/* $NetBSD: cpu.c,v 1.28.4.1 2008/11/13 00:04:07 snj Exp $ */ /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */ /*- * Copyright (c) 2000 The NetBSD Foundation, Inc. * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi, * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by RedBack Networks Inc. * * Author: Bill Sommerfeld * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1999 Stefan Grefen * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.28.4.1 2008/11/13 00:04:07 snj Exp $"); #include "opt_ddb.h" #include "opt_multiprocessor.h" #include "opt_mpbios.h" /* for MPDEBUG */ #include "opt_mtrr.h" #include "opt_xen.h" #include "lapic.h" #include "ioapic.h" #include <sys/param.h> #include <sys/proc.h> #include <sys/user.h> #include <sys/systm.h> #include <sys/device.h> #include <sys/malloc.h> #include <sys/cpu.h> #include <sys/atomic.h> #include <uvm/uvm_extern.h> #include <machine/cpufunc.h> #include <machine/cpuvar.h> #include <machine/pmap.h> #include <machine/vmparam.h> #include <machine/mpbiosvar.h> #include <machine/pcb.h> #include <machine/specialreg.h> #include <machine/segments.h> #include <machine/gdt.h> #include <machine/mtrr.h> #include <machine/pio.h> #ifdef XEN3 #include <xen/vcpuvar.h> #endif #if NLAPIC > 0 #include <machine/apicvar.h> #include <machine/i82489reg.h> #include <machine/i82489var.h> #endif #include <dev/ic/mc146818reg.h> #include <dev/isa/isareg.h> #define X86_MAXPROCS 32 int cpu_match(device_t, cfdata_t, void *); void cpu_attach(device_t, device_t, void *); #ifdef XEN3 int vcpu_match(device_t, cfdata_t, void *); void vcpu_attach(device_t, device_t, void *); #endif void cpu_attach_common(device_t, device_t, void *); void cpu_offline_md(void); struct cpu_softc { device_t sc_dev; /* device tree glue */ struct cpu_info *sc_info; /* pointer to CPU info */ }; int mp_cpu_start(struct cpu_info *, paddr_t); void mp_cpu_start_cleanup(struct cpu_info *); const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL, mp_cpu_start_cleanup }; CFATTACH_DECL_NEW(cpu, sizeof(struct cpu_softc), cpu_match, cpu_attach, NULL, NULL); #ifdef XEN3 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc), vcpu_match, vcpu_attach, NULL, NULL); #endif /* * Statically-allocated CPU info for the primary CPU (or the only * CPU, on uniprocessors). The CPU info list is initialized to * point at it. */ #ifdef TRAPLOG #include <machine/tlog.h> struct tlog tlog_primary; #endif struct cpu_info cpu_info_primary = { .ci_dev = 0, .ci_self = &cpu_info_primary, .ci_idepth = -1, .ci_curlwp = &lwp0, .ci_curldt = -1, #ifdef TRAPLOG .ci_tlog = &tlog_primary, #endif }; struct cpu_info phycpu_info_primary = { .ci_dev = 0, .ci_self = &phycpu_info_primary, }; struct cpu_info *cpu_info_list = &cpu_info_primary; static void cpu_set_tss_gates(struct cpu_info *ci); uint32_t cpus_attached = 0; uint32_t cpus_running = 0; bool x86_mp_online; paddr_t mp_trampoline_paddr = MP_TRAMPOLINE; struct cpu_info *phycpu_info[X86_MAXPROCS] = { &cpu_info_primary }; #ifdef MULTIPROCESSOR /* * Array of CPU info structures. Must be statically-allocated because * curproc, etc. are used early. */ struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary }; void cpu_hatch(void *); static void cpu_boot_secondary(struct cpu_info *ci); static void cpu_start_secondary(struct cpu_info *ci); static void cpu_copy_trampoline(void); /* * Runs once per boot once multiprocessor goo has been detected and * the local APIC on the boot processor has been mapped. * * Called from lapic_boot_init() (from mpbios_scan()). */ void cpu_init_first(void) { int cpunum = lapic_cpu_number(); if (cpunum != 0) { cpu_info[0] = NULL; cpu_info[cpunum] = &cpu_info_primary; } cpu_copy_trampoline(); } #endif int cpu_match(device_t parent, cfdata_t match, void *aux) { return 1; } void cpu_attach(device_t parent, device_t self, void *aux) { #ifdef XEN3 struct cpu_softc *sc = device_private(self); struct cpu_attach_args *caa = aux; struct cpu_info *ci; int cpunum = caa->cpu_number; sc->sc_dev = self; /* * If we're an Application Processor, allocate a cpu_info * structure, otherwise use the primary's. */ if (caa->cpu_role == CPU_ROLE_AP) { ci = malloc(sizeof(*ci), M_DEVBUF, M_WAITOK | M_ZERO); ci->ci_curldt = -1; if (phycpu_info[cpunum] != NULL) panic("cpu at apic id %d already attached?", cpunum); phycpu_info[cpunum] = ci; } else { ci = &phycpu_info_primary; if (cpunum != 0) { phycpu_info[0] = NULL; phycpu_info[cpunum] = ci; } } ci->ci_self = ci; sc->sc_info = ci; ci->ci_dev = self; ci->ci_cpuid = caa->cpu_number; ci->ci_vcpu = NULL; printf(": "); switch (caa->cpu_role) { case CPU_ROLE_SP: printf("(uniprocessor)\n"); ci->ci_flags |= CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY; break; case CPU_ROLE_BP: printf("(boot processor)\n"); ci->ci_flags |= CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY; break; case CPU_ROLE_AP: /* * report on an AP */ printf("(application processor)\n"); break; default: panic("unknown processor type??\n"); } return; #else cpu_attach_common(parent, self, aux); #endif } #ifdef XEN3 int vcpu_match(device_t parent, cfdata_t match, void *aux) { struct vcpu_attach_args *vcaa = aux; if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) return 1; return 0; } void vcpu_attach(device_t parent, device_t self, void *aux) { struct vcpu_attach_args *vcaa = aux; cpu_attach_common(parent, self, &vcaa->vcaa_caa); } #endif static void cpu_vm_init(struct cpu_info *ci) { int ncolors = 2, i; for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) { struct x86_cache_info *cai; int tcolors; cai = &ci->ci_cinfo[i]; tcolors = atop(cai->cai_totalsize); switch(cai->cai_associativity) { case 0xff: tcolors = 1; /* fully associative */ break; case 0: case 1: break; default: tcolors /= cai->cai_associativity; } ncolors = max(ncolors, tcolors); } /* * Knowing the size of the largest cache on this CPU, re-color * our pages. */ if (ncolors <= uvmexp.ncolors) return; aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors); uvm_page_recolor(ncolors); } void cpu_attach_common(device_t parent, device_t self, void *aux) { struct cpu_softc *sc = device_private(self); struct cpu_attach_args *caa = aux; struct cpu_info *ci; uintptr_t ptr; int cpunum = caa->cpu_number; sc->sc_dev = self; /* * If we're an Application Processor, allocate a cpu_info * structure, otherwise use the primary's. */ if (caa->cpu_role == CPU_ROLE_AP) { if (cpunum >= X86_MAXPROCS) { aprint_error(": apic id %d ignored, " "please increase X86_MAXPROCS\n", cpunum); } aprint_naive(": Application Processor\n"); ptr = (uintptr_t)malloc(sizeof(*ci) + CACHE_LINE_SIZE - 1, M_DEVBUF, M_WAITOK); ci = (struct cpu_info *)((ptr + CACHE_LINE_SIZE - 1) & ~(CACHE_LINE_SIZE - 1)); memset(ci, 0, sizeof(*ci)); #if defined(MULTIPROCESSOR) if (cpu_info[cpunum] != NULL) panic("cpu at apic id %d already attached?", cpunum); cpu_info[cpunum] = ci; #endif #ifdef TRAPLOG ci->ci_tlog_base = malloc(sizeof(struct tlog), M_DEVBUF, M_WAITOK); #endif } else { aprint_naive(": %s Processor\n", caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot"); ci = &cpu_info_primary; #if defined(MULTIPROCESSOR) if (cpunum != lapic_cpu_number()) { panic("%s: running CPU is at apic %d" " instead of at expected %d", device_xname(sc->sc_dev), lapic_cpu_number(), cpunum); } #endif } ci->ci_self = ci; sc->sc_info = ci; ci->ci_dev = self; ci->ci_cpuid = cpunum; KASSERT(HYPERVISOR_shared_info != NULL); ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum]; ci->ci_func = caa->cpu_func; if (caa->cpu_role == CPU_ROLE_AP) { #if defined(MULTIPROCESSOR) int error; error = mi_cpu_attach(ci); if (error != 0) { aprint_normal("\n"); aprint_error_dev(sc->sc_dev, "mi_cpu_attach failed with %d\n", error); return; } #endif } else { KASSERT(ci->ci_data.cpu_idlelwp != NULL); } ci->ci_cpumask = (1 << cpu_index(ci)); pmap_reference(pmap_kernel()); ci->ci_pmap = pmap_kernel(); ci->ci_tlbstate = TLBSTATE_STALE; /* further PCB init done later. */ switch (caa->cpu_role) { case CPU_ROLE_SP: atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY); cpu_intr_init(ci); cpu_get_tsc_freq(ci); cpu_identify(ci); cpu_init(ci); cpu_set_tss_gates(ci); pmap_cpu_init_late(ci); x86_cpu_idle_init(); #if 0 x86_errata(); #endif break; case CPU_ROLE_BP: atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY); cpu_intr_init(ci); cpu_get_tsc_freq(ci); cpu_identify(ci); cpu_init(ci); cpu_set_tss_gates(ci); pmap_cpu_init_late(ci); x86_cpu_idle_init(); #if NLAPIC > 0 /* * Enable local apic */ lapic_enable(); lapic_set_lvt(); lapic_calibrate_timer(ci); #endif #if 0 x86_errata(); #endif break; case CPU_ROLE_AP: /* * report on an AP */ #if defined(MULTIPROCESSOR) cpu_intr_init(ci); gdt_alloc_cpu(ci); cpu_set_tss_gates(ci); pmap_cpu_init_early(ci); pmap_cpu_init_late(ci); cpu_start_secondary(ci); if (ci->ci_flags & CPUF_PRESENT) { identifycpu(ci); ci->ci_next = cpu_info_list->ci_next; cpu_info_list->ci_next = ci; } #else aprint_normal_dev(sc->sc_dev, "not started\n"); #endif break; default: aprint_normal("\n"); panic("unknown processor type??\n"); } cpu_vm_init(ci); cpus_attached |= (1 << ci->ci_cpuid); #if 0 if (!pmf_device_register(self, cpu_suspend, cpu_resume)) aprint_error_dev(self, "couldn't establish power handler\n"); #endif #if defined(MULTIPROCESSOR) if (mp_verbose) { struct lwp *l = ci->ci_data.cpu_idlelwp; aprint_verbose_dev(sc->sc_dev, "idle lwp at %p, idle sp at 0x%p\n", l, #ifdef i386 (void *)l->l_addr->u_pcb.pcb_esp #else (void *)l->l_addr->u_pcb.pcb_rsp #endif ); } #endif } /* * Initialize the processor appropriately. */ void cpu_init(struct cpu_info *ci) { /* * On a P6 or above, enable global TLB caching if the * hardware supports it. */ if (cpu_feature & CPUID_PGE) lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */ #ifdef XXXMTRR /* * On a P6 or above, initialize MTRR's if the hardware supports them. */ if (cpu_feature & CPUID_MTRR) { if ((ci->ci_flags & CPUF_AP) == 0) i686_mtrr_init_first(); mtrr_init_cpu(ci); } #endif /* * If we have FXSAVE/FXRESTOR, use them. */ if (cpu_feature & CPUID_FXSR) { lcr4(rcr4() | CR4_OSFXSR); /* * If we have SSE/SSE2, enable XMM exceptions. */ if (cpu_feature & (CPUID_SSE|CPUID_SSE2)) lcr4(rcr4() | CR4_OSXMMEXCPT); } #ifdef MULTIPROCESSOR atomic_or_32(&ci->ci_flags, CPUF_RUNNING); atomic_or_32(&cpus_running, ci->ci_cpumask); #endif } #ifdef MULTIPROCESSOR void cpu_boot_secondary_processors(void) { struct cpu_info *ci; u_long i; for (i = 0; i < X86_MAXPROCS; i++) { ci = cpu_info[i]; if (ci == NULL) continue; if (ci->ci_data.cpu_idlelwp == NULL) continue; if ((ci->ci_flags & CPUF_PRESENT) == 0) continue; if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY)) continue; cpu_boot_secondary(ci); } x86_mp_online = true; } static void cpu_init_idle_lwp(struct cpu_info *ci) { struct lwp *l = ci->ci_data.cpu_idlelwp; struct pcb *pcb = &l->l_addr->u_pcb; pcb->pcb_cr0 = rcr0(); } void cpu_init_idle_lwps(void) { struct cpu_info *ci; u_long i; for (i = 0; i < X86_MAXPROCS; i++) { ci = cpu_info[i]; if (ci == NULL) continue; if (ci->ci_data.cpu_idlelwp == NULL) continue; if ((ci->ci_flags & CPUF_PRESENT) == 0) continue; cpu_init_idle_lwp(ci); } } void cpu_start_secondary(struct cpu_info *ci) { int i; struct pmap *kpm = pmap_kernel(); extern uint32_t mp_pdirpa; mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */ atomic_or_32(&ci->ci_flags, CPUF_AP); aprint_debug_dev(ci->ci_dev, "starting\n"); ci->ci_curlwp = ci->ci_data.cpu_idlelwp; if (CPU_STARTUP(ci, mp_trampoline_paddr) != 0) return; /* * wait for it to become ready */ for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) { #ifdef MPDEBUG extern int cpu_trace[3]; static int otrace[3]; if (memcmp(otrace, cpu_trace, sizeof(otrace)) != 0) { aprint_debug_dev(ci->ci_dev, "trace %02x %02x %02x\n", cpu_trace[0], cpu_trace[1], cpu_trace[2]); memcpy(otrace, cpu_trace, sizeof(otrace)); } #endif delay(10); } if ((ci->ci_flags & CPUF_PRESENT) == 0) { aprint_error_dev(ci->ci_dev, "failed to become ready\n"); #if defined(MPDEBUG) && defined(DDB) printf("dropping into debugger; continue from here to resume boot\n"); Debugger(); #endif } CPU_START_CLEANUP(ci); } void cpu_boot_secondary(struct cpu_info *ci) { int i; atomic_or_32(&ci->ci_flags, CPUF_GO); for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) { delay(10); } if ((ci->ci_flags & CPUF_RUNNING) == 0) { aprint_error_dev(ci->ci_dev, "CPU failed to start\n"); #if defined(MPDEBUG) && defined(DDB) printf("dropping into debugger; continue from here to resume boot\n"); Debugger(); #endif } } /* * The CPU ends up here when its ready to run * This is called from code in mptramp.s; at this point, we are running * in the idle pcb/idle stack of the new CPU. When this function returns, * this processor will enter the idle loop and start looking for work. * * XXX should share some of this with init386 in machdep.c */ void cpu_hatch(void *v) { struct cpu_info *ci = (struct cpu_info *)v; int s, i; uint32_t blacklist_features; #ifdef __x86_64__ cpu_init_msrs(ci, true); #endif cpu_probe(ci); /* not on Xen... */ blacklist_features = ~(CPUID_PGE|CPUID_PSE|CPUID_MTRR|CPUID_FXSR|CPUID_NOX); /* XXX add CPUID_SVM */ cpu_feature &= blacklist_features; KDASSERT((ci->ci_flags & CPUF_PRESENT) == 0); atomic_or_32(&ci->ci_flags, CPUF_PRESENT); while ((ci->ci_flags & CPUF_GO) == 0) { /* Don't use delay, boot CPU may be patching the text. */ for (i = 10000; i != 0; i--) x86_pause(); } /* Because the text may have been patched in x86_patch(). */ wbinvd(); x86_flush(); KASSERT((ci->ci_flags & CPUF_RUNNING) == 0); lcr3(pmap_kernel()->pm_pdirpa); curlwp->l_addr->u_pcb.pcb_cr3 = pmap_kernel()->pm_pdirpa; lcr0(ci->ci_data.cpu_idlelwp->l_addr->u_pcb.pcb_cr0); cpu_init_idt(); gdt_init_cpu(ci); lapic_enable(); lapic_set_lvt(); lapic_initclocks(); #ifdef i386 npxinit(ci); #else fpuinit(ci); #endif lldt(GSEL(GLDT_SEL, SEL_KPL)); ltr(ci->ci_tss_sel); cpu_init(ci); cpu_get_tsc_freq(ci); s = splhigh(); #ifdef i386 lapic_tpr = 0; #else lcr8(0); #endif x86_enable_intr(); splx(s); #if 0 x86_errata(); #endif aprint_debug_dev(ci->ci_dev, "CPU %ld running\n", (long)ci->ci_cpuid); } #if defined(DDB) #include <ddb/db_output.h> #include <machine/db_machdep.h> /* * Dump CPU information from ddb. */ void cpu_debug_dump(void) { struct cpu_info *ci; CPU_INFO_ITERATOR cii; db_printf("addr dev id flags ipis curlwp fpcurlwp\n"); for (CPU_INFO_FOREACH(cii, ci)) { db_printf("%p %s %ld %x %x %10p %10p\n", ci, ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev), (long)ci->ci_cpuid, ci->ci_flags, ci->ci_ipis, ci->ci_curlwp, ci->ci_fpcurlwp); } } #endif static void cpu_copy_trampoline(void) { /* * Copy boot code. */ extern u_char cpu_spinup_trampoline[]; extern u_char cpu_spinup_trampoline_end[]; vaddr_t mp_trampoline_vaddr; mp_trampoline_vaddr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_VAONLY); pmap_kenter_pa(mp_trampoline_vaddr, mp_trampoline_paddr, VM_PROT_READ | VM_PROT_WRITE); pmap_update(pmap_kernel()); memcpy((void *)mp_trampoline_vaddr, cpu_spinup_trampoline, cpu_spinup_trampoline_end - cpu_spinup_trampoline); pmap_kremove(mp_trampoline_vaddr, PAGE_SIZE); pmap_update(pmap_kernel()); uvm_km_free(kernel_map, mp_trampoline_vaddr, PAGE_SIZE, UVM_KMF_VAONLY); } #endif #ifdef i386 #if 0 static void tss_init(struct i386tss *tss, void *stack, void *func) { memset(tss, 0, sizeof *tss); tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16); tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL); tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL); tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL); tss->tss_gs = tss->__tss_es = tss->__tss_ds = tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL); tss->tss_cr3 = pmap_kernel()->pm_pdirpa; tss->tss_esp = (int)((char *)stack + USPACE - 16); tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL); tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */ tss->__tss_eip = (int)func; } #endif /* XXX */ #define IDTVEC(name) __CONCAT(X, name) typedef void (vector)(void); extern vector IDTVEC(tss_trap08); #ifdef DDB extern vector Xintrddbipi; extern int ddb_vec; #endif static void cpu_set_tss_gates(struct cpu_info *ci) { #if 0 struct segment_descriptor sd; ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0, UVM_KMF_WIRED); tss_init(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack, IDTVEC(tss_trap08)); setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1, SDT_SYS386TSS, SEL_KPL, 0, 0); ci->ci_gdt[GTRAPTSS_SEL].sd = sd; setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GTRAPTSS_SEL, SEL_KPL)); #endif #if defined(DDB) && defined(MULTIPROCESSOR) /* * Set up separate handler for the DDB IPI, so that it doesn't * stomp on a possibly corrupted stack. * * XXX overwriting the gate set in db_machine_init. * Should rearrange the code so that it's set only once. */ ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0, UVM_KMF_WIRED); tss_init(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack, Xintrddbipi); setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1, SDT_SYS386TSS, SEL_KPL, 0, 0); ci->ci_gdt[GIPITSS_SEL].sd = sd; setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GIPITSS_SEL, SEL_KPL)); #endif } #else static void cpu_set_tss_gates(struct cpu_info *ci) { } #endif /* i386 */ int mp_cpu_start(struct cpu_info *ci, paddr_t target) { #if 0 #if NLAPIC > 0 int error; #endif unsigned short dwordptr[2]; /* * Bootstrap code must be addressable in real mode * and it must be page aligned. */ KASSERT(target < 0x10000 && target % PAGE_SIZE == 0); /* * "The BSP must initialize CMOS shutdown code to 0Ah ..." */ outb(IO_RTC, NVRAM_RESET); outb(IO_RTC+1, NVRAM_RESET_JUMP); /* * "and the warm reset vector (DWORD based at 40:67) to point * to the AP startup code ..." */ dwordptr[0] = 0; dwordptr[1] = target >> 4; pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE); memcpy ((uint8_t *) 0x467, dwordptr, 4); pmap_kremove (0, PAGE_SIZE); #if NLAPIC > 0 /* * ... prior to executing the following sequence:" */ if (ci->ci_flags & CPUF_AP) { if ((error = x86_ipi_init(ci->ci_cpuid)) != 0) return error; delay(10000); if (cpu_feature & CPUID_APIC) { error = x86_ipi_init(ci->ci_cpuid); if (error != 0) { aprint_error_dev(ci->ci_dev, "%s: IPI not taken (1)\n", __func__); return error; } delay(10000); error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid, LAPIC_DLMODE_STARTUP); if (error != 0) { aprint_error_dev(ci->ci_dev, "%s: IPI not taken (2)\n", __func__); return error; } delay(200); error = x86_ipi(target / PAGE_SIZE, ci->ci_cpuid, LAPIC_DLMODE_STARTUP); if (error != 0) { aprint_error_dev(ci->ci_dev, "%s: IPI not taken ((3)\n", __func__); return error; } delay(200); } } #endif #endif /* 0 */ return 0; } void mp_cpu_start_cleanup(struct cpu_info *ci) { #if 0 /* * Ensure the NVRAM reset byte contains something vaguely sane. */ outb(IO_RTC, NVRAM_RESET); outb(IO_RTC+1, NVRAM_RESET_RST); #endif } #ifdef __x86_64__ void cpu_init_msrs(struct cpu_info *ci, bool full) { if (full) { HYPERVISOR_set_segment_base (SEGBASE_FS, 0); HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci); HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0); } } #endif /* __x86_64__ */ void cpu_offline_md(void) { int s; s = splhigh(); #ifdef __i386__ npxsave_cpu(true); #else fpusave_cpu(true); #endif splx(s); } #if 0 /* XXX joerg restructure and restart CPUs individually */ static bool cpu_suspend(device_t dv PMF_FN_ARGS) { struct cpu_softc *sc = device_private(dv); struct cpu_info *ci = sc->sc_info; int err; if (ci->ci_flags & CPUF_PRIMARY) return true; if (ci->ci_data.cpu_idlelwp == NULL) return true; if ((ci->ci_flags & CPUF_PRESENT) == 0) return true; sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE); if (sc->sc_wasonline) { mutex_enter(&cpu_lock); err = cpu_setstate(ci, false); mutex_exit(&cpu_lock); if (err) return false; } return true; } static bool cpu_resume(device_t dv PMF_FN_ARGS) { struct cpu_softc *sc = device_private(dv); struct cpu_info *ci = sc->sc_info; int err = 0; if (ci->ci_flags & CPUF_PRIMARY) return true; if (ci->ci_data.cpu_idlelwp == NULL) return true; if ((ci->ci_flags & CPUF_PRESENT) == 0) return true; if (sc->sc_wasonline) { mutex_enter(&cpu_lock); err = cpu_setstate(ci, true); mutex_exit(&cpu_lock); } return err == 0; } #endif void cpu_get_tsc_freq(struct cpu_info *ci) { #ifdef XEN3 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time; delay(1000000); uint64_t freq = 1000000000ULL << 32; freq = freq / (uint64_t)tinfo->tsc_to_system_mul; if ( tinfo->tsc_shift < 0 ) freq = freq << -tinfo->tsc_shift; else freq = freq >> tinfo->tsc_shift; ci->ci_data.cpu_cc_freq = freq; #else /* Xen2 */ /* XXX this needs to read the shared_info of the CPU being probed.. */ ci->ci_data.cpu_cc_freq = HYPERVISOR_shared_info->cpu_freq; #endif /* XEN3 */ } void x86_cpu_idle_xen(void) { struct cpu_info *ci = curcpu(); KASSERT(ci->ci_ilevel == IPL_NONE); x86_disable_intr(); if (!__predict_false(ci->ci_want_resched)) { idle_block(); } else { x86_enable_intr(); } }