII_BMSR) | mii_read(l, l->phy, MII_BMSR); /* read twice */ if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) { l->anlpar = mii_read(l, l->phy, MII_ANLPAR); break; } DELAY(10 * 1000); } while (getsecs() < bound); return; }