/* $NetBSD: linux_machdep.c,v 1.34 2008/10/26 20:25:49 christos Exp $ */ /*- * Copyright (c) 2005 Emmanuel Dreyfus, all rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Emmanuel Dreyfus * 4. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE THE AUTHOR AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: linux_machdep.c,v 1.34 2008/10/26 20:25:49 christos Exp $"); #include <sys/param.h> #include <sys/types.h> #include <sys/systm.h> #include <sys/signal.h> #include <sys/exec.h> #include <sys/proc.h> #include <sys/ptrace.h> /* for process_read_fpregs() */ #include <sys/user.h> #include <sys/wait.h> #include <sys/ucontext.h> #include <sys/conf.h> #include <machine/reg.h> #include <machine/pcb.h> #include <machine/fpu.h> #include <machine/mcontext.h> #include <machine/specialreg.h> #include <machine/vmparam.h> #include <machine/cpufunc.h> /* * To see whether wscons is configured (for virtual console ioctl calls). */ #if defined(_KERNEL_OPT) #include "wsdisplay.h" #endif #if (NWSDISPLAY > 0) #include <dev/wscons/wsconsio.h> #include <dev/wscons/wsdisplay_usl_io.h> #endif #include <compat/linux/common/linux_signal.h> #include <compat/linux/common/linux_errno.h> #include <compat/linux/common/linux_exec.h> #include <compat/linux/common/linux_ioctl.h> #include <compat/linux/common/linux_prctl.h> #include <compat/linux/common/linux_machdep.h> #include <compat/linux/common/linux_ipc.h> #include <compat/linux/common/linux_sem.h> #include <compat/linux/linux_syscall.h> #include <compat/linux/linux_syscallargs.h> static void linux_buildcontext(struct lwp *, void *, void *); void linux_setregs(struct lwp *l, struct exec_package *epp, u_long stack) { struct pcb *pcb = &l->l_addr->u_pcb; struct trapframe *tf; /* If we were using the FPU, forget about it. */ if (l->l_addr->u_pcb.pcb_fpcpu != NULL) fpusave_lwp(l, 0); l->l_md.md_flags &= ~MDP_USEDFPU; pcb->pcb_flags = 0; pcb->pcb_savefpu.fp_fxsave.fx_fcw = __NetBSD_NPXCW__; pcb->pcb_savefpu.fp_fxsave.fx_mxcsr = __INITIAL_MXCSR__; pcb->pcb_savefpu.fp_fxsave.fx_mxcsr_mask = __INITIAL_MXCSR_MASK__; pcb->pcb_fs = 0; pcb->pcb_gs = 0; l->l_proc->p_flag &= ~PK_32; tf = l->l_md.md_regs; tf->tf_rax = 0; tf->tf_rbx = 0; tf->tf_rcx = epp->ep_entry; tf->tf_rdx = 0; tf->tf_rsi = 0; tf->tf_rdi = 0; tf->tf_rbp = 0; tf->tf_rsp = stack; tf->tf_r8 = 0; tf->tf_r9 = 0; tf->tf_r10 = 0; tf->tf_r11 = 0; tf->tf_r12 = 0; tf->tf_r13 = 0; tf->tf_r14 = 0; tf->tf_r15 = 0; tf->tf_rip = epp->ep_entry; tf->tf_rflags = PSL_USERSET; tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL); tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL); tf->tf_ds = 0; tf->tf_es = 0; tf->tf_fs = 0; tf->tf_gs = 0; return; } void linux_sendsig(const ksiginfo_t *ksi, const sigset_t *mask) { struct lwp *l = curlwp; struct proc *p = l->l_proc; struct sigacts *ps = p->p_sigacts; int onstack, error; int sig = ksi->ksi_signo; struct linux_rt_sigframe *sfp, sigframe; struct linux__fpstate *fpsp, fpstate; struct fpreg fpregs; struct trapframe *tf = l->l_md.md_regs; sig_t catcher = SIGACTION(p, sig).sa_handler; linux_sigset_t lmask; char *sp; /* Do we need to jump onto the signal stack? */ onstack = (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 && (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0; /* Allocate space for the signal handler context. */ if (onstack) sp = ((char *)l->l_sigstk.ss_sp + l->l_sigstk.ss_size); else sp = (char *)tf->tf_rsp - 128; /* * Save FPU state, if any */ if (l->l_md.md_flags & MDP_USEDFPU) { sp = (char *) (((long)sp - sizeof(struct linux__fpstate)) & ~0xfUL); fpsp = (struct linux__fpstate *)sp; } else fpsp = NULL; /* * Populate the rt_sigframe */ sp = (char *) ((((long)sp - sizeof(struct linux_rt_sigframe)) & ~0xfUL) - 8); sfp = (struct linux_rt_sigframe *)sp; bzero(&sigframe, sizeof(sigframe)); if (ps->sa_sigdesc[sig].sd_vers != 0) sigframe.pretcode = (char *)(u_long)ps->sa_sigdesc[sig].sd_tramp; else sigframe.pretcode = NULL; /* * The user context */ sigframe.uc.luc_flags = 0; sigframe.uc.luc_link = NULL; /* This is used regardless of SA_ONSTACK in Linux */ sigframe.uc.luc_stack.ss_sp = l->l_sigstk.ss_sp; sigframe.uc.luc_stack.ss_size = l->l_sigstk.ss_size; sigframe.uc.luc_stack.ss_flags = 0; if (l->l_sigstk.ss_flags & SS_ONSTACK) sigframe.uc.luc_stack.ss_flags |= LINUX_SS_ONSTACK; if (l->l_sigstk.ss_flags & SS_DISABLE) sigframe.uc.luc_stack.ss_flags |= LINUX_SS_DISABLE; sigframe.uc.luc_mcontext.r8 = tf->tf_r8; sigframe.uc.luc_mcontext.r9 = tf->tf_r9; sigframe.uc.luc_mcontext.r10 = tf->tf_r10; sigframe.uc.luc_mcontext.r11 = tf->tf_r11; sigframe.uc.luc_mcontext.r12 = tf->tf_r12; sigframe.uc.luc_mcontext.r13 = tf->tf_r13; sigframe.uc.luc_mcontext.r14 = tf->tf_r14; sigframe.uc.luc_mcontext.r15 = tf->tf_r15; sigframe.uc.luc_mcontext.rdi = tf->tf_rdi; sigframe.uc.luc_mcontext.rsi = tf->tf_rsi; sigframe.uc.luc_mcontext.rbp = tf->tf_rbp; sigframe.uc.luc_mcontext.rbx = tf->tf_rbx; sigframe.uc.luc_mcontext.rdx = tf->tf_rdx; sigframe.uc.luc_mcontext.rax = tf->tf_rax; sigframe.uc.luc_mcontext.rcx = tf->tf_rcx; sigframe.uc.luc_mcontext.rsp = tf->tf_rsp; sigframe.uc.luc_mcontext.rip = tf->tf_rip; sigframe.uc.luc_mcontext.eflags = tf->tf_rflags; sigframe.uc.luc_mcontext.cs = tf->tf_cs; sigframe.uc.luc_mcontext.gs = tf->tf_gs; sigframe.uc.luc_mcontext.fs = tf->tf_fs; sigframe.uc.luc_mcontext.err = tf->tf_err; sigframe.uc.luc_mcontext.trapno = tf->tf_trapno; native_to_linux_sigset(&lmask, mask); sigframe.uc.luc_mcontext.oldmask = lmask.sig[0]; sigframe.uc.luc_mcontext.cr2 = (long)l->l_addr->u_pcb.pcb_onfault; sigframe.uc.luc_mcontext.fpstate = fpsp; native_to_linux_sigset(&sigframe.uc.luc_sigmask, mask); /* * the siginfo structure */ sigframe.info.lsi_signo = native_to_linux_signo[sig]; sigframe.info.lsi_errno = native_to_linux_errno[ksi->ksi_errno]; sigframe.info.lsi_code = native_to_linux_si_code(ksi->ksi_code); /* XXX This is a rought conversion, taken from i386 code */ switch (sigframe.info.lsi_signo) { case LINUX_SIGILL: case LINUX_SIGFPE: case LINUX_SIGSEGV: case LINUX_SIGBUS: case LINUX_SIGTRAP: sigframe.info._sifields._sigfault._addr = ksi->ksi_addr; break; case LINUX_SIGCHLD: sigframe.info._sifields._sigchld._pid = ksi->ksi_pid; sigframe.info._sifields._sigchld._uid = ksi->ksi_uid; sigframe.info._sifields._sigchld._utime = ksi->ksi_utime; sigframe.info._sifields._sigchld._stime = ksi->ksi_stime; if (WCOREDUMP(ksi->ksi_status)) { sigframe.info.lsi_code = LINUX_CLD_DUMPED; sigframe.info._sifields._sigchld._status = _WSTATUS(ksi->ksi_status); } else if (_WSTATUS(ksi->ksi_status)) { sigframe.info.lsi_code = LINUX_CLD_KILLED; sigframe.info._sifields._sigchld._status = _WSTATUS(ksi->ksi_status); } else { sigframe.info.lsi_code = LINUX_CLD_EXITED; sigframe.info._sifields._sigchld._status = ((ksi->ksi_status & 0xff00U) >> 8); } break; case LINUX_SIGIO: sigframe.info._sifields._sigpoll._band = ksi->ksi_band; sigframe.info._sifields._sigpoll._fd = ksi->ksi_fd; break; default: sigframe.info._sifields._sigchld._pid = ksi->ksi_pid; sigframe.info._sifields._sigchld._uid = ksi->ksi_uid; if ((sigframe.info.lsi_signo == LINUX_SIGALRM) || (sigframe.info.lsi_signo >= LINUX_SIGRTMIN)) sigframe.info._sifields._timer._sigval.sival_ptr = ksi->ksi_value.sival_ptr; break; } sendsig_reset(l, sig); mutex_exit(p->p_lock); error = 0; /* * Save FPU state, if any */ if (fpsp != NULL) { (void)process_read_fpregs(l, &fpregs); bzero(&fpstate, sizeof(fpstate)); fpstate.cwd = fpregs.fp_fcw; fpstate.swd = fpregs.fp_fsw; fpstate.twd = fpregs.fp_ftw; fpstate.fop = fpregs.fp_fop; fpstate.rip = fpregs.fp_rip; fpstate.rdp = fpregs.fp_rdp; fpstate.mxcsr = fpregs.fp_mxcsr; fpstate.mxcsr_mask = fpregs.fp_mxcsr_mask; memcpy(&fpstate.st_space, &fpregs.fp_st, sizeof(fpstate.st_space)); memcpy(&fpstate.xmm_space, &fpregs.fp_xmm, sizeof(fpstate.xmm_space)); error = copyout(&fpstate, fpsp, sizeof(fpstate)); } if (error == 0) error = copyout(&sigframe, sp, sizeof(sigframe)); mutex_enter(p->p_lock); if (error != 0) { sigexit(l, SIGILL); return; } linux_buildcontext(l, catcher, sp); tf->tf_rdi = sigframe.info.lsi_signo; tf->tf_rax = 0; tf->tf_rsi = (long)&sfp->info; tf->tf_rdx = (long)&sfp->uc; /* * Remember we use signal stack */ if (onstack) l->l_sigstk.ss_flags |= SS_ONSTACK; return; } int linux_sys_modify_ldt(struct lwp *l, const struct linux_sys_modify_ldt_args *v, register_t *retval) { printf("linux_sys_modify_ldt\n"); return 0; } int linux_sys_iopl(struct lwp *l, const struct linux_sys_iopl_args *v, register_t *retval) { return 0; } int linux_sys_ioperm(struct lwp *l, const struct linux_sys_ioperm_args *v, register_t *retval) { return 0; } dev_t linux_fakedev(dev_t dev, int raw) { extern const struct cdevsw ptc_cdevsw, pts_cdevsw; const struct cdevsw *cd = cdevsw_lookup(dev); if (raw) { #if (NWSDISPLAY > 0) extern const struct cdevsw wsdisplay_cdevsw; if (cd == &wsdisplay_cdevsw) return makedev(LINUX_CONS_MAJOR, (minor(dev) + 1)); #endif } if (cd == &ptc_cdevsw) return makedev(LINUX_PTC_MAJOR, minor(dev)); if (cd == &pts_cdevsw) return makedev(LINUX_PTS_MAJOR, minor(dev)); return ((minor(dev) & 0xff) | ((major(dev) & 0xfff) << 8) | (((unsigned long long int) (minor(dev) & ~0xff)) << 12) | (((unsigned long long int) (major(dev) & ~0xfff)) << 32)); } int linux_machdepioctl(struct lwp *l, const struct linux_sys_ioctl_args *v, register_t *retval) { return 0; } int linux_sys_rt_sigreturn(struct lwp *l, const void *v, register_t *retval) { struct linux_ucontext *luctx; struct trapframe *tf = l->l_md.md_regs; struct linux_sigcontext *lsigctx; struct linux__fpstate fpstate; struct linux_rt_sigframe frame, *fp; ucontext_t uctx; mcontext_t *mctx; struct fxsave64 *fxarea; int error; fp = (struct linux_rt_sigframe *)(tf->tf_rsp - 8); if ((error = copyin(fp, &frame, sizeof(frame))) != 0) { mutex_enter(l->l_proc->p_lock); sigexit(l, SIGILL); return error; } luctx = &frame.uc; lsigctx = &luctx->luc_mcontext; bzero(&uctx, sizeof(uctx)); mctx = (mcontext_t *)&uctx.uc_mcontext; fxarea = (struct fxsave64 *)&mctx->__fpregs; /* * Set the flags. Linux always have CPU, stack and signal state, * FPU is optional. uc_flags is not used to tell what we have. */ uctx.uc_flags = (_UC_SIGMASK|_UC_CPU|_UC_STACK|_UC_CLRSTACK); if (lsigctx->fpstate != NULL) uctx.uc_flags |= _UC_FPU; uctx.uc_link = NULL; /* * Signal set */ linux_to_native_sigset(&uctx.uc_sigmask, &luctx->luc_sigmask); /* * CPU state */ mctx->__gregs[_REG_R8] = lsigctx->r8; mctx->__gregs[_REG_R9] = lsigctx->r9; mctx->__gregs[_REG_R10] = lsigctx->r10; mctx->__gregs[_REG_R11] = lsigctx->r11; mctx->__gregs[_REG_R12] = lsigctx->r12; mctx->__gregs[_REG_R13] = lsigctx->r13; mctx->__gregs[_REG_R14] = lsigctx->r14; mctx->__gregs[_REG_R15] = lsigctx->r15; mctx->__gregs[_REG_RDI] = lsigctx->rdi; mctx->__gregs[_REG_RSI] = lsigctx->rsi; mctx->__gregs[_REG_RBP] = lsigctx->rbp; mctx->__gregs[_REG_RBX] = lsigctx->rbx; mctx->__gregs[_REG_RAX] = lsigctx->rax; mctx->__gregs[_REG_RDX] = lsigctx->rdx; mctx->__gregs[_REG_RCX] = lsigctx->rcx; mctx->__gregs[_REG_RIP] = lsigctx->rip; mctx->__gregs[_REG_RFLAGS] = lsigctx->eflags; mctx->__gregs[_REG_CS] = lsigctx->cs; mctx->__gregs[_REG_GS] = lsigctx->gs; mctx->__gregs[_REG_FS] = lsigctx->fs; mctx->__gregs[_REG_ERR] = lsigctx->err; mctx->__gregs[_REG_TRAPNO] = lsigctx->trapno; mctx->__gregs[_REG_ES] = tf->tf_es; mctx->__gregs[_REG_DS] = tf->tf_ds; mctx->__gregs[_REG_RSP] = lsigctx->rsp; /* XXX */ mctx->__gregs[_REG_SS] = tf->tf_ss; /* * FPU state */ if (lsigctx->fpstate != NULL) { error = copyin(lsigctx->fpstate, &fpstate, sizeof(fpstate)); if (error != 0) { mutex_enter(l->l_proc->p_lock); sigexit(l, SIGILL); return error; } fxarea->fx_fcw = fpstate.cwd; fxarea->fx_fsw = fpstate.swd; fxarea->fx_ftw = fpstate.twd; fxarea->fx_fop = fpstate.fop; fxarea->fx_rip = fpstate.rip; fxarea->fx_rdp = fpstate.rdp; fxarea->fx_mxcsr = fpstate.mxcsr; fxarea->fx_mxcsr_mask = fpstate.mxcsr_mask; memcpy(&fxarea->fx_st, &fpstate.st_space, sizeof(fxarea->fx_st)); memcpy(&fxarea->fx_xmm, &fpstate.xmm_space, sizeof(fxarea->fx_xmm)); } /* * And the stack */ uctx.uc_stack.ss_flags = 0; if (luctx->luc_stack.ss_flags & LINUX_SS_ONSTACK) uctx.uc_stack.ss_flags |= SS_ONSTACK; if (luctx->luc_stack.ss_flags & LINUX_SS_DISABLE) uctx.uc_stack.ss_flags |= SS_DISABLE; uctx.uc_stack.ss_sp = luctx->luc_stack.ss_sp; uctx.uc_stack.ss_size = luctx->luc_stack.ss_size; /* * And let setucontext deal with that. */ mutex_enter(l->l_proc->p_lock); error = setucontext(l, &uctx); mutex_exit(l->l_proc->p_lock); if (error) return error; return EJUSTRETURN; } int linux_sys_arch_prctl(struct lwp *l, const struct linux_sys_arch_prctl_args *uap, register_t *retval) { /* { syscallarg(int) code; syscallarg(unsigned long) addr; } */ struct pcb *pcb = &l->l_addr->u_pcb; struct trapframe *tf = l->l_md.md_regs; int error; uint64_t taddr; switch(SCARG(uap, code)) { case LINUX_ARCH_SET_GS: taddr = SCARG(uap, addr); if (taddr >= VM_MAXUSER_ADDRESS) return EINVAL; pcb->pcb_gs = taddr; pcb->pcb_flags |= PCB_GS64; if (l == curlwp) wrmsr(MSR_KERNELGSBASE, taddr); break; case LINUX_ARCH_GET_GS: if (pcb->pcb_flags & PCB_GS64) taddr = pcb->pcb_gs; else { error = memseg_baseaddr(l, tf->tf_fs, NULL, 0, &taddr); if (error != 0) return error; } error = copyout(&taddr, (char *)SCARG(uap, addr), 8); if (error != 0) return error; break; case LINUX_ARCH_SET_FS: taddr = SCARG(uap, addr); if (taddr >= VM_MAXUSER_ADDRESS) return EINVAL; pcb->pcb_fs = taddr; pcb->pcb_flags |= PCB_FS64; if (l == curlwp) wrmsr(MSR_FSBASE, taddr); break; case LINUX_ARCH_GET_FS: if (pcb->pcb_flags & PCB_FS64) taddr = pcb->pcb_fs; else { error = memseg_baseaddr(l, tf->tf_fs, NULL, 0, &taddr); if (error != 0) return error; } error = copyout(&taddr, (char *)SCARG(uap, addr), 8); if (error != 0) return error; break; default: #ifdef DEBUG_LINUX printf("linux_sys_arch_prctl: unexpected code %d\n", SCARG(uap, code)); #endif return EINVAL; } return 0; } const int linux_vsyscall_to_syscall[] = { LINUX_SYS_gettimeofday, LINUX_SYS_time, LINUX_SYS_nosys, /* nosys */ LINUX_SYS_nosys, /* nosys */ }; int linux_usertrap(struct lwp *l, vaddr_t trapaddr, void *arg) { struct trapframe *tf = arg; uint64_t retaddr; int vsyscallnr; /* * Check for a vsyscall. %rip must be the fault address, * and the address must be in the Linux vsyscall area. * Also, vsyscalls are only done at 1024-byte boundaries. */ if (__predict_true(trapaddr < LINUX_VSYSCALL_START)) return 0; if (trapaddr != tf->tf_rip) return 0; if ((tf->tf_rip & (LINUX_VSYSCALL_SIZE - 1)) != 0) return 0; vsyscallnr = (tf->tf_rip - LINUX_VSYSCALL_START) / LINUX_VSYSCALL_SIZE; if (vsyscallnr > LINUX_VSYSCALL_MAXNR) return 0; /* * Get the return address from the top of the stack, * and fix up the return address. * This assumes the faulting instruction was callq *reg, * which is the only way that vsyscalls are ever entered. */ if (copyin((void *)tf->tf_rsp, &retaddr, sizeof retaddr) != 0) return 0; tf->tf_rip = retaddr; tf->tf_rax = linux_vsyscall_to_syscall[vsyscallnr]; tf->tf_rsp += 8; /* "pop" the return address */ #if 0 printf("usertrap: rip %p rsp %p retaddr %p vsys %d sys %d\n", (void *)tf->tf_rip, (void *)tf->tf_rsp, (void *)retaddr, vsyscallnr, (int)tf->tf_rax); #endif (*l->l_proc->p_md.md_syscall)(tf); return 1; } static void linux_buildcontext(struct lwp *l, void *catcher, void *f) { struct trapframe *tf = l->l_md.md_regs; tf->tf_ds = GSEL(GUDATA_SEL, SEL_UPL); tf->tf_rip = (u_int64_t)catcher; tf->tf_cs = GSEL(GUCODE_SEL, SEL_UPL); tf->tf_rflags &= ~PSL_CLEARSIG; tf->tf_rsp = (u_int64_t)f; tf->tf_ss = GSEL(GUDATA_SEL, SEL_UPL); } void * linux_get_newtls(struct lwp *l) { struct trapframe *tf = l->l_md.md_regs; return (void *)tf->tf_r8; } int linux_set_newtls(struct lwp *l, void *tls) { struct linux_sys_arch_prctl_args cup; register_t retval; SCARG(&cup, code) = LINUX_ARCH_SET_FS; SCARG(&cup, addr) = (unsigned long)tls; return linux_sys_arch_prctl(l, &cup, &retval); }