OpenBSD-4.6/sys/dev/ic/rt2860.c
/* $OpenBSD: rt2860.c,v 1.34 2009/05/11 19:20:27 damien Exp $ */
/*-
* Copyright (c) 2007, 2008
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Ralink Technology RT2860 chipset driver
* http://www.ralinktech.com/
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/timeout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/intr.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/rt2860var.h>
#include <dev/ic/rt2860reg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/rndvar.h>
#ifdef RAL_DEBUG
#define DPRINTF(x) do { if (rt2860_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (rt2860_debug >= (n)) printf x; } while (0)
int rt2860_debug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
int rt2860_alloc_tx_ring(struct rt2860_softc *,
struct rt2860_tx_ring *);
void rt2860_reset_tx_ring(struct rt2860_softc *,
struct rt2860_tx_ring *);
void rt2860_free_tx_ring(struct rt2860_softc *,
struct rt2860_tx_ring *);
int rt2860_alloc_tx_pool(struct rt2860_softc *);
void rt2860_free_tx_pool(struct rt2860_softc *);
int rt2860_alloc_rx_ring(struct rt2860_softc *,
struct rt2860_rx_ring *);
void rt2860_reset_rx_ring(struct rt2860_softc *,
struct rt2860_rx_ring *);
void rt2860_free_rx_ring(struct rt2860_softc *,
struct rt2860_rx_ring *);
struct ieee80211_node *rt2860_node_alloc(struct ieee80211com *);
int rt2860_media_change(struct ifnet *);
void rt2860_iter_func(void *, struct ieee80211_node *);
void rt2860_updatestats(struct rt2860_softc *);
void rt2860_newassoc(struct ieee80211com *, struct ieee80211_node *,
int);
int rt2860_newstate(struct ieee80211com *, enum ieee80211_state,
int);
uint16_t rt2860_eeprom_read(struct rt2860_softc *, uint8_t);
void rt2860_intr_coherent(struct rt2860_softc *);
void rt2860_drain_stats_fifo(struct rt2860_softc *);
void rt2860_tx_intr(struct rt2860_softc *, int);
void rt2860_rx_intr(struct rt2860_softc *);
void rt2860_tbtt_intr(struct rt2860_softc *);
void rt2860_gp_intr(struct rt2860_softc *);
int rt2860_tx(struct rt2860_softc *, struct mbuf *,
struct ieee80211_node *);
void rt2860_start(struct ifnet *);
void rt2860_watchdog(struct ifnet *);
int rt2860_ioctl(struct ifnet *, u_long, caddr_t);
void rt2860_mcu_bbp_write(struct rt2860_softc *, uint8_t, uint8_t);
uint8_t rt2860_mcu_bbp_read(struct rt2860_softc *, uint8_t);
void rt2860_rf_write(struct rt2860_softc *, uint8_t, uint32_t);
int rt2860_mcu_cmd(struct rt2860_softc *, uint8_t, uint16_t);
void rt2860_enable_mrr(struct rt2860_softc *);
void rt2860_set_txpreamble(struct rt2860_softc *);
void rt2860_set_basicrates(struct rt2860_softc *);
void rt2860_select_chan_group(struct rt2860_softc *, int);
void rt2860_set_chan(struct rt2860_softc *,
struct ieee80211_channel *);
void rt2860_set_leds(struct rt2860_softc *, uint16_t);
void rt2860_set_gp_timer(struct rt2860_softc *, int);
void rt2860_set_bssid(struct rt2860_softc *, const uint8_t *);
void rt2860_set_macaddr(struct rt2860_softc *, const uint8_t *);
void rt2860_updateslot(struct ieee80211com *);
void rt2860_updateprot(struct ieee80211com *);
void rt2860_updateedca(struct ieee80211com *);
int rt2860_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void rt2860_delete_key(struct ieee80211com *,
struct ieee80211_node *, struct ieee80211_key *);
#if NBPFILTER > 0
int8_t rt2860_rssi2dbm(struct rt2860_softc *, uint8_t, uint8_t);
#endif
const char * rt2860_get_rf(uint8_t);
int rt2860_read_eeprom(struct rt2860_softc *);
int rt2860_bbp_init(struct rt2860_softc *);
int rt2860_txrx_enable(struct rt2860_softc *);
int rt2860_init(struct ifnet *);
void rt2860_stop(struct ifnet *, int);
int rt2860_load_microcode(struct rt2860_softc *);
void rt2860_calib(struct rt2860_softc *);
#ifndef IEEE80211_STA_ONLY
int rt2860_setup_beacon(struct rt2860_softc *);
#endif
void rt2860_enable_tsf_sync(struct rt2860_softc *);
void rt2860_power(int, void *);
static const struct {
uint32_t reg;
uint32_t val;
} rt2860_def_mac[] = {
RT2860_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2860_def_bbp[] = {
RT2860_DEF_BBP
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rt2860_rf2850[] = {
RT2860_RF2850
};
int
rt2860_attach(void *xsc, int id)
{
struct rt2860_softc *sc = xsc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
int i, qid, ntries, error;
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 15;
/* wait for NIC to initialize */
for (ntries = 0; ntries < 100; ntries++) {
sc->mac_rev = RAL_READ(sc, RT2860_ASIC_VER_ID);
if (sc->mac_rev != 0 && sc->mac_rev != 0xffffffff)
break;
DELAY(10);
}
if (ntries == 100) {
printf("%s: timeout waiting for NIC to initialize\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
if ((sc->mac_rev >> 16) != 0x2860 &&
(id == PCI_PRODUCT_RALINK_RT2890 ||
id == PCI_PRODUCT_RALINK_RT2790 ||
id == PCI_PRODUCT_AWT_RT2890))
sc->sc_flags |= RT2860_ADVANCED_PS;
/* retrieve RF rev. no and various other things from EEPROM */
rt2860_read_eeprom(sc);
printf(", address %s\n", ether_sprintf(ic->ic_myaddr));
printf("%s: MAC/BBP RT%X (rev 0x%04X), RF %s (MIMO %dT%dR)\n",
sc->sc_dev.dv_xname, sc->mac_rev >> 16, sc->mac_rev & 0xffff,
rt2860_get_rf(sc->rf_rev), sc->ntxchains, sc->nrxchains);
/*
* Allocate Tx (4 EDCAs + HCCA + Mgt) and Rx rings.
*/
for (qid = 0; qid < 6; qid++) {
if ((error = rt2860_alloc_tx_ring(sc, &sc->txq[qid])) != 0) {
printf("%s: could not allocate Tx ring %d\n",
sc->sc_dev.dv_xname, qid);
goto fail1;
}
}
if ((error = rt2860_alloc_rx_ring(sc, &sc->rxq)) != 0) {
printf("%s: could not allocate Rx ring\n",
sc->sc_dev.dv_xname);
goto fail1;
}
if ((error = rt2860_alloc_tx_pool(sc)) != 0) {
printf("%s: could not allocate Tx pool\n",
sc->sc_dev.dv_xname);
goto fail2;
}
/* mgmt ring is broken on RT2860C, use EDCA AC VO ring instead */
sc->mgtqid = (sc->mac_rev == 0x28600100) ? EDCA_AC_VO : 5;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_MONITOR | /* monitor mode supported */
#ifndef IEEE80211_STA_ONLY
IEEE80211_C_IBSS | /* IBSS mode supported */
IEEE80211_C_HOSTAP | /* HostAP mode supported */
#ifdef notyet
IEEE80211_C_APPMGT | /* HostAP power management */
#endif
#endif
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WEP | /* s/w WEP */
IEEE80211_C_RSN; /* WPA/RSN */
if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] =
ieee80211_std_rateset_11a;
/* set supported .11a channels */
for (i = 14; i < nitems(rt2860_rf2850); i++) {
uint8_t chan = rt2860_rf2850[i].chan;
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
/* HW supports up to 255 STAs (0-254) in HostAP and IBSS modes */
ic->ic_max_aid = min(IEEE80211_AID_MAX, RT2860_WCID_MAX);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rt2860_init;
ifp->if_ioctl = rt2860_ioctl;
ifp->if_start = rt2860_start;
ifp->if_watchdog = rt2860_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
ic->ic_node_alloc = rt2860_node_alloc;
ic->ic_newassoc = rt2860_newassoc;
ic->ic_updateslot = rt2860_updateslot;
ic->ic_updateedca = rt2860_updateedca;
ic->ic_set_key = rt2860_set_key;
ic->ic_delete_key = rt2860_delete_key;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = rt2860_newstate;
ieee80211_media_init(ifp, rt2860_media_change, ieee80211_media_status);
#if NBPFILTER > 0
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2860_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RT2860_TX_RADIOTAP_PRESENT);
#endif
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(rt2860_shutdown, sc);
if (sc->sc_sdhook == NULL) {
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
}
sc->sc_powerhook = powerhook_establish(rt2860_power, sc);
if (sc->sc_powerhook == NULL) {
printf("%s: WARNING: unable to establish power hook\n",
sc->sc_dev.dv_xname);
}
return 0;
fail2: rt2860_free_rx_ring(sc, &sc->rxq);
fail1: while (--qid >= 0)
rt2860_free_tx_ring(sc, &sc->txq[qid]);
return error;
}
int
rt2860_detach(void *xsc)
{
struct rt2860_softc *sc = xsc;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int qid;
ieee80211_ifdetach(ifp); /* free all nodes */
if_detach(ifp);
if (sc->sc_powerhook != NULL)
powerhook_disestablish(sc->sc_powerhook);
if (sc->sc_sdhook != NULL)
shutdownhook_disestablish(sc->sc_sdhook);
for (qid = 0; qid < 6; qid++)
rt2860_free_tx_ring(sc, &sc->txq[qid]);
rt2860_free_rx_ring(sc, &sc->rxq);
rt2860_free_tx_pool(sc);
return 0;
}
int
rt2860_alloc_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
int nsegs, size, error;
size = RT2860_TX_RING_COUNT * sizeof (struct rt2860_txd);
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname);
goto fail;
}
/* Tx rings must be 4-DWORD aligned */
error = bus_dmamem_alloc(sc->sc_dmat, size, 16, 0, &ring->seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, size,
(caddr_t *)&ring->txd, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map DMA memory\n", sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->txd, size, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load DMA map\n", sc->sc_dev.dv_xname);
goto fail;
}
memset(ring->txd, 0, size);
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, size, BUS_DMASYNC_PREWRITE);
ring->paddr = ring->map->dm_segs[0].ds_addr;
return 0;
fail: rt2860_free_tx_ring(sc, ring);
return error;
}
void
rt2860_reset_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
struct rt2860_tx_data *data;
int i;
for (i = 0; i < RT2860_TX_RING_COUNT; i++) {
if ((data = ring->data[i]) == NULL)
continue; /* nothing mapped in this slot */
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m= NULL;
data->ni = NULL; /* node already freed */
SLIST_INSERT_HEAD(&sc->data_pool, data, next);
ring->data[i] = NULL;
}
ring->queued = 0;
ring->cur = ring->next = 0;
}
void
rt2860_free_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
struct rt2860_tx_data *data;
int i;
if (ring->txd != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->txd,
RT2860_TX_RING_COUNT * sizeof (struct rt2860_txd));
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
if (ring->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, ring->map);
for (i = 0; i < RT2860_TX_RING_COUNT; i++) {
if ((data = ring->data[i]) == NULL)
continue; /* nothing mapped in this slot */
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
SLIST_INSERT_HEAD(&sc->data_pool, data, next);
}
}
/*
* Allocate a pool of TX Wireless Information blocks.
*/
int
rt2860_alloc_tx_pool(struct rt2860_softc *sc)
{
caddr_t vaddr;
bus_addr_t paddr;
int i, nsegs, size, error;
size = RT2860_TX_POOL_COUNT * RT2860_TXWI_DMASZ;
/* init data_pool early in case of failure.. */
SLIST_INIT(&sc->data_pool);
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &sc->txwi_map);
if (error != 0) {
printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
&sc->txwi_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->txwi_seg, nsegs, size,
&sc->txwi_vaddr, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map DMA memory\n", sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->txwi_map, sc->txwi_vaddr,
size, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load DMA map\n", sc->sc_dev.dv_xname);
goto fail;
}
memset(sc->txwi_vaddr, 0, size);
bus_dmamap_sync(sc->sc_dmat, sc->txwi_map, 0, size,
BUS_DMASYNC_PREWRITE);
vaddr = sc->txwi_vaddr;
paddr = sc->txwi_map->dm_segs[0].ds_addr;
for (i = 0; i < RT2860_TX_POOL_COUNT; i++) {
struct rt2860_tx_data *data = &sc->data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
RT2860_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
&data->map);
if (error != 0) {
printf("%s: could not create DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
data->txwi = (struct rt2860_txwi *)vaddr;
data->paddr = paddr;
vaddr += RT2860_TXWI_DMASZ;
paddr += RT2860_TXWI_DMASZ;
SLIST_INSERT_HEAD(&sc->data_pool, data, next);
}
return 0;
fail: rt2860_free_tx_pool(sc);
return error;
}
void
rt2860_free_tx_pool(struct rt2860_softc *sc)
{
if (sc->txwi_vaddr != NULL) {
bus_dmamap_sync(sc->sc_dmat, sc->txwi_map, 0,
sc->txwi_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, sc->txwi_map);
bus_dmamem_unmap(sc->sc_dmat, sc->txwi_vaddr,
RT2860_TX_POOL_COUNT * RT2860_TXWI_DMASZ);
bus_dmamem_free(sc->sc_dmat, &sc->txwi_seg, 1);
}
if (sc->txwi_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, sc->txwi_map);
while (!SLIST_EMPTY(&sc->data_pool)) {
struct rt2860_tx_data *data;
data = SLIST_FIRST(&sc->data_pool);
bus_dmamap_destroy(sc->sc_dmat, data->map);
SLIST_REMOVE_HEAD(&sc->data_pool, next);
}
}
int
rt2860_alloc_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
int i, nsegs, size, error;
size = RT2860_RX_RING_COUNT * sizeof (struct rt2860_rxd);
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname);
goto fail;
}
/* Rx ring must be 4-DWORD aligned */
error = bus_dmamem_alloc(sc->sc_dmat, size, 16, 0, &ring->seg, 1,
&nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not allocate DMA memory\n",
sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, size,
(caddr_t *)&ring->rxd, BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: can't map DMA memory\n", sc->sc_dev.dv_xname);
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->rxd, size, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load DMA map\n", sc->sc_dev.dv_xname);
goto fail;
}
memset(ring->rxd, 0, size);
ring->paddr = ring->map->dm_segs[0].ds_addr;
for (i = 0; i < RT2860_RX_RING_COUNT; i++) {
struct rt2860_rx_data *data = &ring->data[i];
struct rt2860_rxd *rxd = &ring->rxd[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &data->map);
if (error != 0) {
printf("%s: could not create DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
printf("%s: could not allocate Rx mbuf\n",
sc->sc_dev.dv_xname);
error = ENOBUFS;
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
printf("%s: could not allocate Rx mbuf cluster\n",
sc->sc_dev.dv_xname);
error = ENOBUFS;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
printf("%s: could not load DMA map\n",
sc->sc_dev.dv_xname);
goto fail;
}
rxd->sdp0 = htole32(data->map->dm_segs[0].ds_addr);
rxd->sdl0 = htole16(MCLBYTES);
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, size, BUS_DMASYNC_PREWRITE);
return 0;
fail: rt2860_free_rx_ring(sc, ring);
return error;
}
void
rt2860_reset_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
int i;
for (i = 0; i < RT2860_RX_RING_COUNT; i++)
ring->rxd[i].sdl0 &= ~htole16(RT2860_RX_DDONE);
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->cur = 0;
}
void
rt2860_free_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
int i;
if (ring->rxd != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->rxd,
RT2860_RX_RING_COUNT * sizeof (struct rt2860_rxd));
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
if (ring->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, ring->map);
for (i = 0; i < RT2860_RX_RING_COUNT; i++) {
struct rt2860_rx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
struct ieee80211_node *
rt2860_node_alloc(struct ieee80211com *ic)
{
return malloc(sizeof (struct rt2860_node), M_DEVBUF,
M_NOWAIT | M_ZERO);
}
int
rt2860_media_change(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
for (ridx = 0; ridx <= RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
sc->fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
rt2860_init(ifp);
return 0;
}
void
rt2860_iter_func(void *arg, struct ieee80211_node *ni)
{
struct rt2860_softc *sc = arg;
uint8_t wcid;
wcid = RT2860_AID2WCID(ni->ni_associd);
ieee80211_amrr_choose(&sc->amrr, ni, &sc->amn[wcid]);
}
void
rt2860_updatestats(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
#ifndef IEEE80211_STA_ONLY
/*
* In IBSS or HostAP modes (when the hardware sends beacons), the
* MAC can run into a livelock and start sending CTS-to-self frames
* like crazy if protection is enabled. Fortunately, we can detect
* when such a situation occurs and reset the MAC.
*/
if (ic->ic_curmode != IEEE80211_M_STA) {
/* check if we're in a livelock situation.. */
uint32_t tmp = RAL_READ(sc, RT2860_DEBUG);
if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
/* ..and reset MAC/BBP for a while.. */
DPRINTF(("CTS-to-self livelock detected\n"));
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
RAL_BARRIER_WRITE(sc);
DELAY(1);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL,
RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
}
}
#endif
if (ic->ic_opmode == IEEE80211_M_STA)
rt2860_iter_func(sc, ic->ic_bss);
#ifndef IEEE80211_STA_ONLY
else
ieee80211_iterate_nodes(ic, rt2860_iter_func, sc);
#endif
}
void
rt2860_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
{
struct rt2860_softc *sc = ic->ic_softc;
struct rt2860_node *rn = (void *)ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
uint8_t rate, wcid = 0;
int ridx, i, j;
if (isnew && ni->ni_associd != 0) {
/* only interested in true associations */
wcid = RT2860_AID2WCID(ni->ni_associd);
/* init WCID table entry */
RAL_WRITE_REGION_1(sc, RT2860_WCID_ENTRY(wcid),
ni->ni_macaddr, IEEE80211_ADDR_LEN);
}
DPRINTF(("new assoc isnew=%d addr=%s WCID=%d\n",
isnew, ether_sprintf(ni->ni_macaddr), wcid));
ieee80211_amrr_node_init(&sc->amrr, &sc->amn[wcid]);
/* start at lowest available bit-rate, AMRR will raise */
ni->ni_txrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
/* convert 802.11 rate to hardware rate index */
for (ridx = 0; ridx <= RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
rn->ridx[i] = ridx;
/* determine rate of control response frames */
for (j = i; j >= 0; j--) {
if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
rt2860_rates[rn->ridx[i]].phy ==
rt2860_rates[rn->ridx[j]].phy)
break;
}
if (j >= 0) {
rn->ctl_ridx[i] = rn->ridx[j];
} else {
/* no basic rate found, use mandatory one */
rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
}
DPRINTF(("rate=0x%02x ridx=%d ctl_ridx=%d\n",
rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]));
}
}
int
rt2860_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct rt2860_softc *sc = ic->ic_if.if_softc;
enum ieee80211_state ostate;
uint32_t tmp;
ostate = ic->ic_state;
if (ostate == IEEE80211_S_RUN) {
/* turn link LED off */
rt2860_set_leds(sc, RT2860_LED_RADIO);
}
switch (nstate) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG);
RAL_WRITE(sc, RT2860_BCN_TIME_CFG,
tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
RT2860_TBTT_TIMER_EN));
}
rt2860_set_gp_timer(sc, 0);
break;
case IEEE80211_S_SCAN:
rt2860_set_chan(sc, ic->ic_bss->ni_chan);
if (ostate != IEEE80211_S_SCAN)
rt2860_set_gp_timer(sc, 150);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
rt2860_set_gp_timer(sc, 0);
rt2860_set_chan(sc, ic->ic_bss->ni_chan);
break;
case IEEE80211_S_RUN:
rt2860_set_gp_timer(sc, 0);
rt2860_set_chan(sc, ic->ic_bss->ni_chan);
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rt2860_updateslot(ic);
rt2860_enable_mrr(sc);
rt2860_set_txpreamble(sc);
rt2860_set_basicrates(sc);
rt2860_set_bssid(sc, ic->ic_bss->ni_bssid);
}
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS)
(void)rt2860_setup_beacon(sc);
#endif
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
rt2860_newassoc(ic, ic->ic_bss, 1);
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rt2860_enable_tsf_sync(sc);
rt2860_set_gp_timer(sc, 500);
}
/* turn link LED on */
rt2860_set_leds(sc, RT2860_LED_RADIO |
(IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ?
RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
break;
}
return sc->sc_newstate(ic, nstate, arg);
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46,
* 93C66 or 93C86).
*/
uint16_t
rt2860_eeprom_read(struct rt2860_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
RT2860_EEPROM_CTL(sc, 0);
RT2860_EEPROM_CTL(sc, RT2860_S);
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);
RT2860_EEPROM_CTL(sc, RT2860_S);
/* write start bit (1) */
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D);
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C);
/* write READ opcode (10) */
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D);
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C);
RT2860_EEPROM_CTL(sc, RT2860_S);
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);
/* write address (A5-A0 or A7-A0) */
n = ((RAL_READ(sc, RT2860_PCI_EECTRL) & 0x30) == 0) ? 5 : 7;
for (; n >= 0; n--) {
RT2860_EEPROM_CTL(sc, RT2860_S |
(((addr >> n) & 1) << RT2860_SHIFT_D));
RT2860_EEPROM_CTL(sc, RT2860_S |
(((addr >> n) & 1) << RT2860_SHIFT_D) | RT2860_C);
}
RT2860_EEPROM_CTL(sc, RT2860_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);
tmp = RAL_READ(sc, RT2860_PCI_EECTRL);
val |= ((tmp & RT2860_Q) >> RT2860_SHIFT_Q) << n;
RT2860_EEPROM_CTL(sc, RT2860_S);
}
RT2860_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
RT2860_EEPROM_CTL(sc, RT2860_S);
RT2860_EEPROM_CTL(sc, 0);
RT2860_EEPROM_CTL(sc, RT2860_C);
return val;
}
void
rt2860_intr_coherent(struct rt2860_softc *sc)
{
uint32_t tmp;
/* DMA finds data coherent event when checking the DDONE bit */
DPRINTF(("Tx/Rx Coherent interrupt\n"));
/* restart DMA engine */
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
tmp &= ~(RT2860_TX_WB_DDONE | RT2860_RX_DMA_EN | RT2860_TX_DMA_EN);
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
(void)rt2860_txrx_enable(sc);
}
void
rt2860_drain_stats_fifo(struct rt2860_softc *sc)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
struct ieee80211_amrr_node *amn;
uint32_t stat;
uint8_t wcid, mcs, pid;
/* drain Tx status FIFO (maxsize = 16) */
while ((stat = RAL_READ(sc, RT2860_TX_STAT_FIFO)) & RT2860_TXQ_VLD) {
DPRINTFN(4, ("tx stat 0x%08x\n", stat));
wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
/* if no ACK was requested, no feedback is available */
if (!(stat & RT2860_TXQ_ACKREQ) || wcid == 0xff)
continue;
/* update per-STA AMRR stats */
amn = &sc->amn[wcid];
amn->amn_txcnt++;
if (stat & RT2860_TXQ_OK) {
/*
* Check if there were retries, ie if the Tx success
* rate is different from the requested rate. Note
* that it works only because we do not allow rate
* fallback from OFDM to CCK.
*/
mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
if (mcs + 1 != pid)
amn->amn_retrycnt++;
} else {
amn->amn_retrycnt++;
ifp->if_oerrors++;
}
}
}
void
rt2860_tx_intr(struct rt2860_softc *sc, int qid)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct rt2860_tx_ring *ring = &sc->txq[qid];
uint32_t hw;
rt2860_drain_stats_fifo(sc);
hw = RAL_READ(sc, RT2860_TX_DTX_IDX(qid));
while (ring->next != hw) {
struct rt2860_tx_data *data = ring->data[ring->next];
if (data != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m= NULL;
ieee80211_release_node(ic, data->ni);
data->ni = NULL;
SLIST_INSERT_HEAD(&sc->data_pool, data, next);
ring->data[ring->next] = NULL;
ifp->if_opackets++;
}
ring->queued--;
ring->next = (ring->next + 1) % RT2860_TX_RING_COUNT;
}
sc->sc_tx_timer = 0;
if (ring->queued < RT2860_TX_RING_COUNT)
sc->qfullmsk &= ~(1 << qid);
ifp->if_flags &= ~IFF_OACTIVE;
rt2860_start(ifp);
}
/*
* Return the Rx chain with the highest RSSI for a given frame.
*/
static __inline uint8_t
rt2860_maxrssi_chain(struct rt2860_softc *sc, const struct rt2860_rxwi *rxwi)
{
uint8_t rxchain = 0;
if (sc->nrxchains > 1) {
if (rxwi->rssi[1] > rxwi->rssi[rxchain])
rxchain = 1;
if (sc->nrxchains > 2)
if (rxwi->rssi[2] > rxwi->rssi[rxchain])
rxchain = 2;
}
return rxchain;
}
void
rt2860_rx_intr(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
struct mbuf *m, *m1;
uint32_t hw;
uint8_t ant, rssi;
int error;
#if NBPFILTER > 0
struct rt2860_rx_radiotap_header *tap;
struct mbuf mb;
uint16_t phy;
#endif
hw = RAL_READ(sc, RT2860_FS_DRX_IDX) & 0xfff;
while (sc->rxq.cur != hw) {
struct rt2860_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct rt2860_rxd *rxd = &sc->rxq.rxd[sc->rxq.cur];
struct rt2860_rxwi *rxwi;
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
sc->rxq.cur * sizeof (struct rt2860_rxd),
sizeof (struct rt2860_rxd), BUS_DMASYNC_POSTREAD);
if (__predict_false(!(rxd->sdl0 & htole16(RT2860_RX_DDONE)))) {
DPRINTF(("RXD DDONE bit not set!\n"));
break; /* should not happen */
}
if (__predict_false(rxd->flags &
htole32(RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
ifp->if_ierrors++;
goto skip;
}
if (__predict_false(rxd->flags & htole32(RT2860_RX_MICERR))) {
/* report MIC failures to net80211 for TKIP */
ic->ic_stats.is_rx_locmicfail++;
ieee80211_michael_mic_failure(ic, 0/* XXX */);
ifp->if_ierrors++;
goto skip;
}
MGETHDR(m1, M_DONTWAIT, MT_DATA);
if (__predict_false(m1 == NULL)) {
ifp->if_ierrors++;
goto skip;
}
MCLGET(m1, M_DONTWAIT);
if (__predict_false(!(m1->m_flags & M_EXT))) {
m_freem(m1);
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(m1, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (__predict_false(error != 0)) {
m_freem(m1);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (__predict_false(error != 0)) {
panic("%s: could not load old rx mbuf",
sc->sc_dev.dv_xname);
}
/* physical address may have changed */
rxd->sdp0 = htole32(data->map->dm_segs[0].ds_addr);
ifp->if_ierrors++;
goto skip;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = m1;
rxd->sdp0 = htole32(data->map->dm_segs[0].ds_addr);
rxwi = mtod(m, struct rt2860_rxwi *);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_data = (caddr_t)(rxwi + 1);
m->m_pkthdr.len = m->m_len = letoh16(rxwi->len) & 0xfff;
wh = mtod(m, struct ieee80211_frame *);
rxi.rxi_flags = 0;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
/* frame is decrypted by hardware */
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
}
/* HW may insert 2 padding bytes after 802.11 header */
if (rxd->flags & htole32(RT2860_RX_L2PAD)) {
u_int hdrlen = ieee80211_get_hdrlen(wh);
ovbcopy(wh, (caddr_t)wh + 2, hdrlen);
m->m_data += 2;
wh = mtod(m, struct ieee80211_frame *);
}
ant = rt2860_maxrssi_chain(sc, rxwi);
rssi = rxwi->rssi[ant];
#if NBPFILTER > 0
if (__predict_true(sc->sc_drvbpf == NULL))
goto skipbpf;
tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wr_antsignal = rssi;
tap->wr_antenna = ant;
tap->wr_dbm_antsignal = rt2860_rssi2dbm(sc, rssi, ant);
tap->wr_rate = 2; /* in case it can't be found below */
phy = letoh16(rxwi->phy);
switch (phy & RT2860_PHY_MODE) {
case RT2860_PHY_CCK:
switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
}
if (phy & RT2860_PHY_SHPRE)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
break;
case RT2860_PHY_OFDM:
switch (phy & RT2860_PHY_MCS) {
case 0: tap->wr_rate = 12; break;
case 1: tap->wr_rate = 18; break;
case 2: tap->wr_rate = 24; break;
case 3: tap->wr_rate = 36; break;
case 4: tap->wr_rate = 48; break;
case 5: tap->wr_rate = 72; break;
case 6: tap->wr_rate = 96; break;
case 7: tap->wr_rate = 108; break;
}
break;
}
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_rxtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
skipbpf:
#endif
/* grab a reference to the source node */
ni = ieee80211_find_rxnode(ic, wh);
/* send the frame to the 802.11 layer */
rxi.rxi_rssi = rssi;
rxi.rxi_tstamp = 0; /* unused */
ieee80211_input(ifp, m, ni, &rxi);
/* node is no longer needed */
ieee80211_release_node(ic, ni);
skip: rxd->sdl0 &= ~htole16(RT2860_RX_DDONE);
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
sc->rxq.cur * sizeof (struct rt2860_rxd),
sizeof (struct rt2860_rxd), BUS_DMASYNC_PREWRITE);
sc->rxq.cur = (sc->rxq.cur + 1) % RT2860_RX_RING_COUNT;
}
/* tell HW what we have processed */
RAL_WRITE(sc, RT2860_RX_CALC_IDX,
(sc->rxq.cur - 1) % RT2860_RX_RING_COUNT);
}
void
rt2860_tbtt_intr(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
/* one less beacon until next DTIM */
if (ic->ic_dtim_count == 0)
ic->ic_dtim_count = ic->ic_dtim_period - 1;
else
ic->ic_dtim_count--;
/* update dynamic parts of beacon */
rt2860_setup_beacon(sc);
/* flush buffered multicast frames */
if (ic->ic_dtim_count == 0)
ieee80211_notify_dtim(ic);
}
#endif
/* check if protection mode has changed */
if ((sc->sc_ic_flags ^ ic->ic_flags) & IEEE80211_F_USEPROT) {
rt2860_updateprot(ic);
sc->sc_ic_flags = ic->ic_flags;
}
}
void
rt2860_gp_intr(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
DPRINTFN(2, ("GP timeout state=%d\n", ic->ic_state));
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&ic->ic_if);
else if (ic->ic_state == IEEE80211_S_RUN)
rt2860_updatestats(sc);
}
int
rt2860_intr(void *arg)
{
struct rt2860_softc *sc = arg;
uint32_t r;
r = RAL_READ(sc, RT2860_INT_STATUS);
if (__predict_false(r == 0xffffffff))
return 0; /* device likely went away */
if (r == 0)
return 0; /* not for us */
/* acknowledge interrupts */
RAL_WRITE(sc, RT2860_INT_STATUS, r);
if (r & RT2860_TX_RX_COHERENT)
rt2860_intr_coherent(sc);
if (r & RT2860_MAC_INT_2) /* TX status */
rt2860_drain_stats_fifo(sc);
if (r & RT2860_TX_DONE_INT5)
rt2860_tx_intr(sc, 5);
if (r & RT2860_RX_DONE_INT)
rt2860_rx_intr(sc);
if (r & RT2860_TX_DONE_INT4)
rt2860_tx_intr(sc, 4);
if (r & RT2860_TX_DONE_INT3)
rt2860_tx_intr(sc, 3);
if (r & RT2860_TX_DONE_INT2)
rt2860_tx_intr(sc, 2);
if (r & RT2860_TX_DONE_INT1)
rt2860_tx_intr(sc, 1);
if (r & RT2860_TX_DONE_INT0)
rt2860_tx_intr(sc, 0);
if (r & RT2860_MAC_INT_0) /* TBTT */
rt2860_tbtt_intr(sc);
if (r & RT2860_MAC_INT_3) /* Auto wakeup */
/* TBD wakeup */;
if (r & RT2860_MAC_INT_4) /* GP timer */
rt2860_gp_intr(sc);
return 1;
}
int
rt2860_tx(struct rt2860_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2860_node *rn = (void *)ni;
struct rt2860_tx_ring *ring;
struct rt2860_tx_data *data;
struct rt2860_txd *txd;
struct rt2860_txwi *txwi;
struct ieee80211_frame *wh;
struct mbuf *m1;
bus_dma_segment_t *seg;
u_int hdrlen;
uint16_t qos, dur;
uint8_t type, qsel, mcs, pid, tid, qid;
int nsegs, ntxds, hasqos, ridx, ctl_ridx, error;
/* the data pool contains at least one element, pick the first */
data = SLIST_FIRST(&sc->data_pool);
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_get_hdrlen(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if ((hasqos = ieee80211_has_qos(wh))) {
qos = ieee80211_get_qos(wh);
tid = qos & IEEE80211_QOS_TID;
qid = ieee80211_up_to_ac(ic, tid);
} else {
tid = 0;
qid = (type == IEEE80211_FC0_TYPE_MGT) ?
sc->mgtqid : EDCA_AC_BE;
}
ring = &sc->txq[qid];
/* pickup a rate index */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA) {
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
ctl_ridx = rt2860_rates[ridx].ctl_ridx;
} else if (ic->ic_fixed_rate != -1) {
ridx = sc->fixed_ridx;
ctl_ridx = rt2860_rates[ridx].ctl_ridx;
} else {
ridx = rn->ridx[ni->ni_txrate];
ctl_ridx = rn->ctl_ridx[ni->ni_txrate];
}
/* get MCS code from rate index */
mcs = rt2860_rates[ridx].mcs;
/* setup TX Wireless Information */
txwi = data->txwi;
txwi->flags = 0;
txwi->xflags = 0;
txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ?
RT2860_AID2WCID(ni->ni_associd) : 0xff;
txwi->len = htole16(m->m_pkthdr.len);
if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
txwi->phy = htole16(RT2860_PHY_CCK);
if (ridx != RT2860_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
mcs |= RT2860_PHY_SHPRE;
} else
txwi->phy = htole16(RT2860_PHY_OFDM);
txwi->phy |= htole16(mcs);
/*
* We store the MCS code into the driver-private PacketID field.
* The PacketID is latched into TX_STAT_FIFO when Tx completes so
* that we know at which initial rate the frame was transmitted.
* We add 1 to the MCS code because setting the PacketID field to
* 0 means that we don't want feedback in TX_STAT_FIFO.
*/
pid = (mcs + 1) & 0xf;
txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
/* check if RTS/CTS or CTS-to-self protection is required */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(m->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
((ic->ic_flags & IEEE80211_F_USEPROT) &&
rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
txwi->txop = RT2860_TX_TXOP_HT;
else
txwi->txop = RT2860_TX_TXOP_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
IEEE80211_QOS_ACK_POLICY_NOACK)) {
txwi->xflags |= RT2860_TX_ACK;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
dur = rt2860_rates[ctl_ridx].sp_ack_dur;
else
dur = rt2860_rates[ctl_ridx].lp_ack_dur;
*(uint16_t *)wh->i_dur = htole16(dur + sc->sifs);
}
#ifndef IEEE80211_STA_ONLY
/* ask MAC to insert timestamp into probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
/* NOTE: beacons do not pass through tx_data() */
txwi->flags |= RT2860_TX_TS;
#endif
#if NBPFILTER > 0
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct rt2860_tx_radiotap_header *tap = &sc->sc_txtap;
struct mbuf mb;
tap->wt_flags = 0;
tap->wt_rate = rt2860_rates[ridx].rate;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wt_hwqueue = qid;
if (mcs & RT2860_PHY_SHPRE)
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_txtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
}
#endif
/* copy and trim 802.11 header */
memcpy(txwi + 1, wh, hdrlen);
m_adj(m, hdrlen);
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT);
if (__predict_false(error != 0 && error != EFBIG)) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return error;
}
if (__predict_true(error == 0)) {
/* determine how many TXDs are required */
ntxds = 1 + (data->map->dm_nsegs / 2);
if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
/* not enough free TXDs, force mbuf defrag */
bus_dmamap_unload(sc->sc_dmat, data->map);
error = EFBIG;
}
}
if (__predict_false(error != 0)) {
/* too many fragments, linearize */
MGETHDR(m1, M_DONTWAIT, MT_DATA);
if (m1 == NULL) {
m_freem(m);
return ENOBUFS;
}
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m1, M_DONTWAIT);
if (!(m1->m_flags & M_EXT)) {
m_freem(m);
m_freem(m1);
return ENOBUFS;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, caddr_t));
m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
m_freem(m);
m = m1;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT);
if (__predict_false(error != 0)) {
printf("%s: can't map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return error;
}
/* determine how many TXDs are now required */
ntxds = 1 + (data->map->dm_nsegs / 2);
if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
/* this is a hopeless case, drop the mbuf! */
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(m);
return ENOBUFS;
}
}
qsel = (qid < EDCA_NUM_AC) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_MGMT;
/* first segment is TXWI + 802.11 header */
txd = &ring->txd[ring->cur];
txd->sdp0 = htole32(data->paddr);
txd->sdl0 = htole16(sizeof (struct rt2860_txwi) + hdrlen);
txd->flags = qsel;
/* setup payload segments */
seg = data->map->dm_segs;
for (nsegs = data->map->dm_nsegs; nsegs >= 2; nsegs -= 2) {
txd->sdp1 = htole32(seg->ds_addr);
txd->sdl1 = htole16(seg->ds_len);
seg++;
ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
/* grab a new Tx descriptor */
txd = &ring->txd[ring->cur];
txd->sdp0 = htole32(seg->ds_addr);
txd->sdl0 = htole16(seg->ds_len);
txd->flags = qsel;
seg++;
}
/* finalize last segment */
if (nsegs > 0) {
txd->sdp1 = htole32(seg->ds_addr);
txd->sdl1 = htole16(seg->ds_len | RT2860_TX_LS1);
} else {
txd->sdl0 |= htole16(RT2860_TX_LS0);
txd->sdl1 = 0;
}
/* remove from the free pool and link it into the SW Tx slot */
SLIST_REMOVE_HEAD(&sc->data_pool, next);
data->m = m;
data->ni = ni;
ring->data[ring->cur] = data;
bus_dmamap_sync(sc->sc_dmat, sc->txwi_map,
(caddr_t)txwi - sc->txwi_vaddr, RT2860_TXWI_DMASZ,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
DPRINTFN(4, ("sending frame qid=%d wcid=%d nsegs=%d ridx=%d\n",
qid, txwi->wcid, data->map->dm_nsegs, ridx));
ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
ring->queued += ntxds;
if (ring->queued >= RT2860_TX_RING_COUNT)
sc->qfullmsk |= 1 << qid;
/* kick Tx */
RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), ring->cur);
return 0;
}
void
rt2860_start(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
if (SLIST_EMPTY(&sc->data_pool) || sc->qfullmsk != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* send pending management frames first */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m != NULL) {
ni = (void *)m->m_pkthdr.rcvif;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* send buffered frames for power-save mode */
IF_DEQUEUE(&ic->ic_pwrsaveq, m);
if (m != NULL) {
ni = (void *)m->m_pkthdr.rcvif;
goto sendit;
}
/* encapsulate and send data frames */
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
continue;
sendit:
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
if (rt2860_tx(sc, m, ni) != 0) {
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
rt2860_watchdog(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
rt2860_init(ifp);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
int
rt2860_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifaddr *ifa;
struct ifreq *ifr;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifa = (struct ifaddr *)data;
ifp->if_flags |= IFF_UP;
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(&ic->ic_ac, ifa);
#endif
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
rt2860_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
rt2860_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ifr = (struct ifreq *)data;
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &ic->ic_ac) :
ether_delmulti(ifr, &ic->ic_ac);
if (error == ENETRESET)
error = 0;
break;
case SIOCS80211CHANNEL:
/*
* This allows for fast channel switching in monitor mode
* (used by kismet). In IBSS mode, we must explicitly reset
* the interface to generate a new beacon frame.
*/
error = ieee80211_ioctl(ifp, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
rt2860_set_chan(sc, ic->ic_ibss_chan);
error = 0;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
rt2860_init(ifp);
error = 0;
}
splx(s);
return error;
}
/*
* Reading and writing from/to the BBP is different from RT2560 and RT2661.
* We access the BBP through the 8051 microcontroller unit which means that
* the microcode must be loaded first.
*/
void
rt2860_mcu_bbp_write(struct rt2860_softc *sc, uint8_t reg, uint8_t val)
{
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK))
break;
DELAY(1);
}
if (ntries == 100) {
printf("%s: could not write to BBP through MCU\n",
sc->sc_dev.dv_xname);
return;
}
RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL |
RT2860_BBP_CSR_KICK | reg << 8 | val);
RAL_BARRIER_WRITE(sc);
(void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0);
DELAY(1000);
}
uint8_t
rt2860_mcu_bbp_read(struct rt2860_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK))
break;
DELAY(1);
}
if (ntries == 100) {
printf("%s: could not read from BBP through MCU\n",
sc->sc_dev.dv_xname);
return 0;
}
RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL |
RT2860_BBP_CSR_KICK | RT2860_BBP_CSR_READ | reg << 8);
RAL_BARRIER_WRITE(sc);
(void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0);
DELAY(1000);
for (ntries = 0; ntries < 100; ntries++) {
val = RAL_READ(sc, RT2860_H2M_BBPAGENT);
if (!(val & RT2860_BBP_CSR_KICK))
return val & 0xff;
DELAY(1);
}
printf("%s: could not read from BBP through MCU\n",
sc->sc_dev.dv_xname);
return 0;
}
/*
* Write to one of the 4 programmable 24-bit RF registers.
*/
void
rt2860_rf_write(struct rt2860_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_RF_CSR_CFG0) & RT2860_RF_REG_CTRL))
break;
DELAY(1);
}
if (ntries == 100) {
printf("%s: could not write to RF\n", sc->sc_dev.dv_xname);
return;
}
/* RF registers are 24-bit on the RT2860 */
tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
(val & 0x3fffff) << 2 | (reg & 3);
RAL_WRITE(sc, RT2860_RF_CSR_CFG0, tmp);
}
/*
* Send a command to the 8051 microcontroller unit.
*/
int
rt2860_mcu_cmd(struct rt2860_softc *sc, uint8_t cmd, uint16_t arg)
{
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_H2M_MAILBOX) & RT2860_H2M_BUSY))
break;
DELAY(2);
}
if (ntries == 100)
return EIO;
RAL_WRITE(sc, RT2860_H2M_MAILBOX,
RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_HOST_CMD, cmd);
return 0;
}
void
rt2860_enable_mrr(struct rt2860_softc *sc)
{
#define CCK(mcs) (mcs)
#define OFDM(mcs) (1 << 3 | (mcs))
RAL_WRITE(sc, RT2860_LG_FBK_CFG0,
OFDM(6) << 28 | /* 54->48 */
OFDM(5) << 24 | /* 48->36 */
OFDM(4) << 20 | /* 36->24 */
OFDM(3) << 16 | /* 24->18 */
OFDM(2) << 12 | /* 18->12 */
OFDM(1) << 8 | /* 12-> 9 */
OFDM(0) << 4 | /* 9-> 6 */
OFDM(0)); /* 6-> 6 */
RAL_WRITE(sc, RT2860_LG_FBK_CFG1,
CCK(2) << 12 | /* 11->5.5 */
CCK(1) << 8 | /* 5.5-> 2 */
CCK(0) << 4 | /* 2-> 1 */
CCK(0)); /* 1-> 1 */
#undef OFDM
#undef CCK
}
void
rt2860_set_txpreamble(struct rt2860_softc *sc)
{
uint32_t tmp;
tmp = RAL_READ(sc, RT2860_AUTO_RSP_CFG);
tmp &= ~RT2860_CCK_SHORT_EN;
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2860_CCK_SHORT_EN;
RAL_WRITE(sc, RT2860_AUTO_RSP_CFG, tmp);
}
void
rt2860_set_basicrates(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* set basic rates mask */
if (ic->ic_curmode == IEEE80211_MODE_11B)
RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
else /* 11g */
RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
}
void
rt2860_select_chan_group(struct rt2860_softc *sc, int group)
{
uint32_t tmp;
rt2860_mcu_bbp_write(sc, 62, 0x37 - sc->lna[group]);
rt2860_mcu_bbp_write(sc, 63, 0x37 - sc->lna[group]);
rt2860_mcu_bbp_write(sc, 64, 0x37 - sc->lna[group]);
rt2860_mcu_bbp_write(sc, 86, 0x00);
if (group == 0) {
if (sc->ext_2ghz_lna) {
rt2860_mcu_bbp_write(sc, 82, 0x62);
rt2860_mcu_bbp_write(sc, 75, 0x46);
} else {
rt2860_mcu_bbp_write(sc, 82, 0x84);
rt2860_mcu_bbp_write(sc, 75, 0x50);
}
} else {
if (sc->ext_5ghz_lna) {
rt2860_mcu_bbp_write(sc, 82, 0xf2);
rt2860_mcu_bbp_write(sc, 75, 0x46);
} else {
rt2860_mcu_bbp_write(sc, 82, 0xf2);
rt2860_mcu_bbp_write(sc, 75, 0x50);
}
}
tmp = RAL_READ(sc, RT2860_TX_BAND_CFG);
tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
RAL_WRITE(sc, RT2860_TX_BAND_CFG, tmp);
/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
tmp = RT2860_RFTR_EN | RT2860_TRSW_EN;
if (group == 0) { /* 2GHz */
tmp |= RT2860_PA_PE_G0_EN | RT2860_LNA_PE_G0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_G1_EN;
if (sc->nrxchains > 1)
tmp |= RT2860_LNA_PE_G1_EN;
} else { /* 5GHz */
tmp |= RT2860_PA_PE_A0_EN | RT2860_LNA_PE_A0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_A1_EN;
if (sc->nrxchains > 1)
tmp |= RT2860_LNA_PE_A1_EN;
}
RAL_WRITE(sc, RT2860_TX_PIN_CFG, tmp);
/* set initial AGC value */
if (group == 0)
rt2860_mcu_bbp_write(sc, 66, 0x2e + sc->lna[0]);
else
rt2860_mcu_bbp_write(sc, 66, 0x32 + (sc->lna[group] * 5) / 3);
}
void
rt2860_set_chan(struct rt2860_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct rfprog *rfprog = rt2860_rf2850;
uint32_t r2, r3, r4;
int8_t txpow1, txpow2;
u_int i, chan, group;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
r2 = rfprog[i].r2;
if (sc->ntxchains == 1)
r2 |= 1 << 12; /* 1T: disable Tx chain 2 */
if (sc->nrxchains == 1)
r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
r2 |= 1 << 4; /* 2R: disable Rx chain 3 */
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
if (IEEE80211_IS_CHAN_5GHZ(c)) {
if (txpow1 >= 0)
txpow1 = txpow1 << 1;
else
txpow1 = (7 + txpow1) << 1 | 1;
if (txpow2 >= 0)
txpow2 = txpow2 << 1;
else
txpow2 = (7 + txpow2) << 1 | 1;
}
r3 = rfprog[i].r3 | txpow1 << 7;
r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
rt2860_rf_write(sc, RT2860_RF2, r2);
rt2860_rf_write(sc, RT2860_RF3, r3);
rt2860_rf_write(sc, RT2860_RF4, r4);
DELAY(200);
rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
rt2860_rf_write(sc, RT2860_RF2, r2);
rt2860_rf_write(sc, RT2860_RF3, r3 | 1);
rt2860_rf_write(sc, RT2860_RF4, r4);
DELAY(200);
rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
rt2860_rf_write(sc, RT2860_RF2, r2);
rt2860_rf_write(sc, RT2860_RF3, r3);
rt2860_rf_write(sc, RT2860_RF4, r4);
/* 802.11a uses a 16 microseconds short interframe space */
sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
/* determine channel group */
if (chan <= 14)
group = 0;
else if (chan <= 64)
group = 1;
else if (chan <= 128)
group = 2;
else
group = 3;
/* XXX necessary only when group has changed! */
rt2860_select_chan_group(sc, group);
DELAY(1000);
}
void
rt2860_set_leds(struct rt2860_softc *sc, uint16_t which)
{
(void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
which | (sc->leds & 0x7f));
}
/*
* Hardware has a general-purpose programmable timer interrupt that can
* periodically raise MAC_INT_4.
*/
void
rt2860_set_gp_timer(struct rt2860_softc *sc, int ms)
{
uint32_t tmp;
/* disable GP timer before reprogramming it */
tmp = RAL_READ(sc, RT2860_INT_TIMER_EN);
RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp & ~RT2860_GP_TIMER_EN);
if (ms == 0)
return;
tmp = RAL_READ(sc, RT2860_INT_TIMER_CFG);
ms *= 16; /* Unit: 64us */
tmp = (tmp & 0xffff) | ms << RT2860_GP_TIMER_SHIFT;
RAL_WRITE(sc, RT2860_INT_TIMER_CFG, tmp);
/* enable GP timer */
tmp = RAL_READ(sc, RT2860_INT_TIMER_EN);
RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp | RT2860_GP_TIMER_EN);
}
void
rt2860_set_bssid(struct rt2860_softc *sc, const uint8_t *bssid)
{
RAL_WRITE(sc, RT2860_MAC_BSSID_DW0,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
RAL_WRITE(sc, RT2860_MAC_BSSID_DW1,
bssid[4] | bssid[5] << 8);
}
void
rt2860_set_macaddr(struct rt2860_softc *sc, const uint8_t *addr)
{
RAL_WRITE(sc, RT2860_MAC_ADDR_DW0,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
RAL_WRITE(sc, RT2860_MAC_ADDR_DW1,
addr[4] | addr[5] << 8 | 0xff << 16);
}
void
rt2860_updateslot(struct ieee80211com *ic)
{
struct rt2860_softc *sc = ic->ic_softc;
uint32_t tmp;
tmp = RAL_READ(sc, RT2860_BKOFF_SLOT_CFG);
tmp &= ~0xff;
tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
RAL_WRITE(sc, RT2860_BKOFF_SLOT_CFG, tmp);
}
void
rt2860_updateprot(struct ieee80211com *ic)
{
struct rt2860_softc *sc = ic->ic_softc;
uint32_t tmp;
tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
/* setup protection frame rate (MCS code) */
tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ?
rt2860_rates[RT2860_RIDX_OFDM6].mcs :
rt2860_rates[RT2860_RIDX_CCK11].mcs;
/* CCK frames don't require protection */
RAL_WRITE(sc, RT2860_CCK_PROT_CFG, tmp);
if (ic->ic_flags & IEEE80211_F_USEPROT) {
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
tmp |= RT2860_PROT_CTRL_RTS_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
tmp |= RT2860_PROT_CTRL_CTS;
}
RAL_WRITE(sc, RT2860_OFDM_PROT_CFG, tmp);
}
void
rt2860_updateedca(struct ieee80211com *ic)
{
struct rt2860_softc *sc = ic->ic_softc;
int aci;
/* update MAC TX configuration registers */
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
RAL_WRITE(sc, RT2860_EDCA_AC_CFG(aci),
ic->ic_edca_ac[aci].ac_ecwmax << 16 |
ic->ic_edca_ac[aci].ac_ecwmin << 12 |
ic->ic_edca_ac[aci].ac_aifsn << 8 |
ic->ic_edca_ac[aci].ac_txoplimit);
}
/* update SCH/DMA registers too */
RAL_WRITE(sc, RT2860_WMM_AIFSN_CFG,
ic->ic_edca_ac[EDCA_AC_VO].ac_aifsn << 12 |
ic->ic_edca_ac[EDCA_AC_VI].ac_aifsn << 8 |
ic->ic_edca_ac[EDCA_AC_BK].ac_aifsn << 4 |
ic->ic_edca_ac[EDCA_AC_BE].ac_aifsn);
RAL_WRITE(sc, RT2860_WMM_CWMIN_CFG,
ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmin << 12 |
ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmin << 8 |
ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmin << 4 |
ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmin);
RAL_WRITE(sc, RT2860_WMM_CWMAX_CFG,
ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmax << 12 |
ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmax << 8 |
ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmax << 4 |
ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmax);
RAL_WRITE(sc, RT2860_WMM_TXOP0_CFG,
ic->ic_edca_ac[EDCA_AC_BK].ac_txoplimit << 16 |
ic->ic_edca_ac[EDCA_AC_BE].ac_txoplimit);
RAL_WRITE(sc, RT2860_WMM_TXOP1_CFG,
ic->ic_edca_ac[EDCA_AC_VO].ac_txoplimit << 16 |
ic->ic_edca_ac[EDCA_AC_VI].ac_txoplimit);
}
int
rt2860_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct rt2860_softc *sc = ic->ic_softc;
bus_size_t base;
uint32_t attr;
uint8_t mode, wcid, iv[8];
/* map net80211 cipher to RT2860 security mode */
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
mode = RT2860_MODE_WEP40;
break;
case IEEE80211_CIPHER_WEP104:
mode = RT2860_MODE_WEP104;
break;
case IEEE80211_CIPHER_TKIP:
mode = RT2860_MODE_TKIP;
break;
case IEEE80211_CIPHER_CCMP:
mode = RT2860_MODE_AES_CCMP;
break;
default:
return EINVAL;
}
if (k->k_flags & IEEE80211_KEY_GROUP) {
wcid = 0; /* NB: update WCID0 for group keys */
base = RT2860_SKEY(0, k->k_id);
} else {
wcid = RT2860_AID2WCID(ni->ni_associd);
base = RT2860_PKEY(wcid);
}
if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
RAL_WRITE_REGION_1(sc, base, k->k_key, 16);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[16], 8);
RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[24], 8);
} else
#endif
{
RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[24], 8);
RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[16], 8);
}
} else
RAL_WRITE_REGION_1(sc, base, k->k_key, k->k_len);
if (!(k->k_flags & IEEE80211_KEY_GROUP) ||
(k->k_flags & IEEE80211_KEY_TX)) {
/* set initial packet number in IV+EIV */
if (k->k_cipher == IEEE80211_CIPHER_WEP40 ||
k->k_cipher == IEEE80211_CIPHER_WEP104) {
uint32_t val = arc4random();
/* skip weak IVs from Fluhrer/Mantin/Shamir */
if (val >= 0x03ff00 && (val & 0xf8ff00) == 0x00ff00)
val += 0x000100;
iv[0] = val;
iv[1] = val >> 8;
iv[2] = val >> 16;
iv[3] = k->k_id << 6;
iv[4] = iv[5] = iv[6] = iv[7] = 0;
} else {
if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
iv[0] = k->k_tsc >> 8;
iv[1] = (iv[0] | 0x20) & 0x7f;
iv[2] = k->k_tsc;
} else /* CCMP */ {
iv[0] = k->k_tsc;
iv[1] = k->k_tsc >> 8;
iv[2] = 0;
}
iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
iv[4] = k->k_tsc >> 16;
iv[5] = k->k_tsc >> 24;
iv[6] = k->k_tsc >> 32;
iv[7] = k->k_tsc >> 40;
}
RAL_WRITE_REGION_1(sc, RT2860_IVEIV(wcid), iv, 8);
}
if (k->k_flags & IEEE80211_KEY_GROUP) {
/* install group key */
attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7);
attr &= ~(0xf << (k->k_id * 4));
attr |= mode << (k->k_id * 4);
RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* install pairwise key */
attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid));
attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr);
}
return 0;
}
void
rt2860_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct rt2860_softc *sc = ic->ic_softc;
uint32_t attr;
uint8_t wcid;
if (k->k_flags & IEEE80211_KEY_GROUP) {
/* remove group key */
attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7);
attr &= ~(0xf << (k->k_id * 4));
RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* remove pairwise key */
wcid = RT2860_AID2WCID(ni->ni_associd);
attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid));
attr &= ~0xf;
RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr);
}
}
#if NBPFILTER > 0
int8_t
rt2860_rssi2dbm(struct rt2860_softc *sc, uint8_t rssi, uint8_t rxchain)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c = ic->ic_ibss_chan;
int delta;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
u_int chan = ieee80211_chan2ieee(ic, c);
delta = sc->rssi_5ghz[rxchain];
/* determine channel group */
if (chan <= 64)
delta -= sc->lna[1];
else if (chan <= 128)
delta -= sc->lna[2];
else
delta -= sc->lna[3];
} else
delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
return -12 - delta - rssi;
}
#endif
/*
* Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
* Used to adjust per-rate Tx power registers.
*/
static __inline uint32_t
b4inc(uint32_t b32, int8_t delta)
{
int8_t i, b4;
for (i = 0; i < 8; i++) {
b4 = b32 & 0xf;
b4 += delta;
if (b4 < 0)
b4 = 0;
else if (b4 > 0xf)
b4 = 0xf;
b32 = b32 >> 4 | b4 << 28;
}
return b32;
}
const char *
rt2860_get_rf(uint8_t rev)
{
switch (rev) {
case RT2860_RF_2820: return "RT2820";
case RT2860_RF_2850: return "RT2850";
case RT2860_RF_2720: return "RT2720";
case RT2860_RF_2750: return "RT2750";
default: return "unknown";
}
}
int
rt2860_read_eeprom(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t val;
int8_t delta_2ghz, delta_5ghz;
int ridx, ant, i;
/* read EEPROM version */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_VERSION);
DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8));
/* read MAC address */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_MAC01);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
val = rt2860_eeprom_read(sc, RT2860_EEPROM_MAC23);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
val = rt2860_eeprom_read(sc, RT2860_EEPROM_MAC45);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
/* read country code */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_COUNTRY);
DPRINTF(("EEPROM region code=0x%04x\n", val));
/* read default BBP settings */
for (i = 0; i < 8; i++) {
val = rt2860_eeprom_read(sc, RT2860_EEPROM_BBP_BASE + i);
sc->bbp[i].val = val & 0xff;
sc->bbp[i].reg = val >> 8;
DPRINTF(("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val));
}
/* read RF frequency offset from EEPROM */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_FREQ_LEDS);
sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
DPRINTF(("EEPROM freq offset %d\n", sc->freq & 0xff));
if ((sc->leds = val >> 8) != 0xff) {
/* read LEDs operating mode */
sc->led[0] = rt2860_eeprom_read(sc, RT2860_EEPROM_LED1);
sc->led[1] = rt2860_eeprom_read(sc, RT2860_EEPROM_LED2);
sc->led[2] = rt2860_eeprom_read(sc, RT2860_EEPROM_LED3);
} else {
/* broken EEPROM, use default settings */
sc->leds = 0x01;
sc->led[0] = 0x5555;
sc->led[1] = 0x2221;
sc->led[2] = 0xa9f8;
}
DPRINTF(("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
sc->leds, sc->led[0], sc->led[1], sc->led[2]));
/* read RF information */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_ANTENNA);
if (val == 0xffff) {
/* broken EEPROM, default to RF2820 1T2R */
DPRINTF(("invalid EEPROM antenna info, using default\n"));
sc->rf_rev = RT2860_RF_2820;
sc->ntxchains = 1;
sc->nrxchains = 2;
} else {
sc->rf_rev = (val >> 8) & 0xf;
sc->ntxchains = (val >> 4) & 0xf;
sc->nrxchains = val & 0xf;
}
DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n",
sc->rf_rev, sc->ntxchains, sc->nrxchains));
/* check if RF supports automatic Tx access gain control */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_CONFIG);
DPRINTF(("EEPROM CFG 0x%04x\n", val));
if ((val & 0xff) != 0xff) {
sc->ext_5ghz_lna = (val >> 3) & 1;
sc->ext_2ghz_lna = (val >> 2) & 1;
sc->calib_2ghz = sc->calib_5ghz = 0; /* XXX (val >> 1) & 1 */;
}
if (sc->sc_flags & RT2860_ADVANCED_PS) {
/* read PCIe power save level */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_PCIE_PSLEVEL);
if ((val & 0xff) != 0xff) {
sc->pslevel = val & 0x3;
val = rt2860_eeprom_read(sc, RT2860_EEPROM_REV);
if (val >> 8 != 0x92 || !(val & 0x80))
sc->pslevel = MIN(sc->pslevel, 1);
DPRINTF(("EEPROM PCIe PS Level=%d\n", sc->pslevel));
}
}
/* read power settings for 2GHz channels */
for (i = 0; i < 14; i += 2) {
val = rt2860_eeprom_read(sc,
RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2);
sc->txpow1[i + 0] = (int8_t)(val & 0xff);
sc->txpow1[i + 1] = (int8_t)(val >> 8);
val = rt2860_eeprom_read(sc,
RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2);
sc->txpow2[i + 0] = (int8_t)(val & 0xff);
sc->txpow2[i + 1] = (int8_t)(val >> 8);
}
/* fix broken Tx power entries */
for (i = 0; i < 14; i++) {
if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
sc->txpow1[i] = 5;
if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
sc->txpow2[i] = 5;
DPRINTF(("chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]));
}
/* read power settings for 5GHz channels */
for (i = 0; i < 36; i += 2) {
val = rt2860_eeprom_read(sc,
RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2);
sc->txpow1[i + 14] = (int8_t)(val & 0xff);
sc->txpow1[i + 15] = (int8_t)(val >> 8);
val = rt2860_eeprom_read(sc,
RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2);
sc->txpow2[i + 14] = (int8_t)(val & 0xff);
sc->txpow2[i + 15] = (int8_t)(val >> 8);
}
/* fix broken Tx power entries */
for (i = 0; i < 36; i++) {
if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
sc->txpow1[14 + i] = 5;
if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
sc->txpow2[14 + i] = 5;
DPRINTF(("chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
sc->txpow2[14 + i]));
}
/* read Tx power compensation for each Tx rate */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_DELTAPWR);
delta_2ghz = delta_5ghz = 0;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_2ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_2ghz = -delta_2ghz;
}
val >>= 8;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_5ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_5ghz = -delta_5ghz;
}
DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n",
delta_2ghz, delta_5ghz));
for (ridx = 0; ridx < 5; ridx++) {
uint32_t reg;
val = rt2860_eeprom_read(sc, RT2860_EEPROM_RPWR + ridx);
reg = (uint32_t)val << 16;
val = rt2860_eeprom_read(sc, RT2860_EEPROM_RPWR + ridx + 1);
reg |= val;
sc->txpow20mhz[ridx] = reg;
sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
"40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]));
}
/* read factory-calibrated samples for temperature compensation */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI1_2GHZ);
sc->tssi_2ghz[0] = val & 0xff; /* [-4] */
sc->tssi_2ghz[1] = val >> 8; /* [-3] */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI2_2GHZ);
sc->tssi_2ghz[2] = val & 0xff; /* [-2] */
sc->tssi_2ghz[3] = val >> 8; /* [-1] */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI3_2GHZ);
sc->tssi_2ghz[4] = val & 0xff; /* [+0] */
sc->tssi_2ghz[5] = val >> 8; /* [+1] */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI4_2GHZ);
sc->tssi_2ghz[6] = val & 0xff; /* [+2] */
sc->tssi_2ghz[7] = val >> 8; /* [+3] */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI5_2GHZ);
sc->tssi_2ghz[8] = val & 0xff; /* [+4] */
sc->step_2ghz = val >> 8;
DPRINTF(("TSSI 2GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x "
"0x%02x 0x%02x step=%d\n", sc->tssi_2ghz[0], sc->tssi_2ghz[1],
sc->tssi_2ghz[2], sc->tssi_2ghz[3], sc->tssi_2ghz[4],
sc->tssi_2ghz[5], sc->tssi_2ghz[6], sc->tssi_2ghz[7],
sc->tssi_2ghz[8], sc->step_2ghz));
/* check that ref value is correct, otherwise disable calibration */
if (sc->tssi_2ghz[4] == 0xff)
sc->calib_2ghz = 0;
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI1_5GHZ);
sc->tssi_5ghz[0] = val & 0xff; /* [-4] */
sc->tssi_5ghz[1] = val >> 8; /* [-3] */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI2_5GHZ);
sc->tssi_5ghz[2] = val & 0xff; /* [-2] */
sc->tssi_5ghz[3] = val >> 8; /* [-1] */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI3_5GHZ);
sc->tssi_5ghz[4] = val & 0xff; /* [+0] */
sc->tssi_5ghz[5] = val >> 8; /* [+1] */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI4_5GHZ);
sc->tssi_5ghz[6] = val & 0xff; /* [+2] */
sc->tssi_5ghz[7] = val >> 8; /* [+3] */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_TSSI5_5GHZ);
sc->tssi_5ghz[8] = val & 0xff; /* [+4] */
sc->step_5ghz = val >> 8;
DPRINTF(("TSSI 5GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x "
"0x%02x 0x%02x step=%d\n", sc->tssi_5ghz[0], sc->tssi_5ghz[1],
sc->tssi_5ghz[2], sc->tssi_5ghz[3], sc->tssi_5ghz[4],
sc->tssi_5ghz[5], sc->tssi_5ghz[6], sc->tssi_5ghz[7],
sc->tssi_5ghz[8], sc->step_5ghz));
/* check that ref value is correct, otherwise disable calibration */
if (sc->tssi_5ghz[4] == 0xff)
sc->calib_5ghz = 0;
/* read RSSI offsets and LNA gains from EEPROM */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_RSSI1_2GHZ);
sc->rssi_2ghz[0] = val & 0xff; /* Ant A */
sc->rssi_2ghz[1] = val >> 8; /* Ant B */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_RSSI2_2GHZ);
sc->rssi_2ghz[2] = val & 0xff; /* Ant C */
sc->lna[2] = val >> 8; /* channel group 2 */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_RSSI1_5GHZ);
sc->rssi_5ghz[0] = val & 0xff; /* Ant A */
sc->rssi_5ghz[1] = val >> 8; /* Ant B */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_RSSI2_5GHZ);
sc->rssi_5ghz[2] = val & 0xff; /* Ant C */
sc->lna[3] = val >> 8; /* channel group 3 */
val = rt2860_eeprom_read(sc, RT2860_EEPROM_LNA);
sc->lna[0] = val & 0xff; /* channel group 0 */
sc->lna[1] = val >> 8; /* channel group 1 */
/* fix broken 5GHz LNA entries */
if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
DPRINTF(("invalid LNA for channel group %d\n", 2));
sc->lna[2] = sc->lna[1];
}
if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
DPRINTF(("invalid LNA for channel group %d\n", 3));
sc->lna[3] = sc->lna[1];
}
/* fix broken RSSI offset entries */
for (ant = 0; ant < 3; ant++) {
if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n",
ant + 1, sc->rssi_2ghz[ant]));
sc->rssi_2ghz[ant] = 0;
}
if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n",
ant + 1, sc->rssi_5ghz[ant]));
sc->rssi_5ghz[ant] = 0;
}
}
return 0;
}
int
rt2860_bbp_init(struct rt2860_softc *sc)
{
int i, ntries;
/* wait for BBP to wake up */
for (ntries = 0; ntries < 20; ntries++) {
uint8_t bbp0 = rt2860_mcu_bbp_read(sc, 0);
if (bbp0 != 0 && bbp0 != 0xff)
break;
}
if (ntries == 20) {
printf("%s: timeout waiting for BBP to wake up\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
/* initialize BBP registers to default values */
for (i = 0; i < nitems(rt2860_def_bbp); i++) {
rt2860_mcu_bbp_write(sc, rt2860_def_bbp[i].reg,
rt2860_def_bbp[i].val);
}
/* fix BBP84 for RT2860E */
if ((sc->mac_rev & 0xffff) != 0x0101)
rt2860_mcu_bbp_write(sc, 84, 0x19);
/* fix BBP69 and BBP73 for RT2860C */
if (sc->mac_rev == 0x28600100) {
rt2860_mcu_bbp_write(sc, 69, 0x16);
rt2860_mcu_bbp_write(sc, 73, 0x12);
}
return 0;
}
int
rt2860_txrx_enable(struct rt2860_softc *sc)
{
uint32_t tmp;
int ntries;
/* enable Tx/Rx DMA engine */
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
RAL_BARRIER_READ_WRITE(sc);
for (ntries = 0; ntries < 200; ntries++) {
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
DELAY(1000);
}
if (ntries == 200) {
printf("%s: timeout waiting for DMA engine\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
DELAY(50);
tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN |
RT2860_WPDMA_BT_SIZE64 << RT2860_WPDMA_BT_SIZE_SHIFT;
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* set Rx filter */
tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
if (sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
RT2860_DROP_CFACK | RT2860_DROP_CFEND;
if (sc->sc_ic.ic_opmode == IEEE80211_M_STA)
tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
}
RAL_WRITE(sc, RT2860_RX_FILTR_CFG, tmp);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL,
RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
return 0;
}
int
rt2860_init(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
uint8_t bbp1, bbp3;
int i, qid, ridx, ntries, error;
/* for CardBus, power on the socket */
if (!(sc->sc_flags & RT2860_ENABLED)) {
if (sc->sc_enable != NULL && (*sc->sc_enable)(sc) != 0) {
printf("%s: could not enable device\n",
sc->sc_dev.dv_xname);
return EIO;
}
sc->sc_flags |= RT2860_ENABLED;
}
rt2860_stop(ifp, 0);
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
tmp &= 0xff0;
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
RAL_WRITE(sc, RT2860_WPDMA_RST_IDX, 0xffffffff);
/* PBF hardware reset */
RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00);
if (!(sc->sc_flags & RT2860_FWLOADED)) {
if ((error = rt2860_load_microcode(sc)) != 0) {
printf("%s: could not load 8051 microcode\n",
sc->sc_dev.dv_xname);
rt2860_stop(ifp, 1);
return error;
}
sc->sc_flags |= RT2860_FWLOADED;
}
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
rt2860_set_macaddr(sc, ic->ic_myaddr);
/* init Tx power for all Tx rates (from EEPROM) */
for (ridx = 0; ridx < 5; ridx++) {
if (sc->txpow20mhz[ridx] == 0xffffffff)
continue;
RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
}
for (ntries = 0; ntries < 100; ntries++) {
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for DMA engine\n",
sc->sc_dev.dv_xname);
rt2860_stop(ifp, 1);
return ETIMEDOUT;
}
tmp &= 0xff0;
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* reset Rx ring and all 6 Tx rings */
RAL_WRITE(sc, RT2860_WPDMA_RST_IDX, 0x1003f);
/* PBF hardware reset */
RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0);
for (i = 0; i < nitems(rt2860_def_mac); i++)
RAL_WRITE(sc, rt2860_def_mac[i].reg, rt2860_def_mac[i].val);
/* wait while MAC is busy */
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_MAC_STATUS_REG) &
(RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for MAC\n", sc->sc_dev.dv_xname);
rt2860_stop(ifp, 1);
return ETIMEDOUT;
}
/* clear Host to MCU mailbox */
RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0);
RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0);
if ((error = rt2860_bbp_init(sc)) != 0) {
rt2860_stop(ifp, 1);
return error;
}
/* clear RX WCID search table */
RAL_SET_REGION_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
/* clear pairwise key table */
RAL_SET_REGION_4(sc, RT2860_PKEY(0), 0, 2048);
/* clear IV/EIV table */
RAL_SET_REGION_4(sc, RT2860_IVEIV(0), 0, 512);
/* clear WCID attribute table */
RAL_SET_REGION_4(sc, RT2860_WCID_ATTR(0), 0, 256);
/* clear shared key table */
RAL_SET_REGION_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
/* clear shared key mode */
RAL_SET_REGION_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
/* init Tx rings (4 EDCAs + HCCA + Mgt) */
for (qid = 0; qid < 6; qid++) {
RAL_WRITE(sc, RT2860_TX_BASE_PTR(qid), sc->txq[qid].paddr);
RAL_WRITE(sc, RT2860_TX_MAX_CNT(qid), RT2860_TX_RING_COUNT);
RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), 0);
}
/* init Rx ring */
RAL_WRITE(sc, RT2860_RX_BASE_PTR, sc->rxq.paddr);
RAL_WRITE(sc, RT2860_RX_MAX_CNT, RT2860_RX_RING_COUNT);
RAL_WRITE(sc, RT2860_RX_CALC_IDX, RT2860_RX_RING_COUNT - 1);
/* setup maximum buffer sizes */
RAL_WRITE(sc, RT2860_MAX_LEN_CFG, 1 << 12 |
(MCLBYTES - sizeof (struct rt2860_rxwi) - 2));
for (ntries = 0; ntries < 100; ntries++) {
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for DMA engine\n",
sc->sc_dev.dv_xname);
rt2860_stop(ifp, 1);
return ETIMEDOUT;
}
tmp &= 0xff0;
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* disable interrupts mitigation */
RAL_WRITE(sc, RT2860_DELAY_INT_CFG, 0);
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 8; i++) {
if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
continue;
rt2860_mcu_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
}
/* send LEDs operating mode to microcontroller */
(void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
(void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
(void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
/* disable non-existing Rx chains */
bbp3 = rt2860_mcu_bbp_read(sc, 3);
bbp3 &= ~(1 << 3 | 1 << 4);
if (sc->nrxchains == 2)
bbp3 |= 1 << 3;
else if (sc->nrxchains == 3)
bbp3 |= 1 << 4;
rt2860_mcu_bbp_write(sc, 3, bbp3);
/* disable non-existing Tx chains */
bbp1 = rt2860_mcu_bbp_read(sc, 1);
if (sc->ntxchains == 1)
bbp1 &= ~(1 << 3 | 1 << 4);
rt2860_mcu_bbp_write(sc, 1, bbp1);
/* select default channel */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
rt2860_set_chan(sc, ic->ic_ibss_chan);
/* XXX not clear what the following 8051 command does.. */
(void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BOOT, 0);
/* set RTS threshold */
tmp = RAL_READ(sc, RT2860_TX_RTS_CFG);
tmp &= ~0xffff00;
tmp |= ic->ic_rtsthreshold << 8;
RAL_WRITE(sc, RT2860_TX_RTS_CFG, tmp);
/* setup initial protection mode */
sc->sc_ic_flags = ic->ic_flags;
rt2860_updateprot(ic);
/* turn radio LED on */
rt2860_set_leds(sc, RT2860_LED_RADIO);
if (ic->ic_flags & IEEE80211_F_WEPON) {
/* install WEP keys */
for (i = 0; i < IEEE80211_WEP_NKID; i++)
(void)rt2860_set_key(ic, NULL, &ic->ic_nw_keys[i]);
}
/* enable Tx/Rx DMA engine */
if ((error = rt2860_txrx_enable(sc)) != 0) {
rt2860_stop(ifp, 1);
return error;
}
/* clear pending interrupts */
RAL_WRITE(sc, RT2860_INT_STATUS, 0xffffffff);
/* enable interrupts */
RAL_WRITE(sc, RT2860_INT_MASK, 0x3fffc);
if (sc->sc_flags & RT2860_ADVANCED_PS)
(void)rt2860_mcu_cmd(sc, RT2860_MCU_CMD_PSLEVEL, sc->pslevel);
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return 0;
}
void
rt2860_stop(struct ifnet *ifp, int disable)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int qid;
if (ifp->if_flags & IFF_RUNNING)
rt2860_set_leds(sc, 0); /* turn all LEDs off */
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */
/* disable interrupts */
RAL_WRITE(sc, RT2860_INT_MASK, 0);
/* disable GP timer */
rt2860_set_gp_timer(sc, 0);
/* disable Rx */
tmp = RAL_READ(sc, RT2860_MAC_SYS_CTRL);
tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, tmp);
/* reset adapter */
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0);
/* reset Tx and Rx rings (and reclaim TXWIs) */
sc->qfullmsk = 0;
for (qid = 0; qid < 6; qid++)
rt2860_reset_tx_ring(sc, &sc->txq[qid]);
rt2860_reset_rx_ring(sc, &sc->rxq);
/* for CardBus, power down the socket */
if (disable && sc->sc_disable != NULL) {
if (sc->sc_flags & RT2860_ENABLED) {
(*sc->sc_disable)(sc);
sc->sc_flags &= ~(RT2860_ENABLED | RT2860_FWLOADED);
}
}
}
int
rt2860_load_microcode(struct rt2860_softc *sc)
{
u_char *ucode;
size_t size;
int error, ntries;
if ((error = loadfirmware("ral-rt2860", &ucode, &size)) != 0) {
printf("%s: error %d, could not read firmware file %s\n",
sc->sc_dev.dv_xname, error, "ral-rt2860");
return error;
}
/* set "host program ram write selection" bit */
RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_HST_PM_SEL);
/* write microcode image */
RAL_WRITE_REGION_1(sc, RT2860_FW_BASE, ucode, size);
/* kick microcontroller unit */
RAL_WRITE(sc, RT2860_SYS_CTRL, 0);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_MCU_RESET);
RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0);
RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0);
free(ucode, M_DEVBUF);
/* wait until microcontroller is ready */
RAL_BARRIER_READ_WRITE(sc);
for (ntries = 0; ntries < 1000; ntries++) {
if (RAL_READ(sc, RT2860_SYS_CTRL) & RT2860_MCU_READY)
break;
DELAY(1000);
}
if (ntries == 1000) {
printf("%s: timeout waiting for MCU to initialize\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
return 0;
}
/*
* This function is called periodically to adjust Tx power based on
* temperature variation.
*/
void
rt2860_calib(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
const uint8_t *tssi;
uint8_t step, bbp49;
int8_t ridx, d;
/* read current temperature */
bbp49 = rt2860_mcu_bbp_read(sc, 49);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan)) {
tssi = &sc->tssi_2ghz[4];
step = sc->step_2ghz;
} else {
tssi = &sc->tssi_5ghz[4];
step = sc->step_5ghz;
}
if (bbp49 < tssi[0]) { /* lower than reference */
/* use higher Tx power than default */
for (d = 0; d > -4 && bbp49 <= tssi[d - 1]; d--);
} else if (bbp49 > tssi[0]) { /* greater than reference */
/* use lower Tx power than default */
for (d = 0; d < +4 && bbp49 >= tssi[d + 1]; d++);
} else {
/* use default Tx power */
d = 0;
}
d *= step;
DPRINTF(("BBP49=0x%02x, adjusting Tx power by %d\n", bbp49, d));
/* write adjusted Tx power values for each Tx rate */
for (ridx = 0; ridx < 5; ridx++) {
if (sc->txpow20mhz[ridx] == 0xffffffff)
continue;
RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx),
b4inc(sc->txpow20mhz[ridx], d));
}
}
#ifndef IEEE80211_STA_ONLY
int
rt2860_setup_beacon(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct rt2860_txwi txwi;
struct mbuf *m;
int ridx;
if ((m = ieee80211_beacon_alloc(ic, ic->ic_bss)) == NULL)
return ENOBUFS;
memset(&txwi, 0, sizeof txwi);
txwi.wcid = 0xff;
txwi.len = htole16(m->m_pkthdr.len);
/* send beacons at the lowest available rate */
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
txwi.phy = htole16(rt2860_rates[ridx].mcs);
if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
txwi.phy |= htole16(RT2860_PHY_OFDM);
txwi.txop = RT2860_TX_TXOP_HT;
txwi.flags = RT2860_TX_TS;
RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0),
(uint8_t *)&txwi, sizeof txwi);
RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0) + sizeof txwi,
mtod(m, uint8_t *), m->m_pkthdr.len);
m_freem(m);
return 0;
}
#endif
void
rt2860_enable_tsf_sync(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG);
tmp &= ~0x1fffff;
tmp |= ic->ic_bss->ni_intval * 16;
tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
if (ic->ic_opmode == IEEE80211_M_STA) {
/*
* Local TSF is always updated with remote TSF on beacon
* reception.
*/
tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
}
#ifndef IEEE80211_STA_ONLY
else if (ic->ic_opmode == IEEE80211_M_IBSS) {
tmp |= RT2860_BCN_TX_EN;
/*
* Local TSF is updated with remote TSF on beacon reception
* only if the remote TSF is greater than local TSF.
*/
tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
tmp |= RT2860_BCN_TX_EN;
/* SYNC with nobody */
tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
}
#endif
RAL_WRITE(sc, RT2860_BCN_TIME_CFG, tmp);
}
void
rt2860_power(int why, void *arg)
{
struct rt2860_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
DPRINTF(("%s: rt2860_power(%d)\n", sc->sc_dev.dv_xname, why));
s = splnet();
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
rt2860_stop(ifp, 1);
sc->sc_flags &= ~RT2860_FWLOADED;
if (sc->sc_power != NULL)
(*sc->sc_power)(sc, why);
break;
case PWR_RESUME:
if (ifp->if_flags & IFF_UP) {
rt2860_init(ifp);
if (sc->sc_power != NULL)
(*sc->sc_power)(sc, why);
if (ifp->if_flags & IFF_RUNNING)
rt2860_start(ifp);
}
break;
}
splx(s);
}
void
rt2860_shutdown(void *arg)
{
struct rt2860_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ic.ic_if;
rt2860_stop(ifp, 1);
}