OpenBSD-4.6/sys/dev/usb/if_run.c
/* $OpenBSD: if_run.c,v 1.29 2009/06/17 16:04:29 damien Exp $ */
/*-
* Copyright (c) 2008,2009 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Ralink Technology RT2700U/RT2800U/RT3000U chipset driver.
* http://www.ralinktech.com/
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/timeout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/intr.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/ic/rt2860reg.h> /* shared with ral(4) */
#include <dev/usb/if_runvar.h>
#ifdef USB_DEBUG
#define RUN_DEBUG
#endif
#ifdef RUN_DEBUG
#define DPRINTF(x) do { if (run_debug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (run_debug >= (n)) printf x; } while (0)
int run_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
#define USB_ID(v, p) { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }
static const struct usb_devno run_devs[] = {
USB_ID(ABOCOM, RT2770),
USB_ID(ABOCOM, RT2870),
USB_ID(ABOCOM, RT3070),
USB_ID(ABOCOM, RT3071),
USB_ID(ABOCOM, RT3072),
USB_ID(ABOCOM2, RT2870_1),
USB_ID(ACCTON, RT2770),
USB_ID(ACCTON, RT2870_1),
USB_ID(ACCTON, RT2870_2),
USB_ID(ACCTON, RT2870_3),
USB_ID(ACCTON, RT2870_4),
USB_ID(ACCTON, RT2870_5),
USB_ID(ACCTON, RT3070),
USB_ID(AIRTIES, RT3070),
USB_ID(AMIGO, RT2870_1),
USB_ID(AMIGO, RT2870_2),
USB_ID(AMIT, CGWLUSB2GNR),
USB_ID(AMIT, RT2870_1),
USB_ID(AMIT2, RT2870),
USB_ID(ASUS, RT2870_1),
USB_ID(ASUS, RT2870_2),
USB_ID(ASUS, RT2870_3),
USB_ID(ASUS, RT2870_4),
USB_ID(ASUS, RT2870_5),
USB_ID(ASUS2, USBN11),
USB_ID(AZUREWAVE, RT2870_1),
USB_ID(AZUREWAVE, RT2870_2),
USB_ID(AZUREWAVE, RT3070),
USB_ID(BELKIN, F5D8053V3),
USB_ID(BELKIN, F5D8055),
USB_ID(BELKIN, F6D4050V1),
USB_ID(BELKIN, RT2870_1),
USB_ID(BELKIN, RT2870_2),
USB_ID(CONCEPTRONIC2, RT2870_1),
USB_ID(CONCEPTRONIC2, RT2870_2),
USB_ID(CONCEPTRONIC2, RT2870_3),
USB_ID(CONCEPTRONIC2, RT2870_4),
USB_ID(CONCEPTRONIC2, RT2870_5),
USB_ID(CONCEPTRONIC2, RT2870_6),
USB_ID(CONCEPTRONIC2, RT2870_7),
USB_ID(CONCEPTRONIC2, RT2870_8),
USB_ID(CONCEPTRONIC2, VIGORN61),
USB_ID(COREGA, CGWLUSB300GNM),
USB_ID(COREGA, RT2870_1),
USB_ID(COREGA, RT2870_2),
USB_ID(COREGA, RT2870_3),
USB_ID(CYBERTAN, RT2870),
USB_ID(DLINK, RT2870),
USB_ID(DLINK, RT3072),
USB_ID(DLINK2, DWA130),
USB_ID(DLINK2, RT2870_1),
USB_ID(DLINK2, RT2870_2),
USB_ID(DLINK2, RT3070_1),
USB_ID(DLINK2, RT3070_2),
USB_ID(DLINK2, RT3070_3),
USB_ID(DLINK2, RT3072),
USB_ID(EDIMAX, EW7717),
USB_ID(EDIMAX, EW7718),
USB_ID(EDIMAX, RT2870_1),
USB_ID(ENCORE, RT3070),
USB_ID(GIGABYTE, GNWB31N),
USB_ID(GIGABYTE, GNWB32L),
USB_ID(GIGABYTE, RT2870_1),
USB_ID(GUILLEMOT, HWNU300),
USB_ID(HAWKING, HWUN2),
USB_ID(HAWKING, RT2870_1),
USB_ID(HAWKING, RT2870_2),
USB_ID(HAWKING, RT3070),
USB_ID(IODATA, RT3072),
USB_ID(LINKSYS4, WUSB100),
USB_ID(LINKSYS4, WUSB600N),
USB_ID(LOGITEC, RT2870_1),
USB_ID(LOGITEC, RT2870_2),
USB_ID(LOGITEC, RT2870_3),
USB_ID(MELCO, WLIUCAG300N),
USB_ID(MELCO, WLIUCG300N),
USB_ID(MELCO, WLIUCGN),
USB_ID(MSI, RT3070),
USB_ID(PEGATRON, RT2870),
USB_ID(PEGATRON, RT3070),
USB_ID(PEGATRON, RT3070_2),
USB_ID(PHILIPS, RT2870),
USB_ID(PLANEX2, GWUS300MINIS),
USB_ID(PLANEX2, GWUSMICRON),
USB_ID(PLANEX2, RT2870),
USB_ID(PLANEX2, RT3070),
USB_ID(QCOM, RT2870),
USB_ID(QUANTA, RT3070),
USB_ID(RALINK, RT2070),
USB_ID(RALINK, RT2770),
USB_ID(RALINK, RT2870),
USB_ID(RALINK, RT3070),
USB_ID(RALINK, RT3071),
USB_ID(RALINK, RT3072),
USB_ID(SAMSUNG2, RT2870_1),
USB_ID(SENAO, RT2870_1),
USB_ID(SENAO, RT2870_2),
USB_ID(SENAO, RT2870_3),
USB_ID(SENAO, RT2870_4),
USB_ID(SENAO, RT3070),
USB_ID(SENAO, RT3071),
USB_ID(SENAO, RT3072),
USB_ID(SITECOMEU, RT2770),
USB_ID(SITECOMEU, RT2870_1),
USB_ID(SITECOMEU, RT2870_2),
USB_ID(SITECOMEU, RT2870_3),
USB_ID(SITECOMEU, RT2870_4),
USB_ID(SITECOMEU, RT3070),
USB_ID(SITECOMEU, RT3070_2),
USB_ID(SITECOMEU, RT3070_3),
USB_ID(SITECOMEU, RT3070_4),
USB_ID(SITECOMEU, RT3072),
USB_ID(SITECOMEU, WL608),
USB_ID(SPARKLAN, RT2870_1),
USB_ID(SPARKLAN, RT3070),
USB_ID(SWEEX2, LW303),
USB_ID(SWEEX2, LW313),
USB_ID(UMEDIA, RT2870_1),
USB_ID(ZCOM, RT2870_1),
USB_ID(ZCOM, RT2870_2),
USB_ID(ZINWELL, RT2870_1),
USB_ID(ZINWELL, RT2870_2),
USB_ID(ZINWELL, RT3070),
USB_ID(ZINWELL, RT3072),
USB_ID(ZYXEL, RT2870_1)
};
int run_match(struct device *, void *, void *);
void run_attach(struct device *, struct device *, void *);
int run_detach(struct device *, int);
int run_alloc_rx_ring(struct run_softc *);
void run_free_rx_ring(struct run_softc *);
int run_alloc_tx_ring(struct run_softc *, int);
void run_free_tx_ring(struct run_softc *, int);
int run_load_microcode(struct run_softc *);
int run_reset(struct run_softc *);
int run_read(struct run_softc *, uint16_t, uint32_t *);
int run_read_region_1(struct run_softc *, uint16_t, uint8_t *,
int);
int run_write_2(struct run_softc *, uint16_t, uint16_t);
int run_write(struct run_softc *, uint16_t, uint32_t);
int run_write_region_1(struct run_softc *, uint16_t,
const uint8_t *, int);
int run_set_region_4(struct run_softc *, uint16_t, uint32_t, int);
int run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *);
int run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *);
int run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t);
int run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *);
int run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t);
int run_bbp_read(struct run_softc *, uint8_t, uint8_t *);
int run_bbp_write(struct run_softc *, uint8_t, uint8_t);
int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t);
const char * run_get_rf(int);
int run_read_eeprom(struct run_softc *);
struct ieee80211_node *run_node_alloc(struct ieee80211com *);
int run_media_change(struct ifnet *);
void run_next_scan(void *);
void run_task(void *);
void run_do_async(struct run_softc *, void (*)(struct run_softc *,
void *), void *, int);
int run_newstate(struct ieee80211com *, enum ieee80211_state, int);
void run_newstate_cb(struct run_softc *, void *);
void run_updateedca(struct ieee80211com *);
void run_updateedca_cb(struct run_softc *, void *);
int run_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void run_set_key_cb(struct run_softc *, void *);
void run_delete_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
void run_delete_key_cb(struct run_softc *, void *);
void run_calibrate_to(void *);
void run_calibrate_cb(struct run_softc *, void *);
void run_newassoc(struct ieee80211com *, struct ieee80211_node *,
int);
void run_rx_frame(struct run_softc *, uint8_t *, int);
void run_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
void run_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
int run_tx(struct run_softc *, struct mbuf *,
struct ieee80211_node *);
void run_start(struct ifnet *);
void run_watchdog(struct ifnet *);
int run_ioctl(struct ifnet *, u_long, caddr_t);
void run_select_chan_group(struct run_softc *, int);
void run_set_rx_antenna(struct run_softc *, int);
void run_rt2870_set_chan(struct run_softc *, u_int);
void run_rt3070_set_chan(struct run_softc *, u_int);
int run_set_chan(struct run_softc *, struct ieee80211_channel *);
void run_enable_tsf_sync(struct run_softc *);
void run_enable_mrr(struct run_softc *);
void run_set_txpreamble(struct run_softc *);
void run_set_basicrates(struct run_softc *);
void run_set_leds(struct run_softc *, uint16_t);
void run_set_bssid(struct run_softc *, const uint8_t *);
void run_set_macaddr(struct run_softc *, const uint8_t *);
void run_updateslot(struct ieee80211com *);
void run_updateslot_cb(struct run_softc *, void *);
#if NBPFILTER > 0
int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t);
#endif
int run_bbp_init(struct run_softc *);
int run_rt3070_rf_init(struct run_softc *);
int run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t,
uint8_t *);
int run_txrx_enable(struct run_softc *);
int run_init(struct ifnet *);
void run_stop(struct ifnet *, int);
struct cfdriver run_cd = {
NULL, "run", DV_IFNET
};
const struct cfattach run_ca = {
sizeof (struct run_softc), run_match, run_attach, run_detach
};
static const struct {
uint32_t reg;
uint32_t val;
} rt2870_def_mac[] = {
RT2870_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2860_def_bbp[] = {
RT2860_DEF_BBP
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rt2860_rf2850[] = {
RT2860_RF2850
};
struct {
uint8_t n, r, k;
} run_rf3020_freqs[] = {
RT3070_RF3020
};
static const struct {
uint8_t reg;
uint8_t val;
} rt3070_def_rf[] = {
RT3070_DEF_RF
};
int
run_match(struct device *parent, void *match, void *aux)
{
struct usb_attach_arg *uaa = aux;
if (uaa->iface != NULL)
return UMATCH_NONE;
return (usb_lookup(run_devs, uaa->vendor, uaa->product) != NULL) ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
void
run_attach(struct device *parent, struct device *self, void *aux)
{
struct run_softc *sc = (struct run_softc *)self;
struct usb_attach_arg *uaa = aux;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i, nrx, ntx, ntries, error;
sc->sc_udev = uaa->device;
if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) {
printf("%s: could not set configuration no\n",
sc->sc_dev.dv_xname);
return;
}
/* get the first interface handle */
error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
if (error != 0) {
printf("%s: could not get interface handle\n",
sc->sc_dev.dv_xname);
return;
}
/*
* Find all bulk endpoints. There are 7 bulk endpoints: 1 for RX
* and 6 for TX (4 EDCAs + HCCA + Prio).
* Update 03-14-2009: some devices like the Planex GW-US300MiniS
* seem to have only 4 TX bulk endpoints (Fukaumi Naoki).
*/
nrx = ntx = 0;
id = usbd_get_interface_descriptor(sc->sc_iface);
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
if (ed == NULL || UE_GET_XFERTYPE(ed->bmAttributes) != UE_BULK)
continue;
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN) {
sc->rxq.pipe_no = ed->bEndpointAddress;
nrx++;
} else if (ntx < 4) {
sc->txq[ntx].pipe_no = ed->bEndpointAddress;
ntx++;
}
}
/* make sure we've got them all */
if (nrx < 1 || ntx < 4) {
printf("%s: missing endpoint\n", sc->sc_dev.dv_xname);
return;
}
usb_init_task(&sc->sc_task, run_task, sc);
timeout_set(&sc->scan_to, run_next_scan, sc);
timeout_set(&sc->calib_to, run_calibrate_to, sc);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 10;
/* wait for the chip to settle */
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_ASIC_VER_ID, &sc->mac_rev) != 0)
return;
if (sc->mac_rev != 0 && sc->mac_rev != 0xffffffff)
break;
DELAY(10);
}
if (ntries == 100) {
printf("%s: timeout waiting for NIC to initialize\n",
sc->sc_dev.dv_xname);
return;
}
/* retrieve RF rev. no and various other things from EEPROM */
run_read_eeprom(sc);
printf("%s: MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), "
"address %s\n", sc->sc_dev.dv_xname, sc->mac_rev >> 16,
sc->mac_rev & 0xffff, run_get_rf(sc->rf_rev), sc->ntxchains,
sc->nrxchains, ether_sprintf(ic->ic_myaddr));
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WEP | /* WEP */
IEEE80211_C_RSN; /* WPA/RSN */
if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] =
ieee80211_std_rateset_11a;
/* set supported .11a channels */
for (i = 14; i < nitems(rt2860_rf2850); i++) {
uint8_t chan = rt2860_rf2850[i].chan;
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = run_init;
ifp->if_ioctl = run_ioctl;
ifp->if_start = run_start;
ifp->if_watchdog = run_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ifp);
ic->ic_node_alloc = run_node_alloc;
ic->ic_newassoc = run_newassoc;
ic->ic_updateslot = run_updateslot;
ic->ic_updateedca = run_updateedca;
ic->ic_set_key = run_set_key;
ic->ic_delete_key = run_delete_key;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = run_newstate;
ieee80211_media_init(ifp, run_media_change, ieee80211_media_status);
#if NBPFILTER > 0
bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RUN_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RUN_TX_RADIOTAP_PRESENT);
#endif
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, &sc->sc_dev);
}
int
run_detach(struct device *self, int flags)
{
struct run_softc *sc = (struct run_softc *)self;
struct ifnet *ifp = &sc->sc_ic.ic_if;
int qid, s;
s = splnet();
/* wait for all queued asynchronous commands to complete */
while (sc->cmdq.queued > 0)
tsleep(&sc->cmdq, 0, "cmdq", 0);
timeout_del(&sc->scan_to);
timeout_del(&sc->calib_to);
if (ifp->if_flags != 0) { /* if_attach() has been called */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_ifdetach(ifp);
if_detach(ifp);
}
for (qid = 0; qid < 4; qid++)
run_free_tx_ring(sc, qid);
run_free_rx_ring(sc);
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, &sc->sc_dev);
return 0;
}
int
run_alloc_rx_ring(struct run_softc *sc)
{
struct run_rx_ring *rxq = &sc->rxq;
int i, error;
error = usbd_open_pipe(sc->sc_iface, rxq->pipe_no, 0, &rxq->pipeh);
if (error != 0)
goto fail;
for (i = 0; i < RUN_RX_RING_COUNT; i++) {
struct run_rx_data *data = &rxq->data[i];
data->sc = sc; /* backpointer for callbacks */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, RUN_MAX_RXSZ);
if (data->buf == NULL) {
error = ENOMEM;
goto fail;
}
}
if (error != 0)
fail: run_free_rx_ring(sc);
return error;
}
void
run_free_rx_ring(struct run_softc *sc)
{
struct run_rx_ring *rxq = &sc->rxq;
int i;
if (rxq->pipeh != NULL) {
usbd_abort_pipe(rxq->pipeh);
usbd_close_pipe(rxq->pipeh);
rxq->pipeh = NULL;
}
for (i = 0; i < RUN_RX_RING_COUNT; i++) {
if (rxq->data[i].xfer != NULL)
usbd_free_xfer(rxq->data[i].xfer);
rxq->data[i].xfer = NULL;
}
}
int
run_alloc_tx_ring(struct run_softc *sc, int qid)
{
struct run_tx_ring *txq = &sc->txq[qid];
int i, error;
txq->cur = txq->queued = 0;
error = usbd_open_pipe(sc->sc_iface, txq->pipe_no, 0, &txq->pipeh);
if (error != 0)
goto fail;
for (i = 0; i < RUN_TX_RING_COUNT; i++) {
struct run_tx_data *data = &txq->data[i];
data->sc = sc; /* backpointer for callbacks */
data->qid = qid;
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, RUN_MAX_TXSZ);
if (data->buf == NULL) {
error = ENOMEM;
goto fail;
}
/* zeroize the TXD + TXWI part */
memset(data->buf, 0, sizeof (struct rt2870_txd) +
sizeof (struct rt2860_txwi));
}
if (error != 0)
fail: run_free_tx_ring(sc, qid);
return error;
}
void
run_free_tx_ring(struct run_softc *sc, int qid)
{
struct run_tx_ring *txq = &sc->txq[qid];
int i;
if (txq->pipeh != NULL) {
usbd_abort_pipe(txq->pipeh);
usbd_close_pipe(txq->pipeh);
txq->pipeh = NULL;
}
for (i = 0; i < RUN_TX_RING_COUNT; i++) {
if (txq->data[i].xfer != NULL)
usbd_free_xfer(txq->data[i].xfer);
txq->data[i].xfer = NULL;
}
}
int
run_load_microcode(struct run_softc *sc)
{
usb_device_request_t req;
const char *fwname;
u_char *ucode;
size_t size;
uint32_t tmp;
int ntries, error;
/* RT3071/RT3072 use a different firmware */
if ((sc->mac_rev >> 16) != 0x2860 &&
(sc->mac_rev >> 16) != 0x2872 &&
(sc->mac_rev >> 16) != 0x3070)
fwname = "run-rt3071";
else
fwname = "run-rt2870";
if ((error = loadfirmware(fwname, &ucode, &size)) != 0) {
printf("%s: failed loadfirmware of file %s (error %d)\n",
sc->sc_dev.dv_xname, fwname, error);
return error;
}
if (size != 4096) {
printf("%s: invalid firmware size (should be 4KB)\n",
sc->sc_dev.dv_xname);
free(ucode, M_DEVBUF);
return EINVAL;
}
run_read(sc, RT2860_ASIC_VER_ID, &tmp);
/* write microcode image */
run_write_region_1(sc, RT2870_FW_BASE, ucode, size);
free(ucode, M_DEVBUF);
run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_RESET;
USETW(req.wValue, 8);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
if ((error = usbd_do_request(sc->sc_udev, &req, NULL)) != 0)
return error;
usbd_delay_ms(sc->sc_udev, 10);
run_write(sc, RT2860_H2M_MAILBOX, 0);
if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_BOOT, 0)) != 0)
return error;
/* wait until microcontroller is ready */
for (ntries = 0; ntries < 1000; ntries++) {
if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0)
return error;
if (tmp & RT2860_MCU_READY)
break;
DELAY(1000);
}
if (ntries == 1000) {
printf("%s: timeout waiting for MCU to initialize\n",
sc->sc_dev.dv_xname);
return ETIMEDOUT;
}
DPRINTF(("microcode successfully loaded after %d tries\n", ntries));
return 0;
}
int
run_reset(struct run_softc *sc)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_RESET;
USETW(req.wValue, 1);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return usbd_do_request(sc->sc_udev, &req, NULL);
}
int
run_read(struct run_softc *sc, uint16_t reg, uint32_t *val)
{
uint32_t tmp;
int error;
error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp);
if (error == 0)
*val = letoh32(tmp);
else
*val = 0xffffffff;
return error;
}
int
run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len)
{
usb_device_request_t req;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2870_READ_REGION_1;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
return usbd_do_request(sc->sc_udev, &req, buf);
}
int
run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_WRITE_2;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
return usbd_do_request(sc->sc_udev, &req, NULL);
}
int
run_write(struct run_softc *sc, uint16_t reg, uint32_t val)
{
int error;
if ((error = run_write_2(sc, reg, val & 0xffff)) == 0)
error = run_write_2(sc, reg + 2, val >> 16);
return error;
}
int
run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf,
int len)
{
#if 1
int i, error = 0;
/*
* NB: the WRITE_REGION_1 command is not stable on RT2860.
* We thus issue multiple WRITE_2 commands instead.
*/
KASSERT((len & 1) == 0);
for (i = 0; i < len && error == 0; i += 2)
error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8);
return error;
#else
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = RT2870_WRITE_REGION_1;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, len);
return usbd_do_request(sc->sc_udev, &req, buf);
#endif
}
int
run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len)
{
int i, error = 0;
KASSERT((len & 3) == 0);
for (i = 0; i < len && error == 0; i += 4)
error = run_write(sc, reg + i, val);
return error;
}
/* Read 16-bit from eFUSE ROM (RT3070 only.) */
int
run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
uint32_t tmp;
uint16_t reg;
int error, ntries;
if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
return error;
addr *= 2;
/*-
* Read one 16-byte block into registers EFUSE_DATA[0-3]:
* DATA0: F E D C
* DATA1: B A 9 8
* DATA2: 7 6 5 4
* DATA3: 3 2 1 0
*/
tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
run_write(sc, RT3070_EFUSE_CTRL, tmp);
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0)
return error;
if (!(tmp & RT3070_EFSROM_KICK))
break;
DELAY(2);
}
if (ntries == 100)
return ETIMEDOUT;
if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) {
*val = 0xffff; /* address not found */
return 0;
}
/* determine to which 32-bit register our 16-bit word belongs */
reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
if ((error = run_read(sc, reg, &tmp)) != 0)
return error;
*val = (addr & 2) ? tmp >> 16 : tmp & 0xffff;
return 0;
}
int
run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
usb_device_request_t req;
uint16_t tmp;
int error;
addr *= 2;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = RT2870_EEPROM_READ;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, sizeof tmp);
error = usbd_do_request(sc->sc_udev, &req, &tmp);
if (error == 0)
*val = letoh16(tmp);
else
*val = 0xffff;
return error;
}
static __inline int
run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val)
{
/* either eFUSE ROM or EEPROM */
return sc->sc_srom_read(sc, addr, val);
}
int
run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0)
return error;
if (!(tmp & RT2860_RF_REG_CTRL))
break;
}
if (ntries == 10)
return ETIMEDOUT;
/* RF registers are 24-bit on the RT2860 */
tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
(val & 0x3fffff) << 2 | (reg & 3);
return run_write(sc, RT2860_RF_CSR_CFG0, tmp);
}
int
run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 100)
return ETIMEDOUT;
tmp = RT3070_RF_KICK | reg << 8;
if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0)
return error;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 100)
return ETIMEDOUT;
*val = tmp & 0xff;
return 0;
}
int
run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT3070_RF_KICK))
break;
}
if (ntries == 10)
return ETIMEDOUT;
tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
return run_write(sc, RT3070_RF_CSR_CFG, tmp);
}
int
run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val)
{
uint32_t tmp;
int ntries, error;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return ETIMEDOUT;
tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8;
if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0)
return error;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return ETIMEDOUT;
*val = tmp & 0xff;
return 0;
}
int
run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries, error;
for (ntries = 0; ntries < 10; ntries++) {
if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0)
return error;
if (!(tmp & RT2860_BBP_CSR_KICK))
break;
}
if (ntries == 10)
return ETIMEDOUT;
tmp = RT2860_BBP_CSR_KICK | reg << 8 | val;
return run_write(sc, RT2860_BBP_CSR_CFG, tmp);
}
/*
* Send a command to the 8051 microcontroller unit.
*/
int
run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg)
{
uint32_t tmp;
int error, ntries;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0)
return error;
if (!(tmp & RT2860_H2M_BUSY))
break;
}
if (ntries == 100)
return ETIMEDOUT;
tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg;
if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0)
error = run_write(sc, RT2860_HOST_CMD, cmd);
return error;
}
/*
* Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
* Used to adjust per-rate Tx power registers.
*/
static __inline uint32_t
b4inc(uint32_t b32, int8_t delta)
{
int8_t i, b4;
for (i = 0; i < 8; i++) {
b4 = b32 & 0xf;
b4 += delta;
if (b4 < 0)
b4 = 0;
else if (b4 > 0xf)
b4 = 0xf;
b32 = b32 >> 4 | b4 << 28;
}
return b32;
}
const char *
run_get_rf(int rev)
{
switch (rev) {
case RT2860_RF_2820: return "RT2820";
case RT2860_RF_2850: return "RT2850";
case RT2860_RF_2720: return "RT2720";
case RT2860_RF_2750: return "RT2750";
case RT3070_RF_3020: return "RT3020";
case RT3070_RF_2020: return "RT2020";
case RT3070_RF_3021: return "RT3021";
case RT3070_RF_3022: return "RT3022";
case RT3070_RF_3052: return "RT3052";
}
return "unknown";
}
int
run_read_eeprom(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int8_t delta_2ghz, delta_5ghz;
uint32_t tmp;
uint16_t val;
int ridx, ant, i;
/* check whether the ROM is eFUSE ROM or EEPROM */
sc->sc_srom_read = run_eeprom_read_2;
if ((sc->mac_rev & 0xfff00000) >= 0x30700000) {
run_read(sc, RT3070_EFUSE_CTRL, &tmp);
DPRINTF(("EFUSE_CTRL=0x%08x\n", tmp));
if (tmp & RT3070_SEL_EFUSE)
sc->sc_srom_read = run_efuse_read_2;
}
/* read ROM version */
run_srom_read(sc, RT2860_EEPROM_VERSION, &val);
DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8));
/* read MAC address */
run_srom_read(sc, RT2860_EEPROM_MAC01, &val);
ic->ic_myaddr[0] = val & 0xff;
ic->ic_myaddr[1] = val >> 8;
run_srom_read(sc, RT2860_EEPROM_MAC23, &val);
ic->ic_myaddr[2] = val & 0xff;
ic->ic_myaddr[3] = val >> 8;
run_srom_read(sc, RT2860_EEPROM_MAC45, &val);
ic->ic_myaddr[4] = val & 0xff;
ic->ic_myaddr[5] = val >> 8;
/* read default BBP settings */
for (i = 0; i < 8; i++) {
run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val);
sc->bbp[i].val = val & 0xff;
sc->bbp[i].reg = val >> 8;
DPRINTF(("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val));
}
/* read RF frequency offset from EEPROM */
run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val);
sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
DPRINTF(("EEPROM freq offset %d\n", sc->freq & 0xff));
if ((sc->leds = val >> 8) != 0xff) {
/* read LEDs operating mode */
run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]);
run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]);
run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]);
} else {
/* broken EEPROM, use default settings */
sc->leds = 0x01;
sc->led[0] = 0x5555;
sc->led[1] = 0x2221;
sc->led[2] = 0x5627; /* differs from RT2860 */
}
DPRINTF(("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
sc->leds, sc->led[0], sc->led[1], sc->led[2]));
/* read RF information */
run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val);
if (val == 0xffff) {
DPRINTF(("invalid EEPROM antenna info, using default\n"));
if ((sc->mac_rev >> 16) >= 0x3070) {
/* default to RF3020 1T1R */
sc->rf_rev = RT3070_RF_3020;
sc->ntxchains = 1;
sc->nrxchains = 1;
} else {
/* default to RF2820 1T2R */
sc->rf_rev = RT2860_RF_2820;
sc->ntxchains = 1;
sc->nrxchains = 2;
}
} else {
sc->rf_rev = (val >> 8) & 0xf;
sc->ntxchains = (val >> 4) & 0xf;
sc->nrxchains = val & 0xf;
}
DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n",
sc->rf_rev, sc->ntxchains, sc->nrxchains));
/* check if RF supports automatic Tx access gain control */
run_srom_read(sc, RT2860_EEPROM_CONFIG, &val);
DPRINTF(("EEPROM CFG 0x%04x\n", val));
if ((val & 0xff) != 0xff) {
sc->ext_5ghz_lna = (val >> 3) & 1;
sc->ext_2ghz_lna = (val >> 2) & 1;
sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1;
}
/* read power settings for 2GHz channels */
for (i = 0; i < 14; i += 2) {
run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val);
sc->txpow1[i + 0] = (int8_t)(val & 0xff);
sc->txpow1[i + 1] = (int8_t)(val >> 8);
run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val);
sc->txpow2[i + 0] = (int8_t)(val & 0xff);
sc->txpow2[i + 1] = (int8_t)(val >> 8);
}
/* fix broken Tx power entries */
for (i = 0; i < 14; i++) {
if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
sc->txpow1[i] = 5;
if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
sc->txpow2[i] = 5;
DPRINTF(("chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]));
}
/* read power settings for 5GHz channels */
for (i = 0; i < 36; i += 2) {
run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val);
sc->txpow1[i + 14] = (int8_t)(val & 0xff);
sc->txpow1[i + 15] = (int8_t)(val >> 8);
run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val);
sc->txpow2[i + 14] = (int8_t)(val & 0xff);
sc->txpow2[i + 15] = (int8_t)(val >> 8);
}
/* fix broken Tx power entries */
for (i = 0; i < 36; i++) {
if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
sc->txpow1[14 + i] = 5;
if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
sc->txpow2[14 + i] = 5;
DPRINTF(("chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
sc->txpow2[14 + i]));
}
/* read Tx power compensation for each Tx rate */
run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val);
delta_2ghz = delta_5ghz = 0;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_2ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_2ghz = -delta_2ghz;
}
val >>= 8;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_5ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_5ghz = -delta_5ghz;
}
DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n",
delta_2ghz, delta_5ghz));
for (ridx = 0; ridx < 5; ridx++) {
uint32_t reg;
run_srom_read(sc, RT2860_EEPROM_RPWR + ridx, &val);
reg = (uint32_t)val << 16;
run_srom_read(sc, RT2860_EEPROM_RPWR + ridx + 1, &val);
reg |= val;
sc->txpow20mhz[ridx] = reg;
sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
"40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]));
}
/* read RSSI offsets and LNA gains from EEPROM */
run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val);
sc->rssi_2ghz[0] = val & 0xff; /* Ant A */
sc->rssi_2ghz[1] = val >> 8; /* Ant B */
run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val);
sc->rssi_2ghz[2] = val & 0xff; /* Ant C */
sc->lna[2] = val >> 8; /* channel group 2 */
run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val);
sc->rssi_5ghz[0] = val & 0xff; /* Ant A */
sc->rssi_5ghz[1] = val >> 8; /* Ant B */
run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val);
sc->rssi_5ghz[2] = val & 0xff; /* Ant C */
sc->lna[3] = val >> 8; /* channel group 3 */
run_srom_read(sc, RT2860_EEPROM_LNA, &val);
sc->lna[0] = val & 0xff; /* channel group 0 */
sc->lna[1] = val >> 8; /* channel group 1 */
/* fix broken 5GHz LNA entries */
if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
DPRINTF(("invalid LNA for channel group %d\n", 2));
sc->lna[2] = sc->lna[1];
}
if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
DPRINTF(("invalid LNA for channel group %d\n", 3));
sc->lna[3] = sc->lna[1];
}
/* fix broken RSSI offset entries */
for (ant = 0; ant < 3; ant++) {
if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n",
ant + 1, sc->rssi_2ghz[ant]));
sc->rssi_2ghz[ant] = 0;
}
if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n",
ant + 1, sc->rssi_5ghz[ant]));
sc->rssi_5ghz[ant] = 0;
}
}
return 0;
}
struct ieee80211_node *
run_node_alloc(struct ieee80211com *ic)
{
return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO);
}
int
run_media_change(struct ifnet *ifp)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
for (ridx = 0; ridx <= RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
sc->fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
run_init(ifp);
return 0;
}
void
run_next_scan(void *arg)
{
struct run_softc *sc = arg;
if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&sc->sc_ic.ic_if);
}
void
run_task(void *arg)
{
struct run_softc *sc = arg;
struct run_host_cmd_ring *ring = &sc->cmdq;
struct run_host_cmd *cmd;
int s;
/* process host commands */
s = splusb();
while (ring->next != ring->cur) {
cmd = &ring->cmd[ring->next];
splx(s);
/* callback */
cmd->cb(sc, cmd->data);
s = splusb();
ring->queued--;
ring->next = (ring->next + 1) % RUN_HOST_CMD_RING_COUNT;
}
wakeup(ring);
splx(s);
}
void
run_do_async(struct run_softc *sc, void (*cb)(struct run_softc *, void *),
void *arg, int len)
{
struct run_host_cmd_ring *ring = &sc->cmdq;
struct run_host_cmd *cmd;
int s;
s = splusb();
cmd = &ring->cmd[ring->cur];
cmd->cb = cb;
KASSERT(len <= sizeof (cmd->data));
memcpy(cmd->data, arg, len);
ring->cur = (ring->cur + 1) % RUN_HOST_CMD_RING_COUNT;
/* if there is no pending command already, schedule a task */
if (++ring->queued == 1)
usb_add_task(sc->sc_udev, &sc->sc_task);
splx(s);
}
int
run_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct run_softc *sc = ic->ic_softc;
struct run_cmd_newstate cmd;
/* do it in a process context */
cmd.state = nstate;
cmd.arg = arg;
run_do_async(sc, run_newstate_cb, &cmd, sizeof cmd);
return 0;
}
void
run_newstate_cb(struct run_softc *sc, void *arg)
{
struct run_cmd_newstate *cmd = arg;
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state ostate;
struct ieee80211_node *ni;
uint32_t tmp, sta[3];
uint8_t wcid;
int s;
s = splnet();
ostate = ic->ic_state;
if (ostate == IEEE80211_S_RUN) {
/* turn link LED off */
run_set_leds(sc, RT2860_LED_RADIO);
}
switch (cmd->state) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
run_write(sc, RT2860_BCN_TIME_CFG,
tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
RT2860_TBTT_TIMER_EN));
}
break;
case IEEE80211_S_SCAN:
run_set_chan(sc, ic->ic_bss->ni_chan);
timeout_add_msec(&sc->scan_to, 200);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
run_set_chan(sc, ic->ic_bss->ni_chan);
break;
case IEEE80211_S_RUN:
run_set_chan(sc, ic->ic_bss->ni_chan);
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
run_updateslot(ic);
run_enable_mrr(sc);
run_set_txpreamble(sc);
run_set_basicrates(sc);
run_set_bssid(sc, ni->ni_bssid);
}
if (ic->ic_opmode == IEEE80211_M_STA) {
/* add BSS entry to the WCID table */
wcid = RUN_AID2WCID(ni->ni_associd);
run_write_region_1(sc, RT2860_WCID_ENTRY(wcid),
ni->ni_macaddr, IEEE80211_ADDR_LEN);
/* fake a join to init the tx rate */
run_newassoc(ic, ni, 1);
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
run_enable_tsf_sync(sc);
/* clear statistic registers used by AMRR */
run_read_region_1(sc, RT2860_TX_STA_CNT0,
(uint8_t *)sta, sizeof sta);
/* start calibration timer */
timeout_add_sec(&sc->calib_to, 1);
}
/* turn link LED on */
run_set_leds(sc, RT2860_LED_RADIO |
(IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan) ?
RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
break;
}
(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
splx(s);
}
void
run_updateedca(struct ieee80211com *ic)
{
/* do it in a process context */
run_do_async(ic->ic_softc, run_updateedca_cb, NULL, 0);
}
/* ARGSUSED */
void
run_updateedca_cb(struct run_softc *sc, void *arg)
{
struct ieee80211com *ic = &sc->sc_ic;
int s, aci;
s = splnet();
/* update MAC TX configuration registers */
for (aci = 0; aci < EDCA_NUM_AC; aci++) {
run_write(sc, RT2860_EDCA_AC_CFG(aci),
ic->ic_edca_ac[aci].ac_ecwmax << 16 |
ic->ic_edca_ac[aci].ac_ecwmin << 12 |
ic->ic_edca_ac[aci].ac_aifsn << 8 |
ic->ic_edca_ac[aci].ac_txoplimit);
}
/* update SCH/DMA registers too */
run_write(sc, RT2860_WMM_AIFSN_CFG,
ic->ic_edca_ac[EDCA_AC_VO].ac_aifsn << 12 |
ic->ic_edca_ac[EDCA_AC_VI].ac_aifsn << 8 |
ic->ic_edca_ac[EDCA_AC_BK].ac_aifsn << 4 |
ic->ic_edca_ac[EDCA_AC_BE].ac_aifsn);
run_write(sc, RT2860_WMM_CWMIN_CFG,
ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmin << 12 |
ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmin << 8 |
ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmin << 4 |
ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmin);
run_write(sc, RT2860_WMM_CWMAX_CFG,
ic->ic_edca_ac[EDCA_AC_VO].ac_ecwmax << 12 |
ic->ic_edca_ac[EDCA_AC_VI].ac_ecwmax << 8 |
ic->ic_edca_ac[EDCA_AC_BK].ac_ecwmax << 4 |
ic->ic_edca_ac[EDCA_AC_BE].ac_ecwmax);
run_write(sc, RT2860_WMM_TXOP0_CFG,
ic->ic_edca_ac[EDCA_AC_BK].ac_txoplimit << 16 |
ic->ic_edca_ac[EDCA_AC_BE].ac_txoplimit);
run_write(sc, RT2860_WMM_TXOP1_CFG,
ic->ic_edca_ac[EDCA_AC_VO].ac_txoplimit << 16 |
ic->ic_edca_ac[EDCA_AC_VI].ac_txoplimit);
splx(s);
}
int
run_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct run_softc *sc = ic->ic_softc;
struct run_cmd_key cmd;
/* do it in a process context */
cmd.key = *k;
cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
run_do_async(sc, run_set_key_cb, &cmd, sizeof cmd);
return 0;
}
void
run_set_key_cb(struct run_softc *sc, void *arg)
{
struct run_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
uint32_t attr;
uint16_t base;
uint8_t mode, wcid, iv[8];
/* map net80211 cipher to RT2860 security mode */
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
mode = RT2860_MODE_WEP40;
break;
case IEEE80211_CIPHER_WEP104:
mode = RT2860_MODE_WEP104;
break;
case IEEE80211_CIPHER_TKIP:
mode = RT2860_MODE_TKIP;
break;
case IEEE80211_CIPHER_CCMP:
mode = RT2860_MODE_AES_CCMP;
break;
default:
return;
}
if (k->k_flags & IEEE80211_KEY_GROUP) {
wcid = 0; /* NB: update WCID0 for group keys */
base = RT2860_SKEY(0, k->k_id);
} else {
wcid = RUN_AID2WCID(cmd->associd);
base = RT2860_PKEY(wcid);
}
if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
run_write_region_1(sc, base, k->k_key, 16);
run_write_region_1(sc, base + 16, &k->k_key[24], 8);
run_write_region_1(sc, base + 24, &k->k_key[16], 8);
} else {
/* roundup len to 16-bit: XXX fix write_region_1() instead */
run_write_region_1(sc, base, k->k_key, (k->k_len + 1) & ~1);
}
if (!(k->k_flags & IEEE80211_KEY_GROUP) ||
(k->k_flags & IEEE80211_KEY_TX)) {
/* set initial packet number in IV+EIV */
if (k->k_cipher == IEEE80211_CIPHER_WEP40 ||
k->k_cipher == IEEE80211_CIPHER_WEP104) {
memset(iv, 0, sizeof iv);
iv[3] = sc->sc_ic.ic_def_txkey << 6;
} else {
if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
iv[0] = k->k_tsc >> 8;
iv[1] = (iv[0] | 0x20) & 0x7f;
iv[2] = k->k_tsc;
} else /* CCMP */ {
iv[0] = k->k_tsc;
iv[1] = k->k_tsc >> 8;
iv[2] = 0;
}
iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
iv[4] = k->k_tsc >> 16;
iv[5] = k->k_tsc >> 24;
iv[6] = k->k_tsc >> 32;
iv[7] = k->k_tsc >> 40;
}
run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8);
}
if (k->k_flags & IEEE80211_KEY_GROUP) {
/* install group key */
run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
attr &= ~(0xf << (k->k_id * 4));
attr |= mode << (k->k_id * 4);
run_write(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* install pairwise key */
run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
run_write(sc, RT2860_WCID_ATTR(wcid), attr);
}
}
void
run_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct run_softc *sc = ic->ic_softc;
struct run_cmd_key cmd;
if (!(ic->ic_if.if_flags & IFF_RUNNING) ||
ic->ic_state != IEEE80211_S_RUN)
return; /* nothing to do */
/* do it in a process context */
cmd.key = *k;
cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
run_do_async(sc, run_delete_key_cb, &cmd, sizeof cmd);
}
void
run_delete_key_cb(struct run_softc *sc, void *arg)
{
struct run_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
uint32_t attr;
uint8_t wcid;
if (k->k_flags & IEEE80211_KEY_GROUP) {
/* remove group key */
run_read(sc, RT2860_SKEY_MODE_0_7, &attr);
attr &= ~(0xf << (k->k_id * 4));
run_write(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* remove pairwise key */
wcid = RUN_AID2WCID(cmd->associd);
run_read(sc, RT2860_WCID_ATTR(wcid), &attr);
attr &= ~0xf;
run_write(sc, RT2860_WCID_ATTR(wcid), attr);
}
}
void
run_calibrate_to(void *arg)
{
/* do it in a process context */
run_do_async(arg, run_calibrate_cb, NULL, 0);
/* next timeout will be rescheduled in the calibration task */
}
/* ARGSUSED */
void
run_calibrate_cb(struct run_softc *sc, void *arg)
{
struct ifnet *ifp = &sc->sc_ic.ic_if;
uint32_t sta[3];
int s, error;
/* read statistic counters (clear on read) and update AMRR state */
error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta,
sizeof sta);
if (error != 0)
goto skip;
DPRINTF(("retrycnt=%d txcnt=%d failcnt=%d\n",
letoh32(sta[1]) >> 16, letoh32(sta[1]) & 0xffff,
letoh32(sta[0]) & 0xffff));
s = splnet();
/* count failed TX as errors */
ifp->if_oerrors += letoh32(sta[0]) & 0xffff;
sc->amn.amn_retrycnt =
(letoh32(sta[0]) & 0xffff) + /* failed TX count */
(letoh32(sta[1]) >> 16); /* TX retransmission count */
sc->amn.amn_txcnt =
sc->amn.amn_retrycnt +
(letoh32(sta[1]) & 0xffff); /* successful TX count */
ieee80211_amrr_choose(&sc->amrr, sc->sc_ic.ic_bss, &sc->amn);
splx(s);
skip: timeout_add_sec(&sc->calib_to, 1);
}
void
run_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
{
struct run_softc *sc = ic->ic_softc;
struct run_node *rn = (void *)ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
uint8_t rate;
int ridx, i, j;
DPRINTF(("new assoc isnew=%d addr=%s\n",
isnew, ether_sprintf(ni->ni_macaddr)));
ieee80211_amrr_node_init(&sc->amrr, &sc->amn);
/* start at lowest available bit-rate, AMRR will raise */
ni->ni_txrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
/* convert 802.11 rate to hardware rate index */
for (ridx = 0; ridx <= RT2860_RIDX_MAX; ridx++)
if (rt2860_rates[ridx].rate == rate)
break;
rn->ridx[i] = ridx;
/* determine rate of control response frames */
for (j = i; j >= 0; j--) {
if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) &&
rt2860_rates[rn->ridx[i]].phy ==
rt2860_rates[rn->ridx[j]].phy)
break;
}
if (j >= 0) {
rn->ctl_ridx[i] = rn->ridx[j];
} else {
/* no basic rate found, use mandatory one */
rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx;
}
DPRINTF(("rate=0x%02x ridx=%d ctl_ridx=%d\n",
rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]));
}
}
/*
* Return the Rx chain with the highest RSSI for a given frame.
*/
static __inline uint8_t
run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi)
{
uint8_t rxchain = 0;
if (sc->nrxchains > 1) {
if (rxwi->rssi[1] > rxwi->rssi[rxchain])
rxchain = 1;
if (sc->nrxchains > 2)
if (rxwi->rssi[2] > rxwi->rssi[rxchain])
rxchain = 2;
}
return rxchain;
}
void
run_rx_frame(struct run_softc *sc, uint8_t *buf, int dmalen)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &ic->ic_if;
struct ieee80211_frame *wh;
struct ieee80211_rxinfo rxi;
struct ieee80211_node *ni;
struct rt2870_rxd *rxd;
struct rt2860_rxwi *rxwi;
struct mbuf *m;
uint32_t flags;
uint16_t len, phy;
uint8_t ant, rssi;
int s;
rxwi = (struct rt2860_rxwi *)buf;
len = letoh16(rxwi->len) & 0xfff;
if (__predict_false(len > dmalen)) {
DPRINTF(("bad RXWI length %u > %u\n", len, dmalen));
return;
}
/* Rx descriptor is located at the end */
rxd = (struct rt2870_rxd *)(buf + dmalen);
flags = letoh32(rxd->flags);
if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
ifp->if_ierrors++;
return;
}
if (__predict_false((flags & RT2860_RX_MICERR))) {
/* report MIC failures to net80211 for TKIP */
ic->ic_stats.is_rx_locmicfail++;
ieee80211_michael_mic_failure(ic, 0/* XXX */);
ifp->if_ierrors++;
return;
}
wh = (struct ieee80211_frame *)(rxwi + 1);
rxi.rxi_flags = 0;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
}
if (flags & RT2860_RX_L2PAD) {
u_int hdrlen = ieee80211_get_hdrlen(wh);
ovbcopy(wh, (caddr_t)wh + 2, hdrlen);
wh = (struct ieee80211_frame *)((caddr_t)wh + 2);
}
/* could use m_devget but net80211 wants contig mgmt frames */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL)) {
ifp->if_ierrors++;
return;
}
if (len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (__predict_false(!(m->m_flags & M_EXT))) {
ifp->if_ierrors++;
m_freem(m);
return;
}
}
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
memcpy(mtod(m, caddr_t), wh, len);
m->m_pkthdr.len = m->m_len = len;
ant = run_maxrssi_chain(sc, rxwi);
rssi = rxwi->rssi[ant];
#if NBPFILTER > 0
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct run_rx_radiotap_header *tap = &sc->sc_rxtap;
struct mbuf mb;
tap->wr_flags = 0;
tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wr_antsignal = rssi;
tap->wr_antenna = ant;
tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant);
tap->wr_rate = 2; /* in case it can't be found below */
phy = letoh16(rxwi->phy);
switch (phy & RT2860_PHY_MODE) {
case RT2860_PHY_CCK:
switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
}
if (phy & RT2860_PHY_SHPRE)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
break;
case RT2860_PHY_OFDM:
switch (phy & RT2860_PHY_MCS) {
case 0: tap->wr_rate = 12; break;
case 1: tap->wr_rate = 18; break;
case 2: tap->wr_rate = 24; break;
case 3: tap->wr_rate = 36; break;
case 4: tap->wr_rate = 48; break;
case 5: tap->wr_rate = 72; break;
case 6: tap->wr_rate = 96; break;
case 7: tap->wr_rate = 108; break;
}
break;
}
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_rxtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN);
}
#endif
s = splnet();
ni = ieee80211_find_rxnode(ic, wh);
rxi.rxi_rssi = rssi;
rxi.rxi_tstamp = 0; /* unused */
ieee80211_input(ifp, m, ni, &rxi);
/* node is no longer needed */
ieee80211_release_node(ic, ni);
splx(s);
}
void
run_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct run_rx_data *data = priv;
struct run_softc *sc = data->sc;
uint8_t *buf;
uint32_t dmalen;
int xferlen;
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
DPRINTF(("RX status=%d\n", status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->rxq.pipeh);
if (status != USBD_CANCELLED)
goto skip;
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &xferlen, NULL);
if (__predict_false(xferlen < sizeof (uint32_t) +
sizeof (struct rt2860_rxwi) + sizeof (struct rt2870_rxd))) {
DPRINTF(("xfer too short %d\n", xferlen));
goto skip;
}
/* HW can aggregate multiple 802.11 frames in a single USB xfer */
buf = data->buf;
while (xferlen > 8) {
dmalen = letoh32(*(uint32_t *)buf) & 0xffff;
if (__predict_false(dmalen == 0 || (dmalen & 3) != 0)) {
DPRINTF(("bad DMA length %u (%x)\n", dmalen));
break;
}
if (__predict_false(dmalen + 8 > xferlen)) {
DPRINTF(("bad DMA length %u > %d\n",
dmalen + 8, xferlen));
break;
}
run_rx_frame(sc, buf + sizeof (uint32_t), dmalen);
buf += dmalen + 8;
xferlen -= dmalen + 8;
}
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, sc->rxq.pipeh, data, data->buf, RUN_MAX_RXSZ,
USBD_SHORT_XFER_OK | USBD_NO_COPY, USBD_NO_TIMEOUT, run_rxeof);
(void)usbd_transfer(data->xfer);
}
void
run_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct run_tx_data *data = priv;
struct run_softc *sc = data->sc;
struct run_tx_ring *txq = &sc->txq[data->qid];
struct ifnet *ifp = &sc->sc_ic.ic_if;
int s;
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
DPRINTF(("TX status=%d\n", status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(txq->pipeh);
ifp->if_oerrors++;
return;
}
s = splnet();
sc->sc_tx_timer = 0;
ifp->if_opackets++;
if (--txq->queued < RUN_TX_RING_COUNT) {
sc->qfullmsk &= ~(1 << data->qid);
ifp->if_flags &= ~IFF_OACTIVE;
run_start(ifp);
}
splx(s);
}
int
run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct run_node *rn = (void *)ni;
struct ieee80211_frame *wh;
struct run_tx_ring *ring;
struct run_tx_data *data;
struct rt2870_txd *txd;
struct rt2860_txwi *txwi;
u_int hdrlen;
uint16_t qos, dur;
uint8_t type, mcs, tid, qid;
int error, hasqos, ridx, ctl_ridx, xferlen;
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_get_hdrlen(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
if ((hasqos = ieee80211_has_qos(wh))) {
qos = ieee80211_get_qos(wh);
tid = qos & IEEE80211_QOS_TID;
qid = ieee80211_up_to_ac(ic, tid);
} else {
tid = 0;
qid = EDCA_AC_BE;
}
ring = &sc->txq[qid];
data = &ring->data[ring->cur];
/* pickup a rate index */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA) {
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
ctl_ridx = rt2860_rates[ridx].ctl_ridx;
} else if (ic->ic_fixed_rate != -1) {
ridx = sc->fixed_ridx;
ctl_ridx = rt2860_rates[ridx].ctl_ridx;
} else {
ridx = rn->ridx[ni->ni_txrate];
ctl_ridx = rn->ctl_ridx[ni->ni_txrate];
}
/* get MCS code from rate index */
mcs = rt2860_rates[ridx].mcs;
xferlen = sizeof (*txwi) + m->m_pkthdr.len;
/* roundup to 32-bit alignment */
xferlen = (xferlen + 3) & ~3;
txd = (struct rt2870_txd *)data->buf;
txd->flags = RT2860_TX_QSEL_EDCA;
txd->len = htole16(xferlen);
/* setup TX Wireless Information */
txwi = (struct rt2860_txwi *)(txd + 1);
txwi->flags = 0;
txwi->xflags = 0;
txwi->wcid = (type == IEEE80211_FC0_TYPE_DATA) ?
RUN_AID2WCID(ni->ni_associd) : 0xff;
txwi->len = htole16(m->m_pkthdr.len);
if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
txwi->phy = htole16(RT2860_PHY_CCK);
if (ridx != RT2860_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
mcs |= RT2860_PHY_SHPRE;
} else
txwi->phy = htole16(RT2860_PHY_OFDM);
txwi->phy |= htole16(mcs);
txwi->txop = RT2860_TX_TXOP_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
IEEE80211_QOS_ACK_POLICY_NOACK)) {
txwi->xflags |= RT2860_TX_ACK;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
dur = rt2860_rates[ctl_ridx].sp_ack_dur;
else
dur = rt2860_rates[ctl_ridx].lp_ack_dur;
*(uint16_t *)wh->i_dur = htole16(dur + sc->sifs);
}
#if NBPFILTER > 0
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct run_tx_radiotap_header *tap = &sc->sc_txtap;
struct mbuf mb;
tap->wt_flags = 0;
tap->wt_rate = rt2860_rates[ridx].rate;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
tap->wt_hwqueue = qid;
if (mcs & RT2860_PHY_SHPRE)
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
mb.m_data = (caddr_t)tap;
mb.m_len = sc->sc_txtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT);
}
#endif
m_copydata(m, 0, m->m_pkthdr.len, (caddr_t)(txwi + 1));
m_freem(m);
ieee80211_release_node(ic, ni);
xferlen += sizeof (*txd) + 4;
usbd_setup_xfer(data->xfer, ring->pipeh, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, RUN_TX_TIMEOUT, run_txeof);
error = usbd_transfer(data->xfer);
if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
return error;
ring->cur = (ring->cur + 1) % RUN_TX_RING_COUNT;
if (++ring->queued >= RUN_TX_RING_COUNT)
sc->qfullmsk |= 1 << qid;
return 0;
}
void
run_start(struct ifnet *ifp)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct mbuf *m;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
if (sc->qfullmsk != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* send pending management frames first */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m != NULL) {
ni = (void *)m->m_pkthdr.rcvif;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* encapsulate and send data frames */
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
#endif
if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
continue;
sendit:
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
#endif
if (run_tx(sc, m, ni) != 0) {
ieee80211_release_node(ic, ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
void
run_watchdog(struct ifnet *ifp)
{
struct run_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", sc->sc_dev.dv_xname);
/* run_init(ifp); XXX needs a process context! */
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ifp);
}
int
run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifaddr *ifa;
struct ifreq *ifr;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifa = (struct ifaddr *)data;
ifp->if_flags |= IFF_UP;
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(&ic->ic_ac, ifa);
#endif
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
run_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
run_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ifr = (struct ifreq *)data;
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &ic->ic_ac) :
ether_delmulti(ifr, &ic->ic_ac);
if (error == ENETRESET)
error = 0;
break;
case SIOCS80211CHANNEL:
/*
* This allows for fast channel switching in monitor mode
* (used by kismet). In IBSS mode, we must explicitly reset
* the interface to generate a new beacon frame.
*/
error = ieee80211_ioctl(ifp, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
run_set_chan(sc, ic->ic_ibss_chan);
error = 0;
}
break;
default:
error = ieee80211_ioctl(ifp, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
run_init(ifp);
error = 0;
}
splx(s);
return error;
}
void
run_select_chan_group(struct run_softc *sc, int group)
{
uint32_t tmp;
run_bbp_write(sc, 62, 0x37 - sc->lna[group]);
run_bbp_write(sc, 63, 0x37 - sc->lna[group]);
run_bbp_write(sc, 64, 0x37 - sc->lna[group]);
run_bbp_write(sc, 86, 0x00);
if (group == 0) {
if (sc->ext_2ghz_lna) {
run_bbp_write(sc, 82, 0x62);
run_bbp_write(sc, 75, 0x46);
} else {
run_bbp_write(sc, 82, 0x84);
run_bbp_write(sc, 75, 0x50);
}
} else {
if (sc->ext_5ghz_lna) {
run_bbp_write(sc, 82, 0xf2);
run_bbp_write(sc, 75, 0x46);
} else {
run_bbp_write(sc, 82, 0xf2);
run_bbp_write(sc, 75, 0x50);
}
}
run_read(sc, RT2860_TX_BAND_CFG, &tmp);
tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
run_write(sc, RT2860_TX_BAND_CFG, tmp);
/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
tmp = RT2860_RFTR_EN | RT2860_TRSW_EN;
if (group == 0) { /* 2GHz */
tmp |= RT2860_PA_PE_G0_EN | RT2860_LNA_PE_G0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_G1_EN;
if (sc->nrxchains > 1)
tmp |= RT2860_LNA_PE_G1_EN;
} else { /* 5GHz */
tmp |= RT2860_PA_PE_A0_EN | RT2860_LNA_PE_A0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_A1_EN;
if (sc->nrxchains > 1)
tmp |= RT2860_LNA_PE_A1_EN;
}
run_write(sc, RT2860_TX_PIN_CFG, tmp);
/* set initial AGC value */
if (group == 0)
run_bbp_write(sc, 66, 0x2e + sc->lna[0]);
else
run_bbp_write(sc, 66, 0x32 + (sc->lna[group] * 5) / 3);
}
void
run_rt2870_set_chan(struct run_softc *sc, u_int chan)
{
const struct rfprog *rfprog = rt2860_rf2850;
uint32_t r2, r3, r4;
int8_t txpow1, txpow2;
int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
r2 = rfprog[i].r2;
if (sc->ntxchains == 1)
r2 |= 1 << 12; /* 1T: disable Tx chain 2 */
if (sc->nrxchains == 1)
r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
r2 |= 1 << 4; /* 2R: disable Rx chain 3 */
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
if (chan > 14) {
if (txpow1 >= 0)
txpow1 = txpow1 << 1;
else
txpow1 = (7 + txpow1) << 1 | 1;
if (txpow2 >= 0)
txpow2 = txpow2 << 1;
else
txpow2 = (7 + txpow2) << 1 | 1;
}
r3 = rfprog[i].r3 | txpow1 << 7;
r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
run_rt2870_rf_write(sc, RT2860_RF2, r2);
run_rt2870_rf_write(sc, RT2860_RF3, r3);
run_rt2870_rf_write(sc, RT2860_RF4, r4);
DELAY(200);
run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
run_rt2870_rf_write(sc, RT2860_RF2, r2);
run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1);
run_rt2870_rf_write(sc, RT2860_RF4, r4);
DELAY(200);
run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1);
run_rt2870_rf_write(sc, RT2860_RF2, r2);
run_rt2870_rf_write(sc, RT2860_RF3, r3);
run_rt2870_rf_write(sc, RT2860_RF4, r4);
}
void
run_rt3070_set_chan(struct run_softc *sc, u_int chan)
{
int8_t txpow1, txpow2;
uint8_t rf;
KASSERT(chan >= 1 && chan <= 14); /* RT3070 is 2GHz only */
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[chan - 1];
txpow2 = sc->txpow2[chan - 1];
run_rt3070_rf_write(sc, 2, run_rf3020_freqs[chan - 1].n);
run_rt3070_rf_write(sc, 3, run_rf3020_freqs[chan - 1].k);
run_rt3070_rf_read(sc, 6, &rf);
rf = (rf & ~0x03) | run_rf3020_freqs[chan - 1].r;
run_rt3070_rf_write(sc, 6, rf);
/* set Tx0 power */
run_rt3070_rf_read(sc, 12, &rf);
rf = (rf & ~0x1f) | txpow1;
run_rt3070_rf_write(sc, 12, rf);
/* set Tx1 power */
run_rt3070_rf_read(sc, 13, &rf);
rf = (rf & ~0x1f) | txpow2;
run_rt3070_rf_write(sc, 13, rf);
run_rt3070_rf_read(sc, 1, &rf);
rf &= ~0xfc;
if (sc->ntxchains == 1)
rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */
else if (sc->ntxchains == 2)
rf |= 1 << 7; /* 2T: disable Tx chain 3 */
if (sc->nrxchains == 1)
rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
rf |= 1 << 6; /* 2R: disable Rx chain 3 */
run_rt3070_rf_write(sc, 1, rf);
/* set RF offset */
run_rt3070_rf_read(sc, 23, &rf);
rf = (rf & ~0x7f) | sc->freq;
run_rt3070_rf_write(sc, 23, rf);
/* program RF filter */
run_rt3070_rf_write(sc, 24, sc->rf24_20mhz);
run_rt3070_rf_write(sc, 31, sc->rf24_20mhz);
/* enable RF tuning */
run_rt3070_rf_read(sc, 7, &rf);
run_rt3070_rf_write(sc, 7, rf | 0x01);
}
void
run_set_rx_antenna(struct run_softc *sc, int aux)
{
uint32_t tmp;
if (aux) {
run_read(sc, RT2860_PCI_EECTRL, &tmp);
run_write(sc, RT2860_PCI_EECTRL, tmp & ~RT2860_C);
run_read(sc, RT2860_GPIO_CTRL, &tmp);
run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
} else {
run_read(sc, RT2860_PCI_EECTRL, &tmp);
run_write(sc, RT2860_PCI_EECTRL, tmp | RT2860_C);
run_read(sc, RT2860_GPIO_CTRL, &tmp);
run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
}
}
int
run_set_chan(struct run_softc *sc, struct ieee80211_channel *c)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int chan, group;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return EINVAL;
if ((sc->mac_rev >> 16) >= 0x3070)
run_rt3070_set_chan(sc, chan);
else
run_rt2870_set_chan(sc, chan);
/* 802.11a uses a 16 microseconds short interframe space */
sc->sifs = IEEE80211_IS_CHAN_5GHZ(c) ? 16 : 10;
/* determine channel group */
if (chan <= 14)
group = 0;
else if (chan <= 64)
group = 1;
else if (chan <= 128)
group = 2;
else
group = 3;
/* XXX necessary only when group has changed! */
run_select_chan_group(sc, group);
DELAY(1000);
return 0;
}
void
run_enable_tsf_sync(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
tmp &= ~0x1fffff;
tmp |= ic->ic_bss->ni_intval * 16;
tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
/* local TSF is always updated with remote TSF on beacon reception */
tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
run_write(sc, RT2860_BCN_TIME_CFG, tmp);
}
void
run_enable_mrr(struct run_softc *sc)
{
#define CCK(mcs) (mcs)
#define OFDM(mcs) (1 << 3 | (mcs))
run_write(sc, RT2860_LG_FBK_CFG0,
OFDM(6) << 28 | /* 54->48 */
OFDM(5) << 24 | /* 48->36 */
OFDM(4) << 20 | /* 36->24 */
OFDM(3) << 16 | /* 24->18 */
OFDM(2) << 12 | /* 18->12 */
OFDM(1) << 8 | /* 12-> 9 */
OFDM(0) << 4 | /* 9-> 6 */
OFDM(0)); /* 6-> 6 */
run_write(sc, RT2860_LG_FBK_CFG1,
CCK(2) << 12 | /* 11->5.5 */
CCK(1) << 8 | /* 5.5-> 2 */
CCK(0) << 4 | /* 2-> 1 */
CCK(0)); /* 1-> 1 */
#undef OFDM
#undef CCK
}
void
run_set_txpreamble(struct run_softc *sc)
{
uint32_t tmp;
run_read(sc, RT2860_AUTO_RSP_CFG, &tmp);
if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2860_CCK_SHORT_EN;
else
tmp &= ~RT2860_CCK_SHORT_EN;
run_write(sc, RT2860_AUTO_RSP_CFG, tmp);
}
void
run_set_basicrates(struct run_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* set basic rates mask */
if (ic->ic_curmode == IEEE80211_MODE_11B)
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003);
else if (ic->ic_curmode == IEEE80211_MODE_11A)
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150);
else /* 11g */
run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f);
}
void
run_set_leds(struct run_softc *sc, uint16_t which)
{
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
which | (sc->leds & 0x7f));
}
void
run_set_bssid(struct run_softc *sc, const uint8_t *bssid)
{
run_write(sc, RT2860_MAC_BSSID_DW0,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
run_write(sc, RT2860_MAC_BSSID_DW1,
bssid[4] | bssid[5] << 8);
}
void
run_set_macaddr(struct run_softc *sc, const uint8_t *addr)
{
run_write(sc, RT2860_MAC_ADDR_DW0,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
run_write(sc, RT2860_MAC_ADDR_DW1,
addr[4] | addr[5] << 8 | 0xff << 16);
}
void
run_updateslot(struct ieee80211com *ic)
{
/* do it in a process context */
run_do_async(ic->ic_softc, run_updateslot_cb, NULL, 0);
}
/* ARGSUSED */
void
run_updateslot_cb(struct run_softc *sc, void *arg)
{
uint32_t tmp;
run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp);
tmp &= ~0xff;
tmp |= (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp);
}
#if NBPFILTER > 0
int8_t
run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c = ic->ic_ibss_chan;
int delta;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
u_int chan = ieee80211_chan2ieee(ic, c);
delta = sc->rssi_5ghz[rxchain];
/* determine channel group */
if (chan <= 64)
delta -= sc->lna[1];
else if (chan <= 128)
delta -= sc->lna[2];
else
delta -= sc->lna[3];
} else
delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
return -12 - delta - rssi;
}
#endif
int
run_bbp_init(struct run_softc *sc)
{
int i, error, ntries;
uint8_t bbp0;
/* wait for BBP to wake up */
for (ntries = 0; ntries < 20; ntries++) {
if ((error = run_bbp_read(sc, 0, &bbp0)) != 0)
return error;
if (bbp0 != 0 && bbp0 != 0xff)
break;
}
if (ntries == 20)
return ETIMEDOUT;
/* initialize BBP registers to default values */
for (i = 0; i < nitems(rt2860_def_bbp); i++) {
run_bbp_write(sc, rt2860_def_bbp[i].reg,
rt2860_def_bbp[i].val);
}
/* fix BBP84 for RT2860E */
if ((sc->mac_rev >> 16) == 0x2860 && (sc->mac_rev & 0xffff) != 0x0101)
run_bbp_write(sc, 84, 0x19);
if ((sc->mac_rev >> 16) >= 0x3070) {
run_bbp_write(sc, 79, 0x13);
run_bbp_write(sc, 80, 0x05);
run_bbp_write(sc, 81, 0x33);
/* XXX RT3090 needs more */
} else if (sc->mac_rev == 0x28600100) {
run_bbp_write(sc, 69, 0x16);
run_bbp_write(sc, 73, 0x12);
}
return 0;
}
int
run_rt3070_rf_init(struct run_softc *sc)
{
uint32_t tmp;
uint8_t rf, bbp4;
int i;
run_rt3070_rf_read(sc, 30, &rf);
/* toggle RF R30 bit 7 */
run_rt3070_rf_write(sc, 30, rf | 0x80);
DELAY(1000);
run_rt3070_rf_write(sc, 30, rf & ~0x80);
/* initialize RF registers to default value */
for (i = 0; i < nitems(rt3070_def_rf); i++) {
run_rt3070_rf_write(sc, rt3070_def_rf[i].reg,
rt3070_def_rf[i].val);
}
if ((sc->mac_rev >> 16) == 0x3070) {
/* change voltage from 1.2V to 1.35V for RT3070 */
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp = (tmp & ~0x0f000000) | 0x0d000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
} else if ((sc->mac_rev >> 16) == 0x3071) {
run_rt3070_rf_read(sc, 6, &rf);
run_rt3070_rf_write(sc, 6, rf | 0x40);
run_rt3070_rf_write(sc, 31, 0x14);
run_read(sc, RT3070_LDO_CFG0, &tmp);
tmp &= ~0x1f000000;
if ((sc->mac_rev & 0xffff) < 0x0211)
tmp |= 0x0d000000;
else
tmp |= 0x01000000;
run_write(sc, RT3070_LDO_CFG0, tmp);
/* patch LNA_PE_G1 */
run_read(sc, RT3070_GPIO_SWITCH, &tmp);
run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
}
/* select 20MHz bandwidth */
run_rt3070_rf_read(sc, 31, &rf);
run_rt3070_rf_write(sc, 31, rf & ~0x20);
/* calibrate filter for 20MHz bandwidth */
sc->rf24_20mhz = 0x1f; /* default value */
run_rt3070_filter_calib(sc, 0x07, 0x16, &sc->rf24_20mhz);
/* select 40MHz bandwidth */
run_bbp_read(sc, 4, &bbp4);
run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10);
/* calibrate filter for 40MHz bandwidth */
sc->rf24_40mhz = 0x2f; /* default value */
run_rt3070_filter_calib(sc, 0x27, 0x19, &sc->rf24_40mhz);
/* go back to 20MHz bandwidth */
run_bbp_read(sc, 4, &bbp4);
run_bbp_write(sc, 4, bbp4 & ~0x18);
if ((sc->mac_rev & 0xffff) < 0x0211)
run_rt3070_rf_write(sc, 27, 0x03);
run_read(sc, RT3070_OPT_14, &tmp);
run_write(sc, RT3070_OPT_14, tmp | 1);
if ((sc->mac_rev >> 16) == 0x3071) {
run_rt3070_rf_read(sc, 1, &rf);
rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
run_rt3070_rf_write(sc, 1, rf);
run_rt3070_rf_read(sc, 15, &rf);
run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
run_rt3070_rf_read(sc, 17, &rf);
rf &= ~RT3070_TX_LO1;
if ((sc->mac_rev & 0xffff) >= 0x0211 && !sc->ext_2ghz_lna)
rf |= 0x20; /* fix for long range Rx issue */
run_rt3070_rf_write(sc, 17, rf);
run_rt3070_rf_read(sc, 20, &rf);
run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
run_rt3070_rf_read(sc, 21, &rf);
run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
run_rt3070_rf_read(sc, 27, &rf);
rf &= ~0x77;
if ((sc->mac_rev & 0xffff) < 0x0211)
rf |= 0x03;
run_rt3070_rf_write(sc, 27, rf);
}
return 0;
}
int
run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target,
uint8_t *val)
{
uint8_t rf22, rf24;
uint8_t bbp55_pb, bbp55_sb, delta;
int ntries;
/* program filter */
rf24 = init; /* initial filter value */
run_rt3070_rf_write(sc, 24, rf24);
/* enable baseband loopback mode */
run_rt3070_rf_read(sc, 22, &rf22);
run_rt3070_rf_write(sc, 22, rf22 | 0x01);
/* set power and frequency of passband test tone */
run_bbp_write(sc, 24, 0x00);
for (ntries = 0; ntries < 100; ntries++) {
/* transmit test tone */
run_bbp_write(sc, 25, 0x90);
DELAY(1000);
/* read received power */
run_bbp_read(sc, 55, &bbp55_pb);
if (bbp55_pb != 0)
break;
}
if (ntries == 100)
return ETIMEDOUT;
/* set power and frequency of stopband test tone */
run_bbp_write(sc, 24, 0x06);
for (ntries = 0; ntries < 100; ntries++) {
/* transmit test tone */
run_bbp_write(sc, 25, 0x90);
DELAY(1000);
/* read received power */
run_bbp_read(sc, 55, &bbp55_sb);
delta = bbp55_pb - bbp55_sb;
if (delta > target)
break;
/* reprogram filter */
rf24++;
run_rt3070_rf_write(sc, 24, rf24);
}
if (ntries < 100) {
if (rf24 != init)
rf24--; /* backtrack */
*val = rf24;
run_rt3070_rf_write(sc, 24, rf24);
}
/* restore initial state */
run_bbp_write(sc, 24, 0x00);
/* disable baseband loopback mode */
run_rt3070_rf_read(sc, 22, &rf22);
run_rt3070_rf_write(sc, 22, rf22 & ~0x01);
return 0;
}
int
run_txrx_enable(struct run_softc *sc)
{
uint32_t tmp;
int error, ntries;
run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
for (ntries = 0; ntries < 200; ntries++) {
if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
return error;
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
DELAY(1000);
}
if (ntries == 200)
return ETIMEDOUT;
DELAY(50);
tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE;
run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* enable Rx bulk aggregation (set timeout and limit) */
tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN |
RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2);
run_write(sc, RT2860_USB_DMA_CFG, tmp);
/* set Rx filter */
tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
if (sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
RT2860_DROP_CFACK | RT2860_DROP_CFEND;
if (sc->sc_ic.ic_opmode == IEEE80211_M_STA)
tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
}
run_write(sc, RT2860_RX_FILTR_CFG, tmp);
run_write(sc, RT2860_MAC_SYS_CTRL,
RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
return 0;
}
int
run_init(struct ifnet *ifp)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
uint8_t bbp1, bbp3;
int i, error, qid, ridx, ntries;
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_ASIC_VER_ID, &tmp)) != 0)
goto fail;
if (tmp != 0 && tmp != 0xffffffff)
break;
DELAY(10);
}
if (ntries == 100) {
error = ETIMEDOUT;
goto fail;
}
if ((error = run_load_microcode(sc)) != 0) {
printf("%s: could not load 8051 microcode\n",
sc->sc_dev.dv_xname);
goto fail;
}
/* init host command ring */
sc->cmdq.cur = sc->cmdq.next = sc->cmdq.queued = 0;
/* init Tx rings (4 EDCAs) */
for (qid = 0; qid < 4; qid++) {
if ((error = run_alloc_tx_ring(sc, qid)) != 0)
goto fail;
}
/* init Rx ring */
if ((error = run_alloc_rx_ring(sc)) != 0)
goto fail;
IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
run_set_macaddr(sc, ic->ic_myaddr);
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0)
goto fail;
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
DELAY(1000);
}
if (ntries == 100) {
printf("%s: timeout waiting for DMA engine\n",
sc->sc_dev.dv_xname);
error = ETIMEDOUT;
goto fail;
}
tmp &= 0xff0;
tmp |= RT2860_TX_WB_DDONE;
run_write(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* turn off PME_OEN to solve high-current issue */
run_read(sc, RT2860_SYS_CTRL, &tmp);
run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN);
run_write(sc, RT2860_MAC_SYS_CTRL,
RT2860_BBP_HRST | RT2860_MAC_SRST);
run_write(sc, RT2860_USB_DMA_CFG, 0);
if ((error = run_reset(sc)) != 0) {
printf("%s: could not reset chipset\n", sc->sc_dev.dv_xname);
goto fail;
}
run_write(sc, RT2860_MAC_SYS_CTRL, 0);
/* init Tx power for all Tx rates (from EEPROM) */
for (ridx = 0; ridx < 5; ridx++) {
if (sc->txpow20mhz[ridx] == 0xffffffff)
continue;
run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
}
for (i = 0; i < nitems(rt2870_def_mac); i++)
run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val);
run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273);
run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344);
run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa);
if ((sc->mac_rev >> 16) >= 0x3070) {
/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
run_write(sc, RT2860_TX_SW_CFG0,
4 << RT2860_DLY_PAPE_EN_SHIFT);
run_write(sc, RT2860_TX_SW_CFG1, 0);
run_write(sc, RT2860_TX_SW_CFG2, 0x1f);
}
/* wait while MAC is busy */
for (ntries = 0; ntries < 100; ntries++) {
if ((error = run_read(sc, RT2860_MAC_STATUS_REG, &tmp)) != 0)
goto fail;
if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
break;
DELAY(1000);
}
if (ntries == 100) {
error = ETIMEDOUT;
goto fail;
}
/* clear Host to MCU mailbox */
run_write(sc, RT2860_H2M_BBPAGENT, 0);
run_write(sc, RT2860_H2M_MAILBOX, 0);
DELAY(1000);
if ((error = run_bbp_init(sc)) != 0) {
printf("%s: could not initialize BBP\n", sc->sc_dev.dv_xname);
goto fail;
}
run_read(sc, RT2860_BCN_TIME_CFG, &tmp);
tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
RT2860_TBTT_TIMER_EN);
run_write(sc, RT2860_BCN_TIME_CFG, tmp);
/* clear RX WCID search table */
run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
/* clear WCID attribute table */
run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32);
/* clear shared key table */
run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
/* clear shared key mode */
run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
run_read(sc, RT2860_US_CYC_CNT, &tmp);
tmp = (tmp & ~0xff) | 0x1e;
run_write(sc, RT2860_US_CYC_CNT, tmp);
if ((sc->mac_rev >> 16) == 0x2860 && (sc->mac_rev & 0xffff) != 0x0101)
run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f);
run_write(sc, RT2860_WMM_TXOP0_CFG, 0);
run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96);
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 8; i++) {
if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
continue;
run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
}
/* select Main antenna for 1T1R devices */
if (sc->rf_rev == RT3070_RF_3020)
run_set_rx_antenna(sc, 0);
/* send LEDs operating mode to microcontroller */
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]);
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]);
(void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]);
/* disable non-existing Rx chains */
run_bbp_read(sc, 3, &bbp3);
bbp3 &= ~(1 << 3 | 1 << 4);
if (sc->nrxchains == 2)
bbp3 |= 1 << 3;
else if (sc->nrxchains == 3)
bbp3 |= 1 << 4;
run_bbp_write(sc, 3, bbp3);
/* disable non-existing Tx chains */
run_bbp_read(sc, 1, &bbp1);
if (sc->ntxchains == 1)
bbp1 &= ~(1 << 3 | 1 << 4);
run_bbp_write(sc, 1, bbp1);
if ((sc->mac_rev >> 16) >= 0x3070)
run_rt3070_rf_init(sc);
/* select default channel */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
run_set_chan(sc, ic->ic_ibss_chan);
/* turn radio LED on */
run_set_leds(sc, RT2860_LED_RADIO);
if (ic->ic_flags & IEEE80211_F_WEPON) {
/* install WEP keys */
for (i = 0; i < IEEE80211_WEP_NKID; i++)
(void)run_set_key(ic, NULL, &ic->ic_nw_keys[i]);
}
for (i = 0; i < RUN_RX_RING_COUNT; i++) {
struct run_rx_data *data = &sc->rxq.data[i];
usbd_setup_xfer(data->xfer, sc->rxq.pipeh, data, data->buf,
RUN_MAX_RXSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
USBD_NO_TIMEOUT, run_rxeof);
error = usbd_transfer(data->xfer);
if (error != 0 && error != USBD_IN_PROGRESS)
goto fail;
}
if ((error = run_txrx_enable(sc)) != 0)
goto fail;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
if (error != 0)
fail: run_stop(ifp, 1);
return error;
}
void
run_stop(struct ifnet *ifp, int disable)
{
struct run_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int s, ntries, qid;
if (ifp->if_flags & IFF_RUNNING)
run_set_leds(sc, 0); /* turn all LEDs off */
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
timeout_del(&sc->scan_to);
timeout_del(&sc->calib_to);
s = splusb();
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* wait for all queued asynchronous commands to complete */
while (sc->cmdq.queued > 0)
tsleep(&sc->cmdq, 0, "cmdq", 0);
splx(s);
/* disable Tx/Rx */
run_read(sc, RT2860_MAC_SYS_CTRL, &tmp);
tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
run_write(sc, RT2860_MAC_SYS_CTRL, tmp);
/* wait for pending Tx to complete */
for (ntries = 0; ntries < 100; ntries++) {
if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0)
break;
if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0)
break;
}
DELAY(1000);
run_write(sc, RT2860_USB_DMA_CFG, 0);
/* reset adapter */
run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
run_write(sc, RT2860_MAC_SYS_CTRL, 0);
/* reset Tx and Rx rings */
sc->qfullmsk = 0;
for (qid = 0; qid < 4; qid++)
run_free_tx_ring(sc, qid);
run_free_rx_ring(sc);
}