NetBSD-5.0.2/sys/arch/arm/xscale/ixp425_npe.c

Compare this file to the similar file:
Show the results in this format:

/*	$NetBSD: ixp425_npe.c,v 1.3 2008/01/08 02:07:53 matt Exp $	*/

/*-
 * Copyright (c) 2006 Sam Leffler, Errno Consulting
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
 *    redistribution must be conditioned upon including a substantially
 *    similar Disclaimer requirement for further binary redistribution.
 *
 * NO WARRANTY
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGES.
 */

/*-
 * Copyright (c) 2001-2005, Intel Corporation.
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the Intel Corporation nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 * 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#if 0
__FBSDID("$FreeBSD: src/sys/arm/xscale/ixp425/ixp425_npe.c,v 1.1 2006/11/19 23:55:23 sam Exp $");
#endif
__KERNEL_RCSID(0, "$NetBSD: ixp425_npe.c,v 1.3 2008/01/08 02:07:53 matt Exp $");

/*
 * Intel XScale Network Processing Engine (NPE) support.
 *
 * Each NPE has an ixpnpeX device associated with it that is
 * attached at boot.  Depending on the microcode loaded into
 * an NPE there may be an Ethernet interface (npeX) or some
 * other network interface (e.g. for ATM).  This file has support
 * for loading microcode images and the associated NPE CPU
 * manipulations (start, stop, reset).
 *
 * The code here basically replaces the npeDl and npeMh classes
 * in the Intel Access Library (IAL).
 *
 * NB: Microcode images are loaded with firmware(9).  To
 *     include microcode in a static kernel include the
 *     ixpnpe_fw device.  Otherwise the firmware will be
 *     automatically loaded from the filesystem.
 */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/simplelock.h>
#include <sys/time.h>
#include <sys/proc.h>

#include <dev/firmload.h>

#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>

#include <arm/xscale/ixp425reg.h>
#include <arm/xscale/ixp425var.h>
#include <arm/xscale/ixp425_ixmevar.h>

#include <arm/xscale/ixp425_npereg.h>
#include <arm/xscale/ixp425_npevar.h>

#include "locators.h"

struct ixpnpe_softc {
    struct device	sc_dev;
    bus_dma_tag_t	sc_dt;
    bus_space_tag_t	sc_iot;
    bus_space_handle_t	sc_ioh;
    bus_size_t		sc_size;	/* size of mapped register window */
    int			sc_unit;
    void		*sc_ih;		/* interrupt handler */
    struct simplelock	sc_lock;	/* mailbox lock */
    uint32_t		sc_msg[2];	/* reply msg collected in ixpnpe_intr */
    int			sc_msgwaiting;	/* sc_msg holds valid data */

    int			validImage;	/* valid ucode image loaded */
    int			started;	/* NPE is started */
    uint8_t		functionalityId;/* ucode functionality ID */
    int			insMemSize;	/* size of instruction memory */
    int			dataMemSize;	/* size of data memory */
    uint32_t		savedExecCount;
    uint32_t		savedEcsDbgCtxtReg2;
};

/*
 * IXP425_NPE_MICROCODE will be defined by ixp425-fw.mk IFF the
 * microcode object file exists in sys/arch/arm/xscale.
 *
 * To permit building the NPE drivers without microcode (so they
 * don't bitrot due to lack of use), we use "empty" microcode so
 * that the NPE drivers will simply fail to start at runtime.
 */
#ifdef IXP425_NPE_MICROCODE
extern char	_binary_IxNpeMicrocode_dat_start[];
#else
static char	_binary_IxNpeMicrocode_dat_start[] = {
	0xfe, 0xed, 0xf0, 0x0d, 0xfe, 0xed, 0xf0, 0x0d
};
#endif

#define	IX_NPEDL_NPEIMAGE_FIELD_MASK	0xff

/* used to read download map from version in microcode image */
#define IX_NPEDL_BLOCK_TYPE_INSTRUCTION	0x00000000
#define IX_NPEDL_BLOCK_TYPE_DATA	0x00000001
#define IX_NPEDL_BLOCK_TYPE_STATE	0x00000002
#define IX_NPEDL_END_OF_DOWNLOAD_MAP	0x0000000F

/*
 * masks used to extract address info from State information context
 * register addresses as read from microcode image 
 */
#define IX_NPEDL_MASK_STATE_ADDR_CTXT_REG         0x0000000F
#define IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM         0x000000F0

/* LSB offset of Context Number field in State-Info Context Address */
#define IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM       4

/* size (in words) of single State Information entry (ctxt reg address|data) */
#define IX_NPEDL_STATE_INFO_ENTRY_SIZE	2

typedef struct {
    uint32_t type;
    uint32_t offset;
} IxNpeDlNpeMgrDownloadMapBlockEntry;

typedef union {
    IxNpeDlNpeMgrDownloadMapBlockEntry block;
    uint32_t eodmMarker;
} IxNpeDlNpeMgrDownloadMapEntry;

typedef struct {
    /* 1st entry in the download map (there may be more than one) */
    IxNpeDlNpeMgrDownloadMapEntry entry[1];
} IxNpeDlNpeMgrDownloadMap;

/* used to access an instruction or data block in a microcode image */
typedef struct {
    uint32_t npeMemAddress;
    uint32_t size;
    uint32_t data[1];
} IxNpeDlNpeMgrCodeBlock;

/* used to access each Context Reg entry state-information block */
typedef struct {
    uint32_t addressInfo;
    uint32_t value;
} IxNpeDlNpeMgrStateInfoCtxtRegEntry;

/* used to access a state-information block in a microcode image */
typedef struct {
    uint32_t size;
    IxNpeDlNpeMgrStateInfoCtxtRegEntry ctxtRegEntry[1];
} IxNpeDlNpeMgrStateInfoBlock;

static int npe_debug = 0;
#define	DPRINTF(dev, fmt, ...) do {				\
	if (npe_debug) printf(fmt, __VA_ARGS__);		\
} while (0)
#define	DPRINTFn(n, dev, fmt, ...) do {				\
	if (npe_debug >= n) printf(fmt, __VA_ARGS__);		\
} while (0)

static int npe_checkbits(struct ixpnpe_softc *, uint32_t reg, uint32_t);
static int npe_isstopped(struct ixpnpe_softc *);
static int npe_load_ins(struct ixpnpe_softc *,
		const IxNpeDlNpeMgrCodeBlock *bp, int verify);
static int npe_load_data(struct ixpnpe_softc *,
		const IxNpeDlNpeMgrCodeBlock *bp, int verify);
static int npe_load_stateinfo(struct ixpnpe_softc *,
		const IxNpeDlNpeMgrStateInfoBlock *bp, int verify);
static int npe_load_image(struct ixpnpe_softc *,
		const uint32_t *imageCodePtr, int verify);
static int npe_cpu_reset(struct ixpnpe_softc *);
static int npe_cpu_start(struct ixpnpe_softc *);
static int npe_cpu_stop(struct ixpnpe_softc *);
static void npe_cmd_issue_write(struct ixpnpe_softc *,
		uint32_t cmd, uint32_t addr, uint32_t data);
static uint32_t npe_cmd_issue_read(struct ixpnpe_softc *,
		uint32_t cmd, uint32_t addr);
static int npe_ins_write(struct ixpnpe_softc *,
		uint32_t addr, uint32_t data, int verify);
static int npe_data_write(struct ixpnpe_softc *,
		uint32_t addr, uint32_t data, int verify);
static void npe_ecs_reg_write(struct ixpnpe_softc *,
		uint32_t reg, uint32_t data);
static uint32_t npe_ecs_reg_read(struct ixpnpe_softc *, uint32_t reg);
static void npe_issue_cmd(struct ixpnpe_softc *, uint32_t command);
static void npe_cpu_step_save(struct ixpnpe_softc *);
static int npe_cpu_step(struct ixpnpe_softc *, uint32_t npeInstruction,
		uint32_t ctxtNum, uint32_t ldur);
static void npe_cpu_step_restore(struct ixpnpe_softc *);
static int npe_logical_reg_read(struct ixpnpe_softc *,
		uint32_t regAddr, uint32_t regSize,
		uint32_t ctxtNum, uint32_t *regVal);
static int npe_logical_reg_write(struct ixpnpe_softc *,
		uint32_t regAddr, uint32_t regVal,
		uint32_t regSize, uint32_t ctxtNum, int verify);
static int npe_physical_reg_write(struct ixpnpe_softc *,
		uint32_t regAddr, uint32_t regValue, int verify);
static int npe_ctx_reg_write(struct ixpnpe_softc *, uint32_t ctxtNum,
		uint32_t ctxtReg, uint32_t ctxtRegVal, int verify);

static int ixpnpe_intr(void *arg);

static uint32_t
npe_reg_read(struct ixpnpe_softc *sc, bus_size_t off)
{
    uint32_t v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, off);
    DPRINTFn(9, sc->sc_dev, "%s(0x%lx) => 0x%x\n", __func__, off, v);
    return v;
}

static void
npe_reg_write(struct ixpnpe_softc *sc, bus_size_t off, uint32_t val)
{
    DPRINTFn(9, sc->sc_dev, "%s(0x%lx, 0x%x)\n", __func__, off, val);
    bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
}

static int	ixpnpe_match(struct device *, struct cfdata *, void *);
static void	ixpnpe_attach(struct device *, struct device *, void *);
static int	ixpnpe_print(void *, const char *);
static int	ixpnpe_search(struct device *, struct cfdata *, const int *,
		    void *);

CFATTACH_DECL(ixpnpe, sizeof(struct ixpnpe_softc),
    ixpnpe_match, ixpnpe_attach, NULL, NULL);

static int
ixpnpe_match(struct device *parent, struct cfdata *match, void *arg)
{
	struct ixme_attach_args *ixa = arg;

	return (ixa->ixa_npe == 1 || ixa->ixa_npe == 2);
}

static void
ixpnpe_attach(struct device *parent, struct device *self, void *arg)
{
    struct ixpnpe_softc *sc = (void *)self;
    struct ixme_attach_args *ixa = arg;
    bus_addr_t base;
    int irq;

    aprint_naive("\n");
    aprint_normal("\n");

    sc->sc_iot = ixa->ixa_iot;
    sc->sc_dt = ixa->ixa_dt;
    sc->sc_unit = ixa->ixa_npe;

    simple_lock_init(&sc->sc_lock);

    /* XXX: Check features to ensure this NPE is enabled */

    switch (ixa->ixa_npe) {
    default:
	panic("%s: Invalid NPE!", sc->sc_dev.dv_xname);

    case 1:
	base = IXP425_NPE_B_HWBASE;
	sc->sc_size = IXP425_NPE_B_SIZE;
	irq = IXP425_INT_NPE_B;

	/* size of instruction memory */
	sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEB;
	/* size of data memory */
	sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEB;
	break;

    case 2:
	base = IXP425_NPE_C_HWBASE;
	sc->sc_size = IXP425_NPE_C_SIZE;
	irq = IXP425_INT_NPE_C;

	/* size of instruction memory */
	sc->insMemSize = IX_NPEDL_INS_MEMSIZE_WORDS_NPEC;
	/* size of data memory */
	sc->dataMemSize = IX_NPEDL_DATA_MEMSIZE_WORDS_NPEC;
	break;
    }
    if (bus_space_map(sc->sc_iot, base, sc->sc_size, 0, &sc->sc_ioh))
	panic("%s: Cannot map registers", sc->sc_dev.dv_xname);

    /*
     * Setup IRQ and handler for NPE message support.
     */
    sc->sc_ih = ixp425_intr_establish(irq, IPL_NET, ixpnpe_intr, sc);
    if (sc->sc_ih == NULL)
	panic("%s: Unable to establish irq %u", sc->sc_dev.dv_xname, irq);
    /* enable output fifo interrupts (NB: must also set OFIFO Write Enable) */ 
    npe_reg_write(sc, IX_NPECTL,
	npe_reg_read(sc, IX_NPECTL) | (IX_NPECTL_OFE | IX_NPECTL_OFWE));

    config_search_ia(ixpnpe_search, self, "ixpnpe", ixa);
}

static int
ixpnpe_print(void *arg, const char *name)
{

	return (UNCONF);
}

static int
ixpnpe_search(struct device *parent, struct cfdata *cf, const int *ldesc,
    void *arg)
{
	struct ixpnpe_softc *sc = (void *)parent;
	struct ixme_attach_args *ixa = arg;
	struct ixpnpe_attach_args na;

	na.na_unit = ixa->ixa_npe;
	na.na_phy = cf->cf_loc[IXPNPECF_PHY];
	na.na_npe = sc;
	na.na_iot = ixa->ixa_iot;
	na.na_dt = ixa->ixa_dt;

	if (config_match(parent, cf, &na) > 0) {
		config_attach(parent, cf, &na, ixpnpe_print);
		return (1);
	}

	return (0);
}

int
ixpnpe_stopandreset(struct ixpnpe_softc *sc)
{
    int error;

    simple_lock(&sc->sc_lock);
    error = npe_cpu_stop(sc);		/* stop NPE */
    if (error == 0)
	error = npe_cpu_reset(sc);	/* reset it */
    if (error == 0)
	sc->started = 0;		/* mark stopped */
    simple_unlock(&sc->sc_lock);

    DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
    return error;
}

static int
ixpnpe_start_locked(struct ixpnpe_softc *sc)
{
    int error;

    if (!sc->started) {
	error = npe_cpu_start(sc);
	if (error == 0)
	    sc->started = 1;
    } else
	error = 0;

    DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
    return error;
}

int
ixpnpe_start(struct ixpnpe_softc *sc)
{
	int ret;

	simple_lock(&sc->sc_lock);
	ret = ixpnpe_start_locked(sc);
	simple_unlock(&sc->sc_lock);
	return (ret);
}

int
ixpnpe_stop(struct ixpnpe_softc *sc)
{
    int error;

    simple_lock(&sc->sc_lock);
    error = npe_cpu_stop(sc);
    if (error == 0)
	sc->started = 0;
    simple_unlock(&sc->sc_lock);

    DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
    return error;
}

/*
 * Indicates the start of an NPE Image, in new NPE Image Library format.
 * 2 consecutive occurances indicates the end of the NPE Image Library
 */
#define NPE_IMAGE_MARKER 0xfeedf00d

/*
 * NPE Image Header definition, used in new NPE Image Library format
 */
typedef struct {
    uint32_t marker;
    uint32_t id;
    uint32_t size;
} IxNpeDlImageMgrImageHeader;

static int
npe_findimage(struct ixpnpe_softc *sc,
    const uint32_t *imageLibrary, uint32_t imageId,
    const uint32_t **imagePtr, uint32_t *imageSize)
{
    const IxNpeDlImageMgrImageHeader *image;
    uint32_t offset = 0;

    while (imageLibrary[offset] == NPE_IMAGE_MARKER) {
        image = (const IxNpeDlImageMgrImageHeader *)&imageLibrary[offset];
        offset += sizeof(IxNpeDlImageMgrImageHeader)/sizeof(uint32_t);
        
        DPRINTF(sc->sc_dev, "%s: off %u mark 0x%x id 0x%x size %u\n",
	    __func__, offset, image->marker, image->id, image->size);
        if (image->id == imageId) {
            *imagePtr = imageLibrary + offset;
            *imageSize = image->size;
            return 0;
        }
        /* 2 consecutive NPE_IMAGE_MARKER's indicates end of library */
        if (image->id == NPE_IMAGE_MARKER) {
	    printf("%s: imageId 0x%08x not found in image library header\n",
	        sc->sc_dev.dv_xname, imageId);
            /* reached end of library, image not found */
            return EIO;
        }
        offset += image->size;
    }
    return EIO;
}

int
ixpnpe_init(struct ixpnpe_softc *sc, const char *imageName, uint32_t imageId)
{
    uint32_t imageSize;
    const uint32_t *imageCodePtr;
    void *fw;
    int error;

    DPRINTF(sc->sc_dev, "load %s, imageId 0x%08x\n", imageName, imageId);

#if 0
    IxFeatureCtrlDeviceId devid = IX_NPEDL_DEVICEID_FROM_IMAGEID_GET(imageId);
    /*
     * Checking if image being loaded is meant for device that is running.
     * Image is forward compatible. i.e Image built for IXP42X should run
     * on IXP46X but not vice versa.
     */
    if (devid > (ixFeatureCtrlDeviceRead() & IX_FEATURE_CTRL_DEVICE_TYPE_MASK))
	return EINVAL;
#endif
    error = ixpnpe_stopandreset(sc);		/* stop and reset the NPE */
    if (error != 0)
	return error;

    fw = (void *)_binary_IxNpeMicrocode_dat_start;

    /* Locate desired image in files w/ combined images */
    error = npe_findimage(sc, (void *)fw /*fw->data*/, imageId, &imageCodePtr, &imageSize);
    if (error != 0)
	goto done;

    /*
     * If download was successful, store image Id in list of
     * currently loaded images. If a critical error occured
     * during download, record that the NPE has an invalid image
     */
    simple_lock(&sc->sc_lock);
    error = npe_load_image(sc, imageCodePtr, 1 /*VERIFY*/);
    if (error == 0) {
	sc->validImage = 1;
	error = ixpnpe_start_locked(sc);
    } else {
	sc->validImage = 0;
    }
    sc->functionalityId = IX_NPEDL_FUNCTIONID_FROM_IMAGEID_GET(imageId);
    simple_unlock(&sc->sc_lock);
done:
    DPRINTF(sc->sc_dev, "%s: error %d\n", __func__, error);
    return error;
}

int
ixpnpe_getfunctionality(struct ixpnpe_softc *sc)
{
    return (sc->validImage ? sc->functionalityId : 0);
}

static int
npe_checkbits(struct ixpnpe_softc *sc, uint32_t reg, uint32_t expectedBitsSet)
{
    uint32_t val;

    val = npe_reg_read(sc, reg);
    DPRINTFn(5, sc->sc_dev, "%s(0x%x, 0x%x) => 0x%x (%u)\n",
	__func__, reg, expectedBitsSet, val,
	(val & expectedBitsSet) == expectedBitsSet);
    return ((val & expectedBitsSet) == expectedBitsSet);
}

static int
npe_isstopped(struct ixpnpe_softc *sc)
{
    return npe_checkbits(sc,
	IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP);
}

static int
npe_load_ins(struct ixpnpe_softc *sc,
    const IxNpeDlNpeMgrCodeBlock *bp, int verify)
{
    uint32_t npeMemAddress;
    int i, blockSize;

    npeMemAddress = bp->npeMemAddress;
    blockSize = bp->size;		/* NB: instruction/data count */
    if (npeMemAddress + blockSize > sc->insMemSize) {
	printf("%s: Block size too big for NPE memory\n", sc->sc_dev.dv_xname);
	return EINVAL;	/* XXX */
    }
    for (i = 0; i < blockSize; i++, npeMemAddress++) {
	if (npe_ins_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
	    printf("%s: NPE instruction write failed", sc->sc_dev.dv_xname);
	    return EIO;
	}
    }
    return 0;
}

static int
npe_load_data(struct ixpnpe_softc *sc,
    const IxNpeDlNpeMgrCodeBlock *bp, int verify)
{
    uint32_t npeMemAddress;
    int i, blockSize;

    npeMemAddress = bp->npeMemAddress;
    blockSize = bp->size;		/* NB: instruction/data count */
    if (npeMemAddress + blockSize > sc->dataMemSize) {
	printf("%s: Block size too big for NPE memory\n", sc->sc_dev.dv_xname);
	return EINVAL;
    }
    for (i = 0; i < blockSize; i++, npeMemAddress++) {
	if (npe_data_write(sc, npeMemAddress, bp->data[i], verify) != 0) {
	    printf("%s: NPE data write failed\n", sc->sc_dev.dv_xname);
	    return EIO;
	}
    }
    return 0;
}

static int
npe_load_stateinfo(struct ixpnpe_softc *sc,
    const IxNpeDlNpeMgrStateInfoBlock *bp, int verify)
{
    int i, nentries, error;
 
    npe_cpu_step_save(sc);

    /* for each state-info context register entry in block */
    nentries = bp->size / IX_NPEDL_STATE_INFO_ENTRY_SIZE;
    error = 0;
    for (i = 0; i < nentries; i++) {
	/* each state-info entry is 2 words (address, value) in length */
	uint32_t regVal = bp->ctxtRegEntry[i].value;
	uint32_t addrInfo = bp->ctxtRegEntry[i].addressInfo;

	uint32_t reg = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_REG);
	uint32_t cNum = (addrInfo & IX_NPEDL_MASK_STATE_ADDR_CTXT_NUM) >> 
	    IX_NPEDL_OFFSET_STATE_ADDR_CTXT_NUM;
	
	/* error-check Context Register No. and Context Number values  */
	if (!(0 <= reg && reg < IX_NPEDL_CTXT_REG_MAX)) {
	    printf("%s: invalid Context Register %u\n", sc->sc_dev.dv_xname,
		reg);
	    error = EINVAL;
	    break;
	}    
	if (!(0 <= cNum && cNum < IX_NPEDL_CTXT_NUM_MAX)) {
	    printf("%s: invalid Context Number %u\n", sc->sc_dev.dv_xname,
	        cNum);
	    error = EINVAL;
	    break;
	}    
	/* NOTE that there is no STEVT register for Context 0 */
	if (cNum == 0 && reg == IX_NPEDL_CTXT_REG_STEVT) {
	    printf("%s: no STEVT for Context 0\n", sc->sc_dev.dv_xname);
	    error = EINVAL;
	    break;
	}

	if (npe_ctx_reg_write(sc, cNum, reg, regVal, verify) != 0) {
	    printf("%s: write of state-info to NPE failed\n",
	        sc->sc_dev.dv_xname);
	    error = EIO;
	    break;
	}
    }

    npe_cpu_step_restore(sc);
    return error;
}

static int
npe_load_image(struct ixpnpe_softc *sc,
    const uint32_t *imageCodePtr, int verify)
{
#define	EOM(marker)	((marker) == IX_NPEDL_END_OF_DOWNLOAD_MAP)
    const IxNpeDlNpeMgrDownloadMap *downloadMap;
    int i, error;

    if (!npe_isstopped(sc)) {		/* verify NPE is stopped */
	printf("%s: cannot load image, NPE not stopped\n", sc->sc_dev.dv_xname);
	return EIO;
    }

    /*
     * Read Download Map, checking each block type and calling
     * appropriate function to perform download 
     */
    error = 0;
    downloadMap = (const IxNpeDlNpeMgrDownloadMap *) imageCodePtr;
    for (i = 0; !EOM(downloadMap->entry[i].eodmMarker); i++) {
	/* calculate pointer to block to be downloaded */
	const uint32_t *bp = imageCodePtr + downloadMap->entry[i].block.offset;
	switch (downloadMap->entry[i].block.type) {
	case IX_NPEDL_BLOCK_TYPE_INSTRUCTION:
	    error = npe_load_ins(sc,
			 (const IxNpeDlNpeMgrCodeBlock *) bp, verify);
	    DPRINTF(sc->sc_dev, "%s: inst, error %d\n", __func__, error);
	    break;
	case IX_NPEDL_BLOCK_TYPE_DATA:
	    error = npe_load_data(sc,
			 (const IxNpeDlNpeMgrCodeBlock *) bp, verify);
	    DPRINTF(sc->sc_dev, "%s: data, error %d\n", __func__, error);
	    break;
	case IX_NPEDL_BLOCK_TYPE_STATE:
	    error = npe_load_stateinfo(sc,
			 (const IxNpeDlNpeMgrStateInfoBlock *) bp, verify);
	    DPRINTF(sc->sc_dev, "%s: state, error %d\n", __func__, error);
	    break;
	default:
	    printf("%s: unknown block type 0x%x in download map\n",
		sc->sc_dev.dv_xname, downloadMap->entry[i].block.type);
	    error = EIO;		/* XXX */
	    break;
	}
	if (error != 0)
	    break;
    }
    return error;
#undef EOM
}

/* contains Reset values for Context Store Registers  */
static const struct {
    uint32_t regAddr;
    uint32_t regResetVal;
} ixNpeDlEcsRegResetValues[] = {
    { IX_NPEDL_ECS_BG_CTXT_REG_0,    IX_NPEDL_ECS_BG_CTXT_REG_0_RESET },
    { IX_NPEDL_ECS_BG_CTXT_REG_1,    IX_NPEDL_ECS_BG_CTXT_REG_1_RESET },
    { IX_NPEDL_ECS_BG_CTXT_REG_2,    IX_NPEDL_ECS_BG_CTXT_REG_2_RESET },
    { IX_NPEDL_ECS_PRI_1_CTXT_REG_0, IX_NPEDL_ECS_PRI_1_CTXT_REG_0_RESET },
    { IX_NPEDL_ECS_PRI_1_CTXT_REG_1, IX_NPEDL_ECS_PRI_1_CTXT_REG_1_RESET },
    { IX_NPEDL_ECS_PRI_1_CTXT_REG_2, IX_NPEDL_ECS_PRI_1_CTXT_REG_2_RESET },
    { IX_NPEDL_ECS_PRI_2_CTXT_REG_0, IX_NPEDL_ECS_PRI_2_CTXT_REG_0_RESET },
    { IX_NPEDL_ECS_PRI_2_CTXT_REG_1, IX_NPEDL_ECS_PRI_2_CTXT_REG_1_RESET },
    { IX_NPEDL_ECS_PRI_2_CTXT_REG_2, IX_NPEDL_ECS_PRI_2_CTXT_REG_2_RESET },
    { IX_NPEDL_ECS_DBG_CTXT_REG_0,   IX_NPEDL_ECS_DBG_CTXT_REG_0_RESET },
    { IX_NPEDL_ECS_DBG_CTXT_REG_1,   IX_NPEDL_ECS_DBG_CTXT_REG_1_RESET },
    { IX_NPEDL_ECS_DBG_CTXT_REG_2,   IX_NPEDL_ECS_DBG_CTXT_REG_2_RESET },
    { IX_NPEDL_ECS_INSTRUCT_REG,     IX_NPEDL_ECS_INSTRUCT_REG_RESET }
};

/* contains Reset values for Context Store Registers  */
static const uint32_t ixNpeDlCtxtRegResetValues[] = {
    IX_NPEDL_CTXT_REG_RESET_STEVT,
    IX_NPEDL_CTXT_REG_RESET_STARTPC,
    IX_NPEDL_CTXT_REG_RESET_REGMAP,
    IX_NPEDL_CTXT_REG_RESET_CINDEX,
};

#define	IX_NPEDL_RESET_NPE_PARITY	0x0800
#define	IX_NPEDL_PARITY_BIT_MASK	0x3F00FFFF
#define	IX_NPEDL_CONFIG_CTRL_REG_MASK	0x3F3FFFFF

static int
npe_cpu_reset(struct ixpnpe_softc *sc)
{
#define	N(a)	(sizeof(a) / sizeof(a[0]))
    uint32_t ctxtReg; /* identifies Context Store reg (0-3) */
    uint32_t regAddr;
    uint32_t regVal;
    uint32_t resetNpeParity;
    uint32_t ixNpeConfigCtrlRegVal;
    int i, error = 0;
    
    /* pre-store the NPE Config Control Register Value */
    ixNpeConfigCtrlRegVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL);
    ixNpeConfigCtrlRegVal |= 0x3F000000;

    /* disable the parity interrupt */
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL,
	(ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK));
    DPRINTFn(2, sc->sc_dev, "%s: dis parity int, CTL => 0x%x\n",
	__func__, ixNpeConfigCtrlRegVal & IX_NPEDL_PARITY_BIT_MASK);
 
    npe_cpu_step_save(sc);

    /*
     * Clear the FIFOs.
     */
    while (npe_checkbits(sc,
	  IX_NPEDL_REG_OFFSET_WFIFO, IX_NPEDL_MASK_WFIFO_VALID)) {
	/* read from the Watch-point FIFO until empty */
	(void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WFIFO);
    }

    while (npe_checkbits(sc,
	  IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_OFNE)) {
	/* read from the outFIFO until empty */
	(void) npe_reg_read(sc, IX_NPEDL_REG_OFFSET_FIFO);
    }
    
    while (npe_checkbits(sc,
	  IX_NPEDL_REG_OFFSET_STAT, IX_NPEDL_MASK_STAT_IFNE)) {
	/*
	 * Step execution of the NPE intruction to read inFIFO using
	 * the Debug Executing Context stack.
	 */
	error = npe_cpu_step(sc, IX_NPEDL_INSTR_RD_FIFO, 0, 0);
	if (error != 0) {
	    DPRINTF(sc->sc_dev, "%s: cannot step (1), error %u\n",
		__func__, error);
	    npe_cpu_step_restore(sc);
	    return error;   
	}
    }
    
    /*
     * Reset the mailbox reg
     */
    /* ...from XScale side */
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_MBST, IX_NPEDL_REG_RESET_MBST);
    /* ...from NPE side */
    error = npe_cpu_step(sc, IX_NPEDL_INSTR_RESET_MBOX, 0, 0);
    if (error != 0) {
	DPRINTF(sc->sc_dev, "%s: cannot step (2), error %u\n", __func__, error);
	npe_cpu_step_restore(sc);
        return error;   
    }

    /* 
     * Reset the physical registers in the NPE register file:
     * Note: no need to save/restore REGMAP for Context 0 here
     * since all Context Store regs are reset in subsequent code.
     */
    for (regAddr = 0;
	 regAddr < IX_NPEDL_TOTAL_NUM_PHYS_REG && error == 0;
	 regAddr++) {
	/* for each physical register in the NPE reg file, write 0 : */
	error = npe_physical_reg_write(sc, regAddr, 0, true);
	if (error != 0) {
	    DPRINTF(sc->sc_dev, "%s: cannot write phy reg, error %u\n",
		__func__, error);
	    npe_cpu_step_restore(sc);
	    return error;		/* abort reset */
	}
    }

    /*
     * Reset the context store:
     */
    for (i = IX_NPEDL_CTXT_NUM_MIN; i <= IX_NPEDL_CTXT_NUM_MAX; i++) {	
	/* set each context's Context Store registers to reset values: */
	for (ctxtReg = 0; ctxtReg < IX_NPEDL_CTXT_REG_MAX; ctxtReg++) {
	    /* NOTE that there is no STEVT register for Context 0 */
	    if (!(i == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STEVT)) { 
		regVal = ixNpeDlCtxtRegResetValues[ctxtReg];
		error = npe_ctx_reg_write(sc, i, ctxtReg, regVal, true);
		if (error != 0) {
		    DPRINTF(sc->sc_dev, "%s: cannot write ctx reg, error %u\n",
			__func__, error);
		    npe_cpu_step_restore(sc);
		    return error;	 /* abort reset */
		}
	    }
	}
    }

    npe_cpu_step_restore(sc);

    /* write Reset values to Execution Context Stack registers */
    for (i = 0; i < N(ixNpeDlEcsRegResetValues); i++)
	npe_ecs_reg_write(sc,
	    ixNpeDlEcsRegResetValues[i].regAddr,
	    ixNpeDlEcsRegResetValues[i].regResetVal);

    /* clear the profile counter */
    npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_CLR_PROFILE_CNT);
    
    /* clear registers EXCT, AP0, AP1, AP2 and AP3 */
    for (regAddr = IX_NPEDL_REG_OFFSET_EXCT;
	 regAddr <= IX_NPEDL_REG_OFFSET_AP3;
	 regAddr += sizeof(uint32_t))
	npe_reg_write(sc, regAddr, 0);

    /* Reset the Watch-count register */
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_WC, 0);
    
    /*
     * WR IXA00055043 - Remove IMEM Parity Introduced by NPE Reset Operation
     */

    /*
     * Reset the NPE and its coprocessor - to reset internal
     * states and remove parity error.  Note this makes no
     * sense based on the documentation.  The feature control
     * register always reads back as 0 on the ixp425 and further
     * the bit definition of NPEA/NPEB is off by 1 according to
     * the Intel documention--so we're blindly following the
     * Intel code w/o any real understanding.
     */
    regVal = EXP_BUS_READ_4(ixp425_softc, EXP_FCTRL_OFFSET);
    DPRINTFn(2, sc->sc_dev, "%s: FCTRL 0x%x\n", __func__, regVal);
    resetNpeParity =
	IX_NPEDL_RESET_NPE_PARITY << (1 + sc->sc_unit);
    DPRINTFn(2, sc->sc_dev, "%s: FCTRL fuse parity, write 0x%x\n",
	__func__, regVal | resetNpeParity);
    EXP_BUS_WRITE_4(ixp425_softc, EXP_FCTRL_OFFSET, regVal | resetNpeParity);

    /* un-fuse and un-reset the NPE & coprocessor */
    DPRINTFn(2, sc->sc_dev, "%s: FCTRL unfuse parity, write 0x%x\n",
	__func__, regVal & resetNpeParity);
    EXP_BUS_WRITE_4(ixp425_softc, EXP_FCTRL_OFFSET, regVal &~ resetNpeParity);

    /*
     * Call NpeMgr function to stop the NPE again after the Feature Control
     * has unfused and Un-Reset the NPE and its associated Coprocessors.
     */
    error = npe_cpu_stop(sc);

    /* restore NPE configuration bus Control Register - Parity Settings  */
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_CTL, 
        (ixNpeConfigCtrlRegVal & IX_NPEDL_CONFIG_CTRL_REG_MASK));
    DPRINTFn(2, sc->sc_dev, "%s: restore CTL => 0x%x\n",
	__func__, npe_reg_read(sc, IX_NPEDL_REG_OFFSET_CTL));

    return error;
#undef N
}

static int
npe_cpu_start(struct ixpnpe_softc *sc)
{
    uint32_t ecsRegVal;

    /*
     * Ensure only Background Context Stack Level is Active by turning off
     * the Active bit in each of the other Executing Context Stack levels.
     */
    ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0);
    ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
    npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_1_CTXT_REG_0, ecsRegVal);

    ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0);
    ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
    npe_ecs_reg_write(sc, IX_NPEDL_ECS_PRI_2_CTXT_REG_0, ecsRegVal);

    ecsRegVal = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0);
    ecsRegVal &= ~IX_NPEDL_MASK_ECS_REG_0_ACTIVE;
    npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsRegVal);
    
    /* clear the pipeline */
    npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);
    
    /* start NPE execution by issuing command through EXCTL register on NPE */
    npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_START);

    /*
     * Check execution status of NPE to verify operation was successful.
     */
    return npe_checkbits(sc,
	IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_RUN) ? 0 : EIO;
}

static int
npe_cpu_stop(struct ixpnpe_softc *sc)
{
    /* stop NPE execution by issuing command through EXCTL register on NPE */
    npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STOP);

    /* verify that NPE Stop was successful */
    return npe_checkbits(sc,
	IX_NPEDL_REG_OFFSET_EXCTL, IX_NPEDL_EXCTL_STATUS_STOP) ? 0 : EIO;
}

#define IX_NPEDL_REG_SIZE_BYTE            8
#define IX_NPEDL_REG_SIZE_SHORT           16
#define IX_NPEDL_REG_SIZE_WORD            32

/*
 * Introduce extra read cycles after issuing read command to NPE
 * so that we read the register after the NPE has updated it
 * This is to overcome race condition between XScale and NPE
 */
#define IX_NPEDL_DELAY_READ_CYCLES        2
/*
 * To mask top three MSBs of 32bit word to download into NPE IMEM
 */
#define IX_NPEDL_MASK_UNUSED_IMEM_BITS    0x1FFFFFFF;

static void
npe_cmd_issue_write(struct ixpnpe_softc *sc,
    uint32_t cmd, uint32_t addr, uint32_t data)
{
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, data);
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
}

static uint32_t
npe_cmd_issue_read(struct ixpnpe_softc *sc, uint32_t cmd, uint32_t addr)
{
    uint32_t data;
    int i;

    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXAD, addr);
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, cmd);
    for (i = 0; i <= IX_NPEDL_DELAY_READ_CYCLES; i++)
	data = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);
    return data;
}

static int
npe_ins_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
{
    DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
    npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_INS_MEM, addr, data);
    if (verify) {
	uint32_t rdata;

        /*
	 * Write invalid data to this reg, so we can see if we're reading 
	 * the EXDATA register too early.
	 */
	npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);

        /* Disabled since top 3 MSB are not used for Azusa hardware Refer WR:IXA00053900*/
        data &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;

        rdata = npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_INS_MEM, addr);
        rdata &= IX_NPEDL_MASK_UNUSED_IMEM_BITS;

	if (data != rdata)
	    return EIO;
    }
    return 0;
}

static int
npe_data_write(struct ixpnpe_softc *sc, uint32_t addr, uint32_t data, int verify)
{
    DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x)\n", __func__, addr, data);
    npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_DATA_MEM, addr, data);
    if (verify) {
        /*
	 * Write invalid data to this reg, so we can see if we're reading 
	 * the EXDATA register too early.
	 */
	npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXDATA, ~data);
	if (data != npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_DATA_MEM, addr))
	    return EIO;
    }
    return 0;
}

static void
npe_ecs_reg_write(struct ixpnpe_softc *sc, uint32_t reg, uint32_t data)
{
    npe_cmd_issue_write(sc, IX_NPEDL_EXCTL_CMD_WR_ECS_REG, reg, data);
}

static uint32_t
npe_ecs_reg_read(struct ixpnpe_softc *sc, uint32_t reg)
{
    return npe_cmd_issue_read(sc, IX_NPEDL_EXCTL_CMD_RD_ECS_REG, reg);
}

static void
npe_issue_cmd(struct ixpnpe_softc *sc, uint32_t command)
{
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCTL, command);
}

static void
npe_cpu_step_save(struct ixpnpe_softc *sc)
{
    /* turn off the halt bit by clearing Execution Count register. */
    /* save reg contents 1st and restore later */
    sc->savedExecCount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXCT);
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, 0);

    /* ensure that IF and IE are on (temporarily), so that we don't end up
     * stepping forever */
    sc->savedEcsDbgCtxtReg2 = npe_ecs_reg_read(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2);

    npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2,
	(sc->savedEcsDbgCtxtReg2 | IX_NPEDL_MASK_ECS_DBG_REG_2_IF |
	 IX_NPEDL_MASK_ECS_DBG_REG_2_IE));
}

static int
npe_cpu_step(struct ixpnpe_softc *sc, uint32_t npeInstruction,
    uint32_t ctxtNum, uint32_t ldur)
{
#define	IX_NPE_DL_MAX_NUM_OF_RETRIES	1000000
    uint32_t ecsDbgRegVal;
    uint32_t oldWatchcount, newWatchcount;
    int tries;

    /* set the Active bit, and the LDUR, in the debug level */
    ecsDbgRegVal = IX_NPEDL_MASK_ECS_REG_0_ACTIVE |
	(ldur << IX_NPEDL_OFFSET_ECS_REG_0_LDUR);

    npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, ecsDbgRegVal);

    /*
     * Set CCTXT at ECS DEBUG L3 to specify in which context to execute the
     * instruction, and set SELCTXT at ECS DEBUG Level to specify which context
     * store to access.
     * Debug ECS Level Reg 1 has form  0x000n000n, where n = context number
     */
    ecsDbgRegVal = (ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_CCTXT) |
	(ctxtNum << IX_NPEDL_OFFSET_ECS_REG_1_SELCTXT);

    npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_1, ecsDbgRegVal);

    /* clear the pipeline */
    npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);

    /* load NPE instruction into the instruction register */
    npe_ecs_reg_write(sc, IX_NPEDL_ECS_INSTRUCT_REG, npeInstruction);

    /* we need this value later to wait for completion of NPE execution step */
    oldWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);

    /* issue a Step One command via the Execution Control register */
    npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_STEP);

    /*
     * Force the XScale to wait until the NPE has finished execution step
     * NOTE that this delay will be very small, just long enough to allow a
     * single NPE instruction to complete execution; if instruction execution
     * is not completed before timeout retries, exit the while loop.
     */
    newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
    for (tries = 0; tries < IX_NPE_DL_MAX_NUM_OF_RETRIES &&
        newWatchcount == oldWatchcount; tries++) {
	/* Watch Count register increments when NPE completes an instruction */
	newWatchcount = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_WC);
    }    
    return (tries < IX_NPE_DL_MAX_NUM_OF_RETRIES) ? 0 : EIO;
#undef IX_NPE_DL_MAX_NUM_OF_RETRIES
}    

static void
npe_cpu_step_restore(struct ixpnpe_softc *sc)
{
    /* clear active bit in debug level */
    npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_0, 0);

    /* clear the pipeline */
    npe_issue_cmd(sc, IX_NPEDL_EXCTL_CMD_NPE_CLR_PIPE);

    /* restore Execution Count register contents. */
    npe_reg_write(sc, IX_NPEDL_REG_OFFSET_EXCT, sc->savedExecCount);

    /* restore IF and IE bits to original values */
    npe_ecs_reg_write(sc, IX_NPEDL_ECS_DBG_CTXT_REG_2, sc->savedEcsDbgCtxtReg2);
}

static int
npe_logical_reg_read(struct ixpnpe_softc *sc,
    uint32_t regAddr, uint32_t regSize,
    uint32_t ctxtNum, uint32_t *regVal)
{
    uint32_t npeInstruction, mask;
    int error;

    switch (regSize) {
    case IX_NPEDL_REG_SIZE_BYTE:
	npeInstruction = IX_NPEDL_INSTR_RD_REG_BYTE;
	mask = 0xff;
	break;
    case IX_NPEDL_REG_SIZE_SHORT:
	npeInstruction = IX_NPEDL_INSTR_RD_REG_SHORT;
	mask = 0xffff;
	break;
    case IX_NPEDL_REG_SIZE_WORD:
	npeInstruction = IX_NPEDL_INSTR_RD_REG_WORD;
	mask = 0xffffffff;
	break;
    default:
	return EINVAL;
    }

    /* make regAddr be the SRC and DEST operands (e.g. movX d0, d0) */
    npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_SRC) |
	(regAddr << IX_NPEDL_OFFSET_INSTR_DEST);

    /* step execution of NPE intruction using Debug Executing Context stack */
    error = npe_cpu_step(sc, npeInstruction, ctxtNum, IX_NPEDL_RD_INSTR_LDUR);
    if (error != 0) {
	DPRINTF(sc->sc_dev, "%s(0x%x, %u, %u), cannot step, error %d\n",
	    __func__, regAddr, regSize, ctxtNum, error);
	return error;
    }
    /* read value of register from Execution Data register */
    *regVal = npe_reg_read(sc, IX_NPEDL_REG_OFFSET_EXDATA);

    /* align value from left to right */
    *regVal = (*regVal >> (IX_NPEDL_REG_SIZE_WORD - regSize)) & mask;

    return 0;
}

static int
npe_logical_reg_write(struct ixpnpe_softc *sc, uint32_t regAddr, uint32_t regVal,
    uint32_t regSize, uint32_t ctxtNum, int verify)
{
    int error;

    DPRINTFn(4, sc->sc_dev, "%s(0x%x, 0x%x, %u, %u)\n",
	__func__, regAddr, regVal, regSize, ctxtNum);
    if (regSize == IX_NPEDL_REG_SIZE_WORD) {
	/* NPE register addressing is left-to-right: e.g. |d0|d1|d2|d3| */
	/* Write upper half-word (short) to |d0|d1| */
	error = npe_logical_reg_write(sc, regAddr,
		     regVal >> IX_NPEDL_REG_SIZE_SHORT,
		     IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
	if (error != 0)
	    return error;

	/* Write lower half-word (short) to |d2|d3| */
	error = npe_logical_reg_write(sc,
		     regAddr + sizeof(uint16_t),
		     regVal & 0xffff,
		     IX_NPEDL_REG_SIZE_SHORT, ctxtNum, verify);
    } else {
	uint32_t npeInstruction;

        switch (regSize) { 
	case IX_NPEDL_REG_SIZE_BYTE:
	    npeInstruction = IX_NPEDL_INSTR_WR_REG_BYTE;
	    regVal &= 0xff;
	    break;
	case IX_NPEDL_REG_SIZE_SHORT:
            npeInstruction = IX_NPEDL_INSTR_WR_REG_SHORT;
	    regVal &= 0xffff;
	    break;
	default:
	    return EINVAL;
	}
	/* fill dest operand field of  instruction with destination reg addr */
	npeInstruction |= (regAddr << IX_NPEDL_OFFSET_INSTR_DEST);

	/* fill src operand field of instruction with least-sig 5 bits of val*/
	npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_SRC_DATA) <<
			   IX_NPEDL_OFFSET_INSTR_SRC);

	/* fill coprocessor field of instruction with most-sig 11 bits of val*/
	npeInstruction |= ((regVal & IX_NPEDL_MASK_IMMED_INSTR_COPROC_DATA) <<
			   IX_NPEDL_DISPLACE_IMMED_INSTR_COPROC_DATA);

	/* step execution of NPE intruction using Debug ECS */
	error = npe_cpu_step(sc, npeInstruction,
					  ctxtNum, IX_NPEDL_WR_INSTR_LDUR);
    }
    if (error != 0) {
	DPRINTF(sc->sc_dev, "%s(0x%x, 0x%x, %u, %u), error %u writing reg\n",
	    __func__, regAddr, regVal, regSize, ctxtNum, error);
	return error;
    }
    if (verify) {
	uint32_t retRegVal;

    	error = npe_logical_reg_read(sc, regAddr, regSize, ctxtNum, &retRegVal);
        if (error == 0 && regVal != retRegVal)
	    error = EIO;	/* XXX ambiguous */
    }
    return error;
}

/*
 * There are 32 physical registers used in an NPE.  These are
 * treated as 16 pairs of 32-bit registers.  To write one of the pair,
 * write the pair number (0-16) to the REGMAP for Context 0.  Then write
 * the value to register  0 or 4 in the regfile, depending on which
 * register of the pair is to be written
 */
static int
npe_physical_reg_write(struct ixpnpe_softc *sc,
    uint32_t regAddr, uint32_t regValue, int verify)
{
    int error;

    /*
     * Set REGMAP for context 0 to (regAddr >> 1) to choose which pair (0-16)
     * of physical registers to write .
     */
    error = npe_logical_reg_write(sc, IX_NPEDL_CTXT_REG_ADDR_REGMAP,
	       (regAddr >> IX_NPEDL_OFFSET_PHYS_REG_ADDR_REGMAP),
	       IX_NPEDL_REG_SIZE_SHORT, 0, verify);
    if (error == 0) {
	/* regAddr = 0 or 4  */
	regAddr = (regAddr & IX_NPEDL_MASK_PHYS_REG_ADDR_LOGICAL_ADDR) *
	    sizeof(uint32_t);
	error = npe_logical_reg_write(sc, regAddr, regValue, 
	    IX_NPEDL_REG_SIZE_WORD, 0, verify);
    }
    return error;
}

static int
npe_ctx_reg_write(struct ixpnpe_softc *sc, uint32_t ctxtNum,
    uint32_t ctxtReg, uint32_t ctxtRegVal, int verify)
{
    DPRINTFn(4, sc->sc_dev, "%s(%u, %u, %u)\n",
	__func__, ctxtNum, ctxtReg, ctxtRegVal);
    /*
     * Context 0 has no STARTPC. Instead, this value is used to set
     * NextPC for Background ECS, to set where NPE starts executing code
     */
    if (ctxtNum == 0 && ctxtReg == IX_NPEDL_CTXT_REG_STARTPC) {
	/* read BG_CTXT_REG_0, update NEXTPC bits, and write back to reg */
	uint32_t v = npe_ecs_reg_read(sc, IX_NPEDL_ECS_BG_CTXT_REG_0);
	v &= ~IX_NPEDL_MASK_ECS_REG_0_NEXTPC;
	v |= (ctxtRegVal << IX_NPEDL_OFFSET_ECS_REG_0_NEXTPC) &
	    IX_NPEDL_MASK_ECS_REG_0_NEXTPC;

	npe_ecs_reg_write(sc, IX_NPEDL_ECS_BG_CTXT_REG_0, v);
	return 0;
    } else {
	static const struct {
	    uint32_t regAddress;
	    uint32_t regSize;
	} regAccInfo[IX_NPEDL_CTXT_REG_MAX] = {
	    { IX_NPEDL_CTXT_REG_ADDR_STEVT,	IX_NPEDL_REG_SIZE_BYTE },
	    { IX_NPEDL_CTXT_REG_ADDR_STARTPC,	IX_NPEDL_REG_SIZE_SHORT },
	    { IX_NPEDL_CTXT_REG_ADDR_REGMAP,	IX_NPEDL_REG_SIZE_SHORT },
	    { IX_NPEDL_CTXT_REG_ADDR_CINDEX,	IX_NPEDL_REG_SIZE_BYTE }
	};
	return npe_logical_reg_write(sc, regAccInfo[ctxtReg].regAddress,
		ctxtRegVal, regAccInfo[ctxtReg].regSize, ctxtNum, verify);
    }
}

/*
 * NPE Mailbox support.
 */
#define	IX_NPEMH_MAXTRIES	100000

static int
ixpnpe_ofifo_wait(struct ixpnpe_softc *sc)
{
    int i;

    for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
        if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_OFNE)
	    return 1;
	DELAY(10);
    }
    printf("%s: %s: timeout, last status 0x%x\n", sc->sc_dev.dv_xname,
        __func__, npe_reg_read(sc, IX_NPESTAT));
    return 0;
}

static int
ixpnpe_intr(void *arg)
{
    struct ixpnpe_softc *sc = arg;
    uint32_t status;

    status = npe_reg_read(sc, IX_NPESTAT);
    if ((status & IX_NPESTAT_OFINT) == 0) {
	/* NB: should not happen */
	printf("%s: %s: status 0x%x\n", sc->sc_dev.dv_xname, __func__, status);
	/* XXX must silence interrupt? */
	return(1);
    }
    /*
     * A message is waiting in the output FIFO, copy it so
     * the interrupt will be silenced; then signal anyone
     * waiting to collect the result.
     */
    sc->sc_msgwaiting = -1;		/* NB: error indicator */
    if (ixpnpe_ofifo_wait(sc)) {
	sc->sc_msg[0] = npe_reg_read(sc, IX_NPEFIFO);
	if (ixpnpe_ofifo_wait(sc)) {
	    sc->sc_msg[1] = npe_reg_read(sc, IX_NPEFIFO);
	    sc->sc_msgwaiting = 1;	/* successful fetch */
	}
    }
    wakeup(sc);

    return (1);
}

static int
ixpnpe_ififo_wait(struct ixpnpe_softc *sc)
{
    int i;

    for (i = 0; i < IX_NPEMH_MAXTRIES; i++) {
	if (npe_reg_read(sc, IX_NPESTAT) & IX_NPESTAT_IFNF)
	    return 1;
	DELAY(10);
    }
    return 0;
}

static int
ixpnpe_sendmsg_locked(struct ixpnpe_softc *sc, const uint32_t msg[2])
{
    int error = 0;

    sc->sc_msgwaiting = 0;
    if (ixpnpe_ififo_wait(sc)) {
	npe_reg_write(sc, IX_NPEFIFO, msg[0]);
	if (ixpnpe_ififo_wait(sc))
	    npe_reg_write(sc, IX_NPEFIFO, msg[1]);
	else
	    error = EIO;
    } else
	error = EIO;

    if (error)
	printf("%s: input FIFO timeout, msg [0x%x,0x%x]\n",
	    sc->sc_dev.dv_xname, msg[0], msg[1]);
    return error;
}

static int
ixpnpe_recvmsg_locked(struct ixpnpe_softc *sc, uint32_t msg[2])
{

    if (!sc->sc_msgwaiting)
	ltsleep(sc, 0, "npemh", 0, &sc->sc_lock);
    bcopy(sc->sc_msg, msg, sizeof(sc->sc_msg));
    /* NB: sc_msgwaiting != 1 means the ack fetch failed */
    return sc->sc_msgwaiting != 1 ? EIO : 0;
}

/*
 * Send a msg to the NPE and wait for a reply.  We use the
 * private mutex and sleep until an interrupt is received
 * signalling the availability of data in the output FIFO
 * so the caller cannot be holding a mutex.  May be better
 * piggyback on the caller's mutex instead but that would
 * make other locking confusing.
 */
int
ixpnpe_sendandrecvmsg(struct ixpnpe_softc *sc,
	const uint32_t send[2], uint32_t recv[2])
{
    int error;

    simple_lock(&sc->sc_lock);
    error = ixpnpe_sendmsg_locked(sc, send);
    if (error == 0)
	error = ixpnpe_recvmsg_locked(sc, recv);
    simple_unlock(&sc->sc_lock);

    return error;
}

/* XXX temporary, not reliable */

int
ixpnpe_sendmsg(struct ixpnpe_softc *sc, const uint32_t msg[2])
{
    int error;

    simple_lock(&sc->sc_lock);
    error = ixpnpe_sendmsg_locked(sc, msg);
    simple_unlock(&sc->sc_lock);

    return error;
}

int
ixpnpe_recvmsg(struct ixpnpe_softc *sc, uint32_t msg[2])
{
    int error;

    simple_lock(&sc->sc_lock);
    if (sc->sc_msgwaiting)
	bcopy(sc->sc_msg, msg, sizeof(sc->sc_msg));
    /* NB: sc_msgwaiting != 1 means the ack fetch failed */
    error = sc->sc_msgwaiting != 1 ? EIO : 0;
    simple_unlock(&sc->sc_lock);

    return error;
}