/* $NetBSD: kern_ksyms.c,v 1.41.4.1 2009/03/31 23:23:15 snj Exp $ */ /*- * Copyright (c) 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software developed for The NetBSD Foundation * by Andrew Doran. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 2001, 2003 Anders Magnusson (ragge@ludd.luth.se). * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Code to deal with in-kernel symbol table management + /dev/ksyms. * * For each loaded module the symbol table info is kept track of by a * struct, placed in a circular list. The first entry is the kernel * symbol table. */ /* * TODO: * * Consider replacing patricia tree with simpler binary search * for symbol tables. * * Add support for mmap, poll. */ #include <sys/cdefs.h> __KERNEL_RCSID(0, "$NetBSD: kern_ksyms.c,v 1.41.4.1 2009/03/31 23:23:15 snj Exp $"); #ifdef _KERNEL #include "opt_ddb.h" #include "opt_ddbparam.h" /* for SYMTAB_SPACE */ #endif #define _KSYMS_PRIVATE #include <sys/param.h> #include <sys/errno.h> #include <sys/queue.h> #include <sys/exec.h> #include <sys/systm.h> #include <sys/conf.h> #include <sys/malloc.h> #include <sys/kmem.h> #include <sys/proc.h> #include <sys/module.h> #include <sys/atomic.h> #include <sys/ksyms.h> #include <lib/libkern/libkern.h> #ifdef DDB #include <ddb/db_output.h> #endif #include "ksyms.h" static int ksyms_maxlen; static bool ksyms_isopen; static bool ksyms_initted; static struct ksyms_hdr ksyms_hdr; static kmutex_t ksyms_lock; void ksymsattach(int); static void ksyms_hdr_init(void *); static void ksyms_sizes_calc(void); #ifdef KSYMS_DEBUG #define FOLLOW_CALLS 1 #define FOLLOW_MORE_CALLS 2 #define FOLLOW_DEVKSYMS 4 static int ksyms_debug; #endif #ifdef SYMTAB_SPACE #define SYMTAB_FILLER "|This is the symbol table!" char db_symtab[SYMTAB_SPACE] = SYMTAB_FILLER; int db_symtabsize = SYMTAB_SPACE; #endif int ksyms_symsz; int ksyms_strsz; TAILQ_HEAD(, ksyms_symtab) ksyms_symtabs = TAILQ_HEAD_INITIALIZER(ksyms_symtabs); static struct ksyms_symtab kernel_symtab; /* * Patricia-tree-based lookup structure for the in-kernel global symbols. * Based on a design by Mikael Sundstrom, msm@sm.luth.se. */ struct ptree { int16_t bitno; int16_t lr[2]; } *symb; static int16_t baseidx; static int treex = 1; #define P_BIT(key, bit) ((key[bit >> 3] >> (bit & 7)) & 1) #define STRING(idx) (kernel_symtab.sd_symstart[idx].st_name + \ kernel_symtab.sd_strstart) static int ksyms_verify(void *symstart, void *strstart) { #if defined(DIAGNOSTIC) || defined(DEBUG) if (symstart == NULL) printf("ksyms: Symbol table not found\n"); if (strstart == NULL) printf("ksyms: String table not found\n"); if (symstart == NULL || strstart == NULL) printf("ksyms: Perhaps the kernel is stripped?\n"); #endif if (symstart == NULL || strstart == NULL) return 0; KASSERT(symstart <= strstart); return 1; } /* * Walk down the tree until a terminal node is found. */ static int symbol_traverse(const char *key) { int16_t nb, rbit = baseidx; while (rbit > 0) { nb = symb[rbit].bitno; rbit = symb[rbit].lr[P_BIT(key, nb)]; } return -rbit; } static int ptree_add(char *key, int val) { int idx; int nix, cix, bit, rbit, sb, lastrbit, svbit = 0, ix; char *m, *k; if (baseidx == 0) { baseidx = -val; return 0; /* First element */ } /* Get string to match against */ idx = symbol_traverse(key); /* Find first mismatching bit */ m = STRING(idx); k = key; if (strcmp(m, k) == 0) return 1; for (cix = 0; *m && *k && *m == *k; m++, k++, cix += 8) ; ix = ffs((int)*m ^ (int)*k) - 1; cix += ix; /* Create new node */ nix = treex++; bit = P_BIT(key, cix); symb[nix].bitno = cix; symb[nix].lr[bit] = -val; /* Find where to insert node */ rbit = baseidx; lastrbit = 0; for (;;) { if (rbit < 0) break; sb = symb[rbit].bitno; if (sb > cix) break; if (sb == cix) printf("symb[rbit].bitno == cix!!!\n"); lastrbit = rbit; svbit = P_BIT(key, sb); rbit = symb[rbit].lr[svbit]; } /* Do the actual insertion */ if (lastrbit == 0) { /* first element */ symb[nix].lr[!bit] = baseidx; baseidx = nix; } else { symb[nix].lr[!bit] = rbit; symb[lastrbit].lr[svbit] = nix; } return 0; } static int ptree_find(const char *key) { int idx; if (baseidx == 0) return 0; idx = symbol_traverse(key); if (strcmp(key, STRING(idx)) == 0) return idx; return 0; } static void ptree_gen(char *off, struct ksyms_symtab *tab) { Elf_Sym *sym; int i, nsym; if (off != NULL) symb = (struct ptree *)ALIGN(off); else symb = malloc((tab->sd_symsize/sizeof(Elf_Sym)) * sizeof(struct ptree), M_DEVBUF, M_WAITOK); symb--; /* sym index won't be 0 */ sym = tab->sd_symstart; if ((nsym = tab->sd_symsize/sizeof(Elf_Sym)) > INT16_MAX) { printf("Too many symbols for tree, skipping %d symbols\n", nsym-INT16_MAX); nsym = INT16_MAX; } for (i = 1; i < nsym; i++) { if (ELF_ST_BIND(sym[i].st_info) != STB_GLOBAL) continue; ptree_add(tab->sd_strstart+sym[i].st_name, i); if (tab->sd_minsym == NULL || sym[i].st_value < tab->sd_minsym->st_value) tab->sd_minsym = &sym[i]; if (tab->sd_maxsym == NULL || sym[i].st_value > tab->sd_maxsym->st_value) tab->sd_maxsym = &sym[i]; } } /* * Finds a certain symbol name in a certain symbol table. */ static Elf_Sym * findsym(const char *name, struct ksyms_symtab *table) { Elf_Sym *start = table->sd_symstart; int i, sz = table->sd_symsize/sizeof(Elf_Sym); char *np; char *realstart = table->sd_strstart - table->sd_usroffset; if (table == &kernel_symtab && (i = ptree_find(name)) != 0) return &start[i]; for (i = 0; i < sz; i++) { np = realstart + start[i].st_name; if (name[0] == np[0] && name[1] == np[1] && strcmp(name, np) == 0) return &start[i]; } return NULL; } /* * The "attach" is in reality done in ksyms_init(). */ void ksymsattach(int arg) { if (baseidx == 0) ptree_gen(0, &kernel_symtab); } /* * Add a symbol table. * This is intended for use when the symbol table and its corresponding * string table are easily available. If they are embedded in an ELF * image, use addsymtab_elf() instead. * * name - Symbol's table name. * symstart, symsize - Address and size of the symbol table. * strstart, strsize - Address and size of the string table. * tab - Symbol table to be updated with this information. * newstart - Address to which the symbol table has to be copied during * shrinking. If NULL, it is not moved. */ static void addsymtab(const char *name, void *symstart, size_t symsize, void *strstart, size_t strsize, struct ksyms_symtab *tab, void *newstart) { Elf_Sym *sym, *nsym; int i, j, n; char *str; tab->sd_symstart = symstart; tab->sd_symsize = symsize; tab->sd_strstart = strstart; tab->sd_strsize = strsize; tab->sd_name = name; tab->sd_minsym = NULL; tab->sd_maxsym = NULL; tab->sd_usroffset = 0; tab->sd_gone = false; tab->sd_malloc = false; /* XXXLKM */ #ifdef KSYMS_DEBUG printf("newstart %p sym %p ksyms_symsz %d str %p strsz %d send %p\n", newstart, symstart, symsize, strstart, strsize, tab->sd_strstart + tab->sd_strsize); #endif /* Pack symbol table by removing all file name references. */ sym = tab->sd_symstart; nsym = (Elf_Sym *)newstart; str = tab->sd_strstart; for (i = n = 0; i < tab->sd_symsize/sizeof(Elf_Sym); i++) { /* * Remove useless symbols. * Should actually remove all typeless symbols. */ if (sym[i].st_name == 0) continue; /* Skip nameless entries */ if (sym[i].st_shndx == SHN_UNDEF) continue; /* Skip external references */ if (ELF_ST_TYPE(sym[i].st_info) == STT_FILE) continue; /* Skip filenames */ if (ELF_ST_TYPE(sym[i].st_info) == STT_NOTYPE && sym[i].st_value == 0 && strcmp(str + sym[i].st_name, "*ABS*") == 0) continue; /* XXX */ if (ELF_ST_TYPE(sym[i].st_info) == STT_NOTYPE && strcmp(str + sym[i].st_name, "gcc2_compiled.") == 0) continue; /* XXX */ /* Save symbol. Set it as an absolute offset */ nsym[n] = sym[i]; nsym[n].st_shndx = SHN_ABS; j = strlen(nsym[n].st_name + tab->sd_strstart) + 1; if (j > ksyms_maxlen) ksyms_maxlen = j; n++; } tab->sd_symstart = nsym; tab->sd_symsize = n * sizeof(Elf_Sym); /* ksymsread() is unlocked, so membar. */ membar_producer(); TAILQ_INSERT_TAIL(&ksyms_symtabs, tab, sd_queue); ksyms_sizes_calc(); ksyms_initted = true; } void ksyms_init_finalize() { mutex_init(&ksyms_lock, MUTEX_DEFAULT, IPL_NONE); } /* * Setup the kernel symbol table stuff. */ void ksyms_init(int symsize, void *start, void *end) { int i, j; Elf_Shdr *shdr; char *symstart = NULL, *strstart = NULL; size_t strsize = 0; Elf_Ehdr *ehdr; #ifdef SYMTAB_SPACE if (symsize <= 0 && strncmp(db_symtab, SYMTAB_FILLER, sizeof(SYMTAB_FILLER))) { symsize = db_symtabsize; start = db_symtab; end = db_symtab + db_symtabsize; } #endif if (symsize <= 0) { printf("[ Kernel symbol table missing! ]\n"); return; } /* Sanity check */ if (ALIGNED_POINTER(start, long) == 0) { printf("[ Kernel symbol table has bad start address %p ]\n", start); return; } ehdr = (Elf_Ehdr *)start; /* check if this is a valid ELF header */ /* No reason to verify arch type, the kernel is actually running! */ if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) || ehdr->e_ident[EI_CLASS] != ELFCLASS || ehdr->e_version > 1) { printf("[ Kernel symbol table invalid! ]\n"); return; /* nothing to do */ } /* Loaded header will be scratched in addsymtab */ ksyms_hdr_init(start); /* Find the symbol table and the corresponding string table. */ shdr = (Elf_Shdr *)((uint8_t *)start + ehdr->e_shoff); for (i = 1; i < ehdr->e_shnum; i++) { if (shdr[i].sh_type != SHT_SYMTAB) continue; if (shdr[i].sh_offset == 0) continue; symstart = (uint8_t *)start + shdr[i].sh_offset; symsize = shdr[i].sh_size; j = shdr[i].sh_link; if (shdr[j].sh_offset == 0) continue; /* Can this happen? */ strstart = (uint8_t *)start + shdr[j].sh_offset; strsize = shdr[j].sh_size; break; } if (!ksyms_verify(symstart, strstart)) return; addsymtab("netbsd", symstart, symsize, strstart, strsize, &kernel_symtab, start); #ifdef DEBUG printf("Loaded initial symtab at %p, strtab at %p, # entries %ld\n", kernel_symtab.sd_symstart, kernel_symtab.sd_strstart, (long)kernel_symtab.sd_symsize/sizeof(Elf_Sym)); #endif } /* * Setup the kernel symbol table stuff. * Use this when the address of the symbol and string tables are known; * otherwise use ksyms_init with an ELF image. * We need to pass a minimal ELF header which will later be completed by * ksyms_hdr_init and handed off to userland through /dev/ksyms. We use * a void *rather than a pointer to avoid exposing the Elf_Ehdr type. */ void ksyms_init_explicit(void *ehdr, void *symstart, size_t symsize, void *strstart, size_t strsize) { if (!ksyms_verify(symstart, strstart)) return; ksyms_hdr_init(ehdr); addsymtab("netbsd", symstart, symsize, strstart, strsize, &kernel_symtab, symstart); } /* * Get the value associated with a symbol. * "mod" is the module name, or null if any module. * "sym" is the symbol name. * "val" is a pointer to the corresponding value, if call succeeded. * Returns 0 if success or ENOENT if no such entry. * * Call with ksyms_lock, unless known that the symbol table can't change. */ int ksyms_getval_unlocked(const char *mod, const char *sym, unsigned long *val, int type) { struct ksyms_symtab *st; Elf_Sym *es; if (!ksyms_initted) return ENOENT; #ifdef KSYMS_DEBUG if (ksyms_debug & FOLLOW_CALLS) printf("ksyms_getval_unlocked: mod %s sym %s valp %p\n", mod, sym, val); #endif TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (st->sd_gone) continue; if (mod && strcmp(st->sd_name, mod)) continue; if ((es = findsym(sym, st)) == NULL) continue; if (es->st_shndx == SHN_UNDEF) continue; /* Skip if bad binding */ if (type == KSYMS_EXTERN && ELF_ST_BIND(es->st_info) != STB_GLOBAL) continue; if (val) *val = es->st_value; return 0; } return ENOENT; } int ksyms_getval(const char *mod, const char *sym, unsigned long *val, int type) { int rc; mutex_enter(&ksyms_lock); rc = ksyms_getval_unlocked(mod, sym, val, type); mutex_exit(&ksyms_lock); return rc; } /* * Get "mod" and "symbol" associated with an address. * Returns 0 if success or ENOENT if no such entry. * * Call with ksyms_lock, unless known that the symbol table can't change. */ int ksyms_getname(const char **mod, const char **sym, vaddr_t v, int f) { struct ksyms_symtab *st; Elf_Sym *les, *es = NULL; vaddr_t laddr = 0; const char *lmod = NULL; char *stable = NULL; int type, i, sz; if (!ksyms_initted) return ENOENT; TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (st->sd_gone) continue; if (st->sd_minsym != NULL && v < st->sd_minsym->st_value) continue; if (st->sd_maxsym != NULL && v > st->sd_maxsym->st_value) continue; sz = st->sd_symsize/sizeof(Elf_Sym); for (i = 0; i < sz; i++) { les = st->sd_symstart + i; type = ELF_ST_TYPE(les->st_info); if ((f & KSYMS_PROC) && (type != STT_FUNC)) continue; if (type == STT_NOTYPE) continue; if (((f & KSYMS_ANY) == 0) && (type != STT_FUNC) && (type != STT_OBJECT)) continue; if ((les->st_value <= v) && (les->st_value > laddr)) { laddr = les->st_value; es = les; lmod = st->sd_name; stable = st->sd_strstart - st->sd_usroffset; } } } if (es == NULL) return ENOENT; if ((f & KSYMS_EXACT) && (v != es->st_value)) return ENOENT; if (mod) *mod = lmod; if (sym) *sym = stable + es->st_name; return 0; } /* * Temporary work structure for dynamic loaded symbol tables. * * XXX REMOVE WHEN LKMS GO. */ struct syminfo { size_t cursyms; size_t curnamep; size_t maxsyms; size_t maxnamep; Elf_Sym *syms; char *symnames; }; /* * Add a symbol to the temporary save area for symbols. * * XXX REMOVE WHEN LKMS GO. */ static void addsym(struct syminfo *info, const Elf_Sym *sym, const char *name, const char *mod) { int len, mlen; #ifdef KSYMS_DEBUG if (ksyms_debug & FOLLOW_MORE_CALLS) printf("addsym: name %s val %lx\n", name, (long)sym->st_value); #endif len = strlen(name) + 1; if (mod) mlen = 1 + strlen(mod); else mlen = 0; if (info->cursyms == info->maxsyms || (len + mlen + info->curnamep) > info->maxnamep) { printf("addsym: too many symbols, skipping '%s'\n", name); return; } strlcpy(&info->symnames[info->curnamep], name, info->maxnamep - info->curnamep); if (mlen) { info->symnames[info->curnamep + len - 1] = '.'; strlcpy(&info->symnames[info->curnamep + len], mod, info->maxnamep - (info->curnamep + len)); len += mlen; } info->syms[info->cursyms] = *sym; info->syms[info->cursyms].st_name = info->curnamep; info->curnamep += len; if (len > ksyms_maxlen) ksyms_maxlen = len; info->cursyms++; } /* * XXX REMOVE WHEN LKMS GO. */ static int specialsym(const char *symname) { return !strcmp(symname, "_bss_start") || !strcmp(symname, "__bss_start") || !strcmp(symname, "_bss_end__") || !strcmp(symname, "__bss_end__") || !strcmp(symname, "_edata") || !strcmp(symname, "_end") || !strcmp(symname, "__end") || !strcmp(symname, "__end__") || !strncmp(symname, "__start_link_set_", 17) || !strncmp(symname, "__stop_link_set_", 16); } /* * Adds a symbol table. * "name" is the module name, "start" and "size" is where the symbol table * is located, and "type" is in which binary format the symbol table is. * New memory for keeping the symbol table is allocated in this function. * Returns 0 if success and EEXIST if the module name is in use. * * XXX REMOVE WHEN LKMS GO. */ int ksyms_addsymtab(const char *mod, void *symstart, vsize_t symsize, char *strstart, vsize_t strsize) { Elf_Sym *sym = symstart; struct ksyms_symtab *st; unsigned long rval; int i; char *name; struct syminfo info; #ifdef KSYMS_DEBUG if (ksyms_debug & FOLLOW_CALLS) printf("ksyms_addsymtab: mod %s symsize %lx strsize %lx\n", mod, symsize, strsize); #endif mutex_enter(&ksyms_lock); /* Check if this symtab already loaded */ TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (st->sd_gone) continue; if (strcmp(mod, st->sd_name) == 0) { mutex_exit(&ksyms_lock); return EEXIST; } } /* * XXX - Only add a symbol if it do not exist already. * This is because of a flaw in the current LKM implementation, * these loops will be removed once the in-kernel linker is in place. */ memset(&info, 0, sizeof(info)); for (i = 0; i < symsize/sizeof(Elf_Sym); i++) { char * const symname = strstart + sym[i].st_name; if (sym[i].st_name == 0) continue; /* Just ignore */ /* check validity of the symbol */ /* XXX - save local symbols if DDB */ if (ELF_ST_BIND(sym[i].st_info) != STB_GLOBAL) continue; /* Check if the symbol exists */ if (ksyms_getval_unlocked(NULL, symname, &rval, KSYMS_EXTERN) == 0) { /* Check (and complain) about differing values */ if (sym[i].st_value != rval && sym[i].st_shndx != SHN_UNDEF) { if (specialsym(symname)) { info.maxsyms++; info.maxnamep += strlen(symname) + 1 + strlen(mod) + 1; } else { printf("%s: symbol '%s' redeclared with" " different value (%lx != %lx)\n", mod, symname, rval, (long)sym[i].st_value); } } } else { /* * Count this symbol */ info.maxsyms++; info.maxnamep += strlen(symname) + 1; } } /* * Now that we know the sizes, malloc the structures. */ info.syms = malloc(sizeof(Elf_Sym)*info.maxsyms, M_DEVBUF, M_WAITOK); info.symnames = malloc(info.maxnamep, M_DEVBUF, M_WAITOK); /* * Now that we have the symbols, actually fill in the structures. */ for (i = 0; i < symsize/sizeof(Elf_Sym); i++) { char * const symname = strstart + sym[i].st_name; if (sym[i].st_name == 0) continue; /* Just ignore */ /* check validity of the symbol */ /* XXX - save local symbols if DDB */ if (ELF_ST_BIND(sym[i].st_info) != STB_GLOBAL) continue; /* Check if the symbol exists */ if (ksyms_getval_unlocked(NULL, symname, &rval, KSYMS_EXTERN) == 0) { if ((sym[i].st_value != rval) && specialsym(symname)) { addsym(&info, &sym[i], symname, mod); } } else /* Ok, save this symbol */ addsym(&info, &sym[i], symname, NULL); } st = kmem_zalloc(sizeof(*st), KM_SLEEP); i = strlen(mod) + 1; name = malloc(i, M_DEVBUF, M_WAITOK); strlcpy(name, mod, i); st->sd_name = name; st->sd_symstart = info.syms; st->sd_symsize = sizeof(Elf_Sym)*info.maxsyms; st->sd_strstart = info.symnames; st->sd_strsize = info.maxnamep; st->sd_malloc = true; /* Make them absolute references */ sym = st->sd_symstart; for (i = 0; i < st->sd_symsize/sizeof(Elf_Sym); i++) sym[i].st_shndx = SHN_ABS; /* ksymsread() is unlocked, so membar. */ membar_producer(); TAILQ_INSERT_TAIL(&ksyms_symtabs, st, sd_queue); ksyms_sizes_calc(); mutex_exit(&ksyms_lock); return 0; } /* * Remove a symbol table specified by name. * Returns 0 if success, EBUSY if device open and ENOENT if no such name. * * XXX REMOVE WHEN LKMS GO. */ int ksyms_delsymtab(const char *mod) { struct ksyms_symtab *st; mutex_enter(&ksyms_lock); TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (st->sd_gone) continue; if (strcmp(mod, st->sd_name) != 0) continue; if (ksyms_isopen) { st->sd_gone = true; mutex_exit(&ksyms_lock); return 0; } TAILQ_REMOVE(&ksyms_symtabs, st, sd_queue); ksyms_sizes_calc(); mutex_exit(&ksyms_lock); KASSERT(st->sd_malloc); free(st->sd_symstart, M_DEVBUF); free(st->sd_strstart, M_DEVBUF); /* XXXUNCONST LINTED - const castaway */ free(__UNCONST(st->sd_name), M_DEVBUF); kmem_free(st, sizeof(*st)); return 0; } mutex_exit(&ksyms_lock); return ENOENT; } /* * Add a symbol table from a loadable module. */ void ksyms_modload(const char *name, void *symstart, vsize_t symsize, char *strstart, vsize_t strsize) { struct ksyms_symtab *st; st = kmem_zalloc(sizeof(*st), KM_SLEEP); mutex_enter(&ksyms_lock); addsymtab(name, symstart, symsize, strstart, strsize, st, symstart); mutex_exit(&ksyms_lock); } /* * Remove a symbol table from a loadable module. */ void ksyms_modunload(const char *name) { struct ksyms_symtab *st; mutex_enter(&ksyms_lock); TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (st->sd_gone) continue; if (strcmp(name, st->sd_name) != 0) continue; KASSERT(!st->sd_malloc); /* XXXLKM */ st->sd_gone = true; if (!ksyms_isopen) { TAILQ_REMOVE(&ksyms_symtabs, st, sd_queue); ksyms_sizes_calc(); kmem_free(st, sizeof(*st)); } break; } mutex_exit(&ksyms_lock); KASSERT(st != NULL); } #ifdef DDB /* * Keep sifting stuff here, to avoid export of ksyms internals. * * Systems is expected to be quiescent, so no locking done. */ int ksyms_sift(char *mod, char *sym, int mode) { struct ksyms_symtab *st; char *sb; int i, sz; if (!ksyms_initted) return ENOENT; TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (st->sd_gone) continue; if (mod && strcmp(mod, st->sd_name)) continue; sb = st->sd_strstart - st->sd_usroffset; sz = st->sd_symsize/sizeof(Elf_Sym); for (i = 0; i < sz; i++) { Elf_Sym *les = st->sd_symstart + i; char c; if (strstr(sb + les->st_name, sym) == NULL) continue; if (mode == 'F') { switch (ELF_ST_TYPE(les->st_info)) { case STT_OBJECT: c = '+'; break; case STT_FUNC: c = '*'; break; case STT_SECTION: c = '&'; break; case STT_FILE: c = '/'; break; default: c = ' '; break; } db_printf("%s%c ", sb + les->st_name, c); } else db_printf("%s ", sb + les->st_name); } } return ENOENT; } #endif /* DDB */ /* * In case we exposing the symbol table to the userland using the pseudo- * device /dev/ksyms, it is easier to provide all the tables as one. * However, it means we have to change all the st_name fields for the * symbols so they match the ELF image that the userland will read * through the device. * * The actual (correct) value of st_name is preserved through a global * offset stored in the symbol table structure. * * Call with ksyms_lock held. */ static void ksyms_sizes_calc(void) { struct ksyms_symtab *st; int i, delta; ksyms_symsz = ksyms_strsz = 0; TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { delta = ksyms_strsz - st->sd_usroffset; if (delta != 0) { for (i = 0; i < st->sd_symsize/sizeof(Elf_Sym); i++) st->sd_symstart[i].st_name += delta; st->sd_usroffset = ksyms_strsz; } ksyms_symsz += st->sd_symsize; ksyms_strsz += st->sd_strsize; } } static void ksyms_hdr_init(void *hdraddr) { /* Copy the loaded elf exec header */ memcpy(&ksyms_hdr.kh_ehdr, hdraddr, sizeof(Elf_Ehdr)); /* Set correct program/section header sizes, offsets and numbers */ ksyms_hdr.kh_ehdr.e_phoff = offsetof(struct ksyms_hdr, kh_phdr[0]); ksyms_hdr.kh_ehdr.e_phentsize = sizeof(Elf_Phdr); ksyms_hdr.kh_ehdr.e_phnum = NPRGHDR; ksyms_hdr.kh_ehdr.e_shoff = offsetof(struct ksyms_hdr, kh_shdr[0]); ksyms_hdr.kh_ehdr.e_shentsize = sizeof(Elf_Shdr); ksyms_hdr.kh_ehdr.e_shnum = NSECHDR; ksyms_hdr.kh_ehdr.e_shstrndx = NSECHDR - 1; /* Last section */ /* Text */ ksyms_hdr.kh_phdr[0].p_type = PT_LOAD; ksyms_hdr.kh_phdr[0].p_memsz = (unsigned long)-1L; ksyms_hdr.kh_phdr[0].p_flags = PF_R | PF_X; /* Data */ ksyms_hdr.kh_phdr[1].p_type = PT_LOAD; ksyms_hdr.kh_phdr[1].p_memsz = (unsigned long)-1L; ksyms_hdr.kh_phdr[1].p_flags = PF_R | PF_W | PF_X; /* First section is null */ /* Second section header; ".symtab" */ ksyms_hdr.kh_shdr[SYMTAB].sh_name = 1; /* Section 3 offset */ ksyms_hdr.kh_shdr[SYMTAB].sh_type = SHT_SYMTAB; ksyms_hdr.kh_shdr[SYMTAB].sh_offset = sizeof(struct ksyms_hdr); /* ksyms_hdr.kh_shdr[SYMTAB].sh_size = filled in at open */ ksyms_hdr.kh_shdr[SYMTAB].sh_link = 2; /* Corresponding strtab */ ksyms_hdr.kh_shdr[SYMTAB].sh_addralign = sizeof(long); ksyms_hdr.kh_shdr[SYMTAB].sh_entsize = sizeof(Elf_Sym); /* Third section header; ".strtab" */ ksyms_hdr.kh_shdr[STRTAB].sh_name = 9; /* Section 3 offset */ ksyms_hdr.kh_shdr[STRTAB].sh_type = SHT_STRTAB; /* ksyms_hdr.kh_shdr[STRTAB].sh_offset = filled in at open */ /* ksyms_hdr.kh_shdr[STRTAB].sh_size = filled in at open */ ksyms_hdr.kh_shdr[STRTAB].sh_addralign = sizeof(char); /* Fourth section, ".shstrtab" */ ksyms_hdr.kh_shdr[SHSTRTAB].sh_name = 17; /* This section name offset */ ksyms_hdr.kh_shdr[SHSTRTAB].sh_type = SHT_STRTAB; ksyms_hdr.kh_shdr[SHSTRTAB].sh_offset = offsetof(struct ksyms_hdr, kh_strtab); ksyms_hdr.kh_shdr[SHSTRTAB].sh_size = SHSTRSIZ; ksyms_hdr.kh_shdr[SHSTRTAB].sh_addralign = sizeof(char); /* Set section names */ strlcpy(&ksyms_hdr.kh_strtab[1], ".symtab", sizeof(ksyms_hdr.kh_strtab) - 1); strlcpy(&ksyms_hdr.kh_strtab[9], ".strtab", sizeof(ksyms_hdr.kh_strtab) - 9); strlcpy(&ksyms_hdr.kh_strtab[17], ".shstrtab", sizeof(ksyms_hdr.kh_strtab) - 17); } static int ksymsopen(dev_t dev, int oflags, int devtype, struct lwp *l) { if (minor(dev) != 0 || !ksyms_initted) return ENXIO; /* * Create a "snapshot" of the kernel symbol table. Setting * ksyms_isopen will prevent symbol tables from being freed. */ mutex_enter(&ksyms_lock); ksyms_hdr.kh_shdr[SYMTAB].sh_size = ksyms_symsz; ksyms_hdr.kh_shdr[SYMTAB].sh_info = ksyms_symsz / sizeof(Elf_Sym); ksyms_hdr.kh_shdr[STRTAB].sh_offset = ksyms_symsz + ksyms_hdr.kh_shdr[SYMTAB].sh_offset; ksyms_hdr.kh_shdr[STRTAB].sh_size = ksyms_strsz; ksyms_isopen = true; mutex_exit(&ksyms_lock); return 0; } static int ksymsclose(dev_t dev, int oflags, int devtype, struct lwp *l) { struct ksyms_symtab *st, *next; bool resize; /* Discard refernces to symbol tables. */ mutex_enter(&ksyms_lock); ksyms_isopen = false; resize = false; for (st = TAILQ_FIRST(&ksyms_symtabs); st != NULL; st = next) { next = TAILQ_NEXT(st, sd_queue); if (st->sd_gone) { TAILQ_REMOVE(&ksyms_symtabs, st, sd_queue); kmem_free(st, sizeof(*st)); if (st->sd_malloc) { /* XXXLKM */ free(st->sd_symstart, M_DEVBUF); free(st->sd_strstart, M_DEVBUF); /* XXXUNCONST LINTED - const castaway */ free(__UNCONST(st->sd_name), M_DEVBUF); } resize = true; } } if (resize) ksyms_sizes_calc(); mutex_exit(&ksyms_lock); return 0; } static int ksymsread(dev_t dev, struct uio *uio, int ioflag) { struct ksyms_symtab *st; size_t filepos, inpos, off; int error; /* * First: Copy out the ELF header. XXX Lose if ksymsopen() * occurs during read of the header. */ off = uio->uio_offset; if (off < sizeof(struct ksyms_hdr)) { error = uiomove((char *)&ksyms_hdr + off, sizeof(struct ksyms_hdr) - off, uio); if (error != 0) return error; } /* * Copy out the symbol table. */ filepos = sizeof(struct ksyms_hdr); TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (uio->uio_resid == 0) return 0; if (uio->uio_offset <= st->sd_symsize + filepos) { inpos = uio->uio_offset - filepos; error = uiomove((char *)st->sd_symstart + inpos, st->sd_symsize - inpos, uio); if (error != 0) return error; } filepos += st->sd_symsize; } /* * Copy out the string table */ KASSERT(filepos == sizeof(struct ksyms_hdr) + ksyms_hdr.kh_shdr[SYMTAB].sh_size); TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (uio->uio_resid == 0) return 0; if (uio->uio_offset <= st->sd_strsize + filepos) { inpos = uio->uio_offset - filepos; error = uiomove((char *)st->sd_strstart + inpos, st->sd_strsize - inpos, uio); if (error != 0) return error; } filepos += st->sd_strsize; } return 0; } static int ksymswrite(dev_t dev, struct uio *uio, int ioflag) { return EROFS; } static int ksymsioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l) { struct ksyms_gsymbol *kg = (struct ksyms_gsymbol *)data; struct ksyms_symtab *st; Elf_Sym *sym = NULL, copy; unsigned long val; int error = 0; char *str = NULL; int len; /* Read ksyms_maxlen only once while not holding the lock. */ len = ksyms_maxlen; if (cmd == KIOCGVALUE || cmd == KIOCGSYMBOL) { str = kmem_alloc(len, KM_SLEEP); if ((error = copyinstr(kg->kg_name, str, len, NULL)) != 0) { kmem_free(str, len); return error; } } switch (cmd) { case KIOCGVALUE: /* * Use the in-kernel symbol lookup code for fast * retreival of a value. */ error = ksyms_getval(NULL, str, &val, KSYMS_EXTERN); if (error == 0) error = copyout(&val, kg->kg_value, sizeof(long)); kmem_free(str, len); break; case KIOCGSYMBOL: /* * Use the in-kernel symbol lookup code for fast * retreival of a symbol. */ mutex_enter(&ksyms_lock); TAILQ_FOREACH(st, &ksyms_symtabs, sd_queue) { if (st->sd_gone) continue; if ((sym = findsym(str, st)) == NULL) continue; #ifdef notdef /* Skip if bad binding */ if (ELF_ST_BIND(sym->st_info) != STB_GLOBAL) { sym = NULL; continue; } #endif break; } if (sym != NULL) { memcpy(©, sym, sizeof(copy)); mutex_exit(&ksyms_lock); error = copyout(©, kg->kg_sym, sizeof(Elf_Sym)); } else { mutex_exit(&ksyms_lock); error = ENOENT; } kmem_free(str, len); break; case KIOCGSIZE: /* * Get total size of symbol table. */ mutex_enter(&ksyms_lock); *(int *)data = ksyms_strsz + ksyms_symsz + sizeof(struct ksyms_hdr); mutex_exit(&ksyms_lock); break; default: error = ENOTTY; break; } return error; } const struct cdevsw ksyms_cdevsw = { ksymsopen, ksymsclose, ksymsread, ksymswrite, ksymsioctl, nullstop, notty, nopoll, nommap, nullkqfilter, D_OTHER | D_MPSAFE };