/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 1988 AT&T * All Rights Reserved * * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "machdep.h" #include "_audit.h" #if defined(lint) #include <sys/types.h> #include "_rtld.h" #else #include <sys/stack.h> #include <sys/asm_linkage.h> .file "boot_elf.s" .seg ".text" #endif /* * We got here because the initial call to a function resolved to a procedure * linkage table entry. That entry did a branch to the first PLT entry, which * in turn did a call to elf_rtbndr (refer elf_plt_init()). * * the code sequence that got us here was: * * PLT entry for foo(): * sethi (.-PLT0), %g1 * ba,a .PLT0 ! patched atomically 2nd * nop ! patched 1st * nop * nop * nop * nop * nop * * Therefore on entry, %i7 has the address of the call, which will be added * to the offset to the plt entry in %g1 to calculate the plt entry address * we must also subtract 4 because the address of PLT0 points to the * save instruction before the call. * * The PLT entry is rewritten in one of several ways. For the full 64-bit * span, the following sequence is generated: * * nop * sethi %hh(entry_pt), %g1 * sethi %lm(entry_pt), %g5 * or %g1, %hm(entry_pt), %g1 * sllx %g1, 32, %g1 * or %g1, %g5, %g5 * jmpl %g5 + %lo(entry_pt), %g0 * nop * * Shorter code sequences are possible, depending on reachability * constraints. Note that 'call' is not as useful as it might seem in * this context, because it is only capable of plus or minus 2Gbyte * PC-relative jumps, and the rdpc instruction is very slow. * * At the time of writing, the present and future SPARC CPUs that will use * this code are only capable of addressing the bottom 43-bits and top 43-bits * of the address space. And since shared libraries are placed at the top * of the address space, the "top 44-bits" sequence will effectively always be * used. See elf_plt_write() below. The "top 32-bits" are used when they * can reach. */ #if defined(lint) extern unsigned long elf_bndr(Rt_map *, unsigned long, caddr_t); /* * We're called here from .PLTn in a new frame, with %o0 containing * the result of a sethi (. - .PLT0), and %o1 containing the pc of * the jmpl instruction we're got here with inside .PLT1 */ void elf_rtbndr(Rt_map *lmp, unsigned long pltoff, caddr_t from) { (void) elf_bndr(lmp, pltoff, from); } #else .weak _elf_rtbndr ! keep dbx happy as it likes to _elf_rtbndr = elf_rtbndr ! rummage around for our symbols ENTRY(elf_rtbndr) mov %i7, %o3 ! Save callers address(profiling) save %sp, -SA(MINFRAME), %sp mov %g4, %l5 ! Save g4 (safe across function calls) sub %i1, 0x38, %o1 ! compute addr of .PLT0 from addr of .PLT1 jmpl ldx [%o1 + 0x40], %o0 ! ld PLT2[X] into third arg srl %i0, 10, %o1 ! shift offset set by sethi call elf_bndr ! returns function address in %o0 mov %i3, %o2 ! Callers address is arg 3 mov %o0, %g1 ! save address of routine binded mov %l5, %g4 ! restore g4 restore ! how many restores needed ? 2 jmp %g1 ! jump to it restore SET_SIZE(elf_rtbndr) #endif #if defined(lint) void elf_rtbndr_far(Rt_map *lmp, unsigned long pltoff, caddr_t from) { (void) elf_bndr(lmp, pltoff, from); } #else ENTRY(elf_rtbndr_far) mov %i7, %o3 ! Save callers address save %sp, -SA(MINFRAME), %sp mov %g4, %l5 ! preserve %g4 sub %i1, 0x18, %o2 ! compute address of .PLT0 from ! .PLT0 jmpl instr. sub %i0, %o2, %o1 ! pltoff = pc - 0x10 - .PLT0 sub %o1, 0x10, %o1 ldx [%o2 + 0x40], %o0 ! ld PLT2[X] into third arg call elf_bndr ! returns function address in %o0 mov %i3, %o2 ! Callers address is arg3 mov %o0, %g1 ! save address of routine binded mov %l5, %g4 ! restore g4 restore ! how many restores needed ? 2 jmp %g1 ! jump to it restore SET_SIZE(elf_rtbndr_far) #endif /* * Initialize a plt entry so that function calls go to 'bindfunc' * (We parameterize the binding function here because we call this * routine twice - once for PLT0 and once for PLT1 with different * binding functions.) * * The plt entries (PLT0 and PLT1) look like: * * save %sp, -176, %sp * sethi %hh(bindfunc), %l0 * sethi %lm(bindfunc), %l1 * or %l0, %hm(bindfunc), %l0 * sllx %l0, 32, %l0 * or %l0, %l1, %l0 * jmpl %l0 + %lo(bindfunc), %o1 * mov %g1, %o0 */ #define M_SAVE_SP176SP 0x9de3bf50 /* save %sp, -176, %sp */ #define M_SETHI_L0 0x21000000 /* sethi 0x0, %l0 */ #define M_SETHI_L1 0x23000000 /* sethi 0x0, %l1 */ #define M_OR_L0L0 0xa0142000 /* or %l0, 0x0, %l0 */ #define M_SLLX_L032L0 0xa12c3020 /* sllx %l0, 32, %l0 */ #define M_OR_L0L1L0 0xa0140011 /* or %l0, %l1, %l0 */ #define M_JMPL_L0O1 0x93c42000 /* jmpl %l0 + 0, %o1 */ #define M_MOV_G1O0 0x90100001 /* or %g0, %g1, %o0 */ #if defined(lint) #define HH22(x) 0 /* for lint's benefit */ #define LM22(x) 0 #define HM10(x) 0 #define LO10(x) 0 /* ARGSUSED */ void elf_plt_init(void *plt, caddr_t bindfunc) { uint_t *_plt; _plt = (uint_t *)plt; _plt[0] = M_SAVE_SP176SP; _plt[1] = M_SETHI_L0 | HH22(bindfunc); _plt[2] = M_SETHI_L1 | LM22(bindfunc); _plt[3] = M_OR_L0L0 | HM10(bindfunc); _plt[4] = M_SLLX_L032L0; _plt[5] = M_OR_L0L1L0; _plt[6] = M_JMPL_L0O1 | LO10(bindfunc); _plt[7] = M_MOV_G1O0; } #else ENTRY(elf_plt_init) save %sp, -SA(MINFRAME), %sp ! Make a frame sethi %hi(M_SAVE_SP176SP), %o0 ! Get save instruction or %o0, %lo(M_SAVE_SP176SP), %o0 st %o0, [%i0] ! Store in plt[0] sethi %hi(M_SETHI_L0), %o4 ! Get "sethi 0x0, %l0" insn srlx %i1, 42, %o2 ! get %hh(function address) or %o4, %o2, %o4 ! or value into instruction st %o4, [%i0 + 0x4] ! Store instruction in plt[1] iflush %i0 ! .. and flush sethi %hi(M_SETHI_L1), %o4 ! Get "sethi 0x0, %l1" insn srl %i1, 10, %o2 ! get %lm(function address) or %o4, %o2, %o4 ! or value into instruction st %o4, [%i0 + 0x8] ! Store instruction in plt[2] sethi %hi(M_OR_L0L0), %o4 ! Get "or %l0, 0x0, %l0" insn or %o4, %lo(M_OR_L0L0), %o4 srlx %i1, 32, %o2 ! get %hm(function address) and %o2, 0x3ff, %o2 ! pick out bits 42-33 or %o4, %o2, %o4 ! or value into instruction st %o4, [%i0 + 0xc] ! Store instruction in plt[3] iflush %i0 + 8 ! .. and flush sethi %hi(M_SLLX_L032L0), %o4 ! get "sllx %l0, 32, %l0" insn or %o4, %lo(M_SLLX_L032L0), %o4 st %o4, [%i0 + 0x10] ! Store instruction in plt[4] sethi %hi(M_OR_L0L1L0), %o4 ! get "or %l0, %l1, %l0" insn or %o4, %lo(M_OR_L0L1L0), %o4 st %o4, [%i0 + 0x14] ! Store instruction in plt[5] iflush %i0 + 0x10 ! .. and flush sethi %hi(M_JMPL_L0O1), %o4 ! get "jmpl %l0 + 0, %o1" insn or %o4, %lo(M_JMPL_L0O1), %o4 and %i1, 0x3ff, %o2 ! get %lo(function address) or %o4, %o2, %o4 ! or value into instruction st %o4, [%i0 + 0x18] ! Store instruction in plt[6] sethi %hi(M_MOV_G1O0), %o4 ! get "mov %g1, %o0" insn or %o4, %lo(M_MOV_G1O0), %o4 st %o4, [%i0 + 0x1c] ! Store instruction in plt[7] iflush %i0 + 0x18 ! .. and flush ret restore SET_SIZE(elf_plt_init) #endif #if defined(lint) /* * The V9 ABI assigns the link map identifier, the * Rt_map pointer, to the start of .PLT2. */ void elf_plt2_init(unsigned int *plt2, Rt_map * lmp) { /* LINTED */ *(unsigned long *)plt2 = (unsigned long)lmp; } #else ENTRY(elf_plt2_init) stx %o1, [%o0] retl iflush %o0 SET_SIZE(elf_plt2_init) #endif /* * After the first call to a plt, elf_bndr() will have determined the true * address of the function being bound. The plt is now rewritten so that * any subsequent calls go directly to the bound function. If the library * to which the function belongs is being profiled refer to _plt_cg_write. * * For complete 64-bit spanning, the new plt entry is: * * nop * sethi %hh(function address), %g1 * sethi %lm(function address), %g5 * or %g1, %hm(function address), %g1 * sllx %g1, 32, %g1 * or %g1, %g5, %g5 * jmpl %g5, %lo(function address), %g0 * nop * * However, shorter instruction sequences are possible and useful. * This version gets us anywhere in the top 44 bits of the * address space - since this is where shared objects live most * of the time, this case is worth optimizing. * * nop * sethi %h44(~function_address), %g5 * xnor %g5, %m44(~function address), %g1 * sllx %g1, 12, %g1 * jmpl %g1 + %l44(function address), %g0 * nop * nop * nop * * This version gets anywhere in the top 32 bits: * * nop * sethi %hi(~function_address), %g5 * xnor %g5, %lo(~function_address), %g1 * jmpl %g1, %g0 * nop * nop * nop * nop * * This version get's us to a destination within * +- 8megs of the PLT's address: * * nop * ba,a <dest> * nop * nop * nop * nop * nop * nop * * This version get's us to a destination within * +- 2megs of the PLT's address: * * nop * ba,a,pt %icc, <dest> * nop * nop * nop * nop * nop * nop * * * The PLT is written in reverse order to ensure re-entrant behaviour. * Note that the first two instructions must be overwritten with a * single stx. * * Note that even in the 44-bit case, we deliberately use both %g5 and * %g1 to prevent anyone accidentally relying on either of them being * non-volatile across a function call. */ #define M_JMPL_G5G0 0x81c16000 /* jmpl %g5 + 0, %g0 */ #define M_OR_G1G5G5 0x8a104005 /* or %g1, %g5, %g5 */ #define M_SLLX_G132G1 0x83287020 /* sllx %g1, 32, %g1 */ #define M_OR_G1G1 0x82106000 /* or %g1, 0x0, %g1 */ #define M_SETHI_G5 0x0b000000 /* sethi 0x0, %g5 */ #define M_SETHI_G1 0x03000000 /* sethi 0x0, %g1 */ #define M_NOP 0x01000000 /* sethi 0x0, %g0 */ #define M_JMPL_G1G0 0x81c06000 /* jmpl %g1 + 0, %g0 */ #define M_SLLX_G112G1 0x8328700c /* sllx %g1, 12, %g1 */ #define M_XNOR_G5G1 0x82396000 /* xnor %g5, 0, %g1 */ #if defined(lint) /* ARGSUSED */ #define MASK(m) ((1ul << (m)) - 1ul) #define BITS(v, u, l) (((v) >> (l)) & MASK((u) - (l) + 1)) #define H44(v) BITS(v, 43, 22) #define M44(v) BITS(v, 21, 12) #define L44(v) BITS(v, 11, 0) #endif #if defined(lint) void /* ARGSUSED1 */ plt_upper_32(uintptr_t pc, uintptr_t symval) { ulong_t sym = (ulong_t)symval; /* LINTED */ ulong_t nsym = ~sym; uint_t * plttab = (uint_t *)pc; plttab[3] = M_JMPL_G1G0; plttab[2] = (uint_t)(M_XNOR_G5G1 | LO10(nsym)); *(ulong_t *)pc = ((ulong_t)M_NOP << 32) | (M_SETHI_G5 | LM22(nsym)); } #else ENTRY(plt_upper_32) ! ! Address lies in top 32-bits of address space, so use ! compact PLT sequence ! sethi %hi(M_JMPL_G1G0), %o3 ! Get "jmpl %g1, %g0" insn st %o3, [%o0 + 0xc] ! store instruction in plt[3] iflush %o0 + 0xc ! .. and flush not %o1, %o4 sethi %hi(M_XNOR_G5G1), %o3 ! Get "xnor %g5, %g1, %g1" insn and %o4, 0x3ff, %o2 ! pick out bits 0-9 or %o3, %o2, %o3 ! or value into instruction st %o3, [%o0 + 0x8] ! store instruction in plt[2] iflush %o0 + 0x8 ! .. and flush sethi %hi(M_SETHI_G5), %o3 ! Get "sethi 0x0, %g5" insn srl %o4, 10, %o2 ! get %lm(~function address) or %o3, %o2, %o3 ! or value into instruction sethi %hi(M_NOP), %o4 ! Get "nop" instruction sllx %o4, 32, %o4 ! shift to top of instruction pair or %o3, %o4, %o3 ! or value into instruction pair stx %o3, [%o0] ! store instructions into plt[0] plt[1] retl iflush %o0 ! .. and flush SET_SIZE(plt_upper_32) #endif /* defined lint */ #if defined(lint) void /* ARGSUSED1 */ plt_upper_44(uintptr_t pc, uintptr_t symval) { ulong_t sym = (ulong_t)symval; ulong_t nsym = ~sym; uint_t * plttab = (uint_t *)pc; /* LINTED */ plttab[4] = (uint_t)(M_JMPL_G1G0 | L44(sym)); plttab[3] = M_SLLX_G112G1; /* LINTED */ plttab[2] = (uint_t)(M_XNOR_G5G1 | M44(nsym)); *(ulong_t *)pc = ((ulong_t)M_NOP << 32) | (M_SETHI_G5 | H44(nsym)); } #else ENTRY(plt_upper_44) ! ! Address lies in top 44-bits of address space, so use ! compact PLT sequence ! setuw M_JMPL_G1G0, %o3 ! Get "jmpl %g1, %g0" insn and %o1, 0xfff, %o2 ! lower 12 bits of function address or %o3, %o2, %o3 ! is or'ed into instruction st %o3, [%o0 + 0x10] ! store instruction in plt[4] iflush %o0 + 0x10 ! .. and flush setuw M_SLLX_G112G1, %o3 ! Get "sllx %g1, 12, %g1" insn st %o3, [%o0 + 0xc] ! store instruction in plt[3] not %o1, %o4 setuw M_XNOR_G5G1, %o3 ! Get "xnor %g5, 0, %g1" insn srlx %o4, 12, %o2 ! get %m44(0 - function address) and %o2, 0x3ff, %o2 ! pick out bits 21-12 or %o3, %o2, %o3 ! or value into instruction st %o3, [%o0 + 8] ! store instruction in plt[2] iflush %o0 + 8 ! .. and flush setuw M_SETHI_G5, %o3 ! Get "sethi 0x0, %g5" insn srlx %o4, 22, %o2 ! get %h44(0 - function address) or %o3, %o2, %o3 ! or value into instruction setuw M_NOP, %o4 ! Get "nop" instruction sllx %o4, 32, %o4 ! shift to top of instruction pair or %o3, %o4, %o3 ! or value into instruction pair stx %o3, [%o0] ! store instructions into plt[0] plt[1] retl iflush %o0 ! .. and flush SET_SIZE(plt_upper_44) #endif /* defined(lint) */ #if defined(lint) void /* ARGSUSED1 */ plt_full_range(uintptr_t pc, uintptr_t symval) { uint_t * plttab = (uint_t *)pc; plttab[6] = M_JMPL_G5G0 | LO10(symval); plttab[5] = M_OR_G1G5G5; plttab[4] = M_SLLX_G132G1; plttab[3] = M_OR_G1G1 | HM10(symval); plttab[2] = M_SETHI_G5 | LM22(symval); *(ulong_t *)pc = ((ulong_t)M_NOP << 32) | (M_SETHI_G1 | HH22(symval)); } #else ENTRY(plt_full_range) ! ! Address lies anywhere in 64-bit address space, so use ! full PLT sequence ! sethi %hi(M_JMPL_G5G0), %o3 ! Get "jmpl %g5, %g0" insn and %o1, 0x3ff, %o2 ! lower 10 bits of function address or %o3, %o2, %o3 ! is or'ed into instruction st %o3, [%o0 + 0x18] ! store instruction in plt[6] iflush %o0 + 0x18 ! .. and flush sethi %hi(M_OR_G1G5G5), %o3 ! Get "or %g1, %g5, %g1" insn or %o3, %lo(M_OR_G1G5G5), %o3 st %o3, [%o0 + 0x14] ! store instruction in plt[5] sethi %hi(M_SLLX_G132G1), %o3 ! Get "sllx %g1, 32, %g1" insn or %o3, %lo(M_SLLX_G132G1), %o3 st %o3, [%o0 + 0x10] ! store instruction in plt[4] iflush %o0 + 0x10 ! .. and flush sethi %hi(M_OR_G1G1), %o3 ! Get "or %g1, 0x0, %g1" insn or %o3, %lo(M_OR_G1G1), %o3 srlx %o1, 32, %o2 ! get %hm(function address) and %o2, 0x3ff, %o2 ! pick out bits 42-33 or %o3, %o2, %o3 ! or value into instruction st %o3, [%o0 + 0xc] ! store instruction in plt[3] sethi %hi(M_SETHI_G5), %o3 ! Get "sethi 0x0, %g5" insn srl %o1, 10, %o2 ! get %lm(function address) or %o3, %o2, %o3 ! or value into instruction st %o3, [%o0 + 0x8] ! store instruction in plt[2] iflush %o0 + 8 ! .. and flush sethi %hi(M_SETHI_G1), %o3 ! Get "sethi 0x0, %g1" insn srlx %o1, 42, %o2 ! get %hh(function address) or %o3, %o2, %o3 ! or value into instruction sethi %hi(M_NOP), %o4 ! Get "nop" instruction sllx %o4, 32, %o4 ! shift to top of instruction pair or %o3, %o4, %o3 ! or value into instruction pair stx %o3, [%o0] ! store instructions into plt[0] plt[1] retl iflush %o0 ! .. and flush SET_SIZE(plt_full_range) #endif /* defined(lint) */ /* * performs the 'iflush' instruction on a range of memory. */ #if defined(lint) void iflush_range(caddr_t addr, size_t len) { /* LINTED */ uintptr_t base; base = (uintptr_t)addr & ~7; /* round down to 8 byte alignment */ len = (len + 7) & ~7; /* round up to multiple of 8 bytes */ for (len -= 8; (long)len >= 0; len -= 8) /* iflush(base + len) */; } #else ENTRY(iflush_range) add %o1, 7, %o1 andn %o0, 7, %o0 andn %o1, 7, %o1 1: subcc %o1, 8, %o1 bge,a,pt %xcc, 1b iflush %o0 + %o1 retl nop SET_SIZE(iflush_range) #endif #if defined(lint) ulong_t elf_plt_trace() { return (0); } #else .global elf_plt_trace .type elf_plt_trace, #function /* * The dyn_plt that called us has already created a stack-frame for * us and placed the following entries in it: * * [%fp + STACK_BIAS + -0x8] * dyndata * [%fp + STACK_BIAS + -0x10] * prev stack size * * dyndata currently contains: * * dyndata: * 0x0 Addr *reflmp * 0x8 Addr *deflmp * 0x10 Word symndx * 0x14 Word sb_flags * 0x18 Sym symdef.st_name * 0x1c symdef.st_info * 0x1d symdef.st_other * 0x1e symdef.st_shndx * 0x20 symdef.st_value * 0x28 symdef.st_size */ #define REFLMP_OFF 0x0 #define DEFLMP_OFF 0x8 #define SYMNDX_OFF 0x10 #define SBFLAGS_OFF 0x14 #define SYMDEF_OFF 0x18 #define SYMDEF_VALUE_OFF 0x20 #define LAREGSSZ 0x40 /* sizeof (La_sparcv9_regs) */ elf_plt_trace: 1: call 2f sethi %hi(_GLOBAL_OFFSET_TABLE_ - (1b - .)), %l7 2: or %l7, %lo(_GLOBAL_OFFSET_TABLE_ - (1b - .)), %l7 add %l7, %o7, %l7 ldx [%fp + STACK_BIAS + -CLONGSIZE], %l1 ! l1 = * dyndata lduw [%l1 + SBFLAGS_OFF], %l2 ! l2 = sb_flags andcc %l2, LA_SYMB_NOPLTENTER, %g0 be,pt %icc, .start_pltenter ldx [%l1 + SYMDEF_VALUE_OFF], %l0 ! l0 = ! sym.st_value(calling address) ba,a,pt %icc, .end_pltenter nop /* * save all registers into La_sparcv9_regs */ .start_pltenter: sub %sp, LAREGSSZ, %sp ! create space for La_sparcv9_regs ! storage on the stack. add %fp, STACK_BIAS - (LAREGSSZ + (2 * CLONGSIZE)), %o4 ! addr of new space. stx %i0, [%o4 + 0x0] stx %i1, [%o4 + 0x8] stx %i2, [%o4 + 0x10] stx %i3, [%o4 + 0x18] ! because a regwindow shift has stx %i4, [%o4 + 0x20] ! already occured our current %i* stx %i5, [%o4 + 0x28] ! register's are the equivalent of stx %i6, [%o4 + 0x30] ! the %o* registers that the final stx %i7, [%o4 + 0x38] ! procedure shall see. mov %g4, %l5 ! save g4 (safe across function calls) ldx [%fp + STACK_BIAS + -CLONGSIZE], %l1 ! %l1 == * dyndata ldx [%l1 + REFLMP_OFF], %o0 ! %o0 = reflmp ldx [%l1 + DEFLMP_OFF], %o1 ! %o1 = deflmp add %l1, SYMDEF_OFF, %o2 ! %o2 = symp lduw [%l1 + SYMNDX_OFF], %o3 ! %o3 = symndx call audit_pltenter add %l1, SBFLAGS_OFF, %o5 ! %o3 = * sb_flags mov %o0, %l0 ! %l0 == calling address add %sp, LAREGSSZ, %sp ! cleanup La_sparcv9_regs off ! of the stack. .end_pltenter: /* * If *no* la_pltexit() routines exist we do not need * to keep the stack frame before we call the actual * routine. Instead we jump to it and remove ourself * from the stack at the same time. */ ldx [%l7+audit_flags], %l3 lduw [%l3], %l3 ! %l3 = audit_flags andcc %l3, AF_PLTEXIT, %g0 ! AF_PLTEXIT = 2 be,pt %icc, .bypass_pltexit ldx [%fp + STACK_BIAS + -CLONGSIZE], %l1 ! %l1 = * dyndata lduw [%l1 + SBFLAGS_OFF], %l2 ! %l2 = sb_flags andcc %l2, LA_SYMB_NOPLTEXIT, %g0 ! LA_SYMB_NOPLTEXIT = 2 bne,a,pt %icc, .bypass_pltexit nop ba,a,pt %icc, .start_pltexit nop .bypass_pltexit: mov %l5, %g4 ! restore g4 jmpl %l0, %g0 restore .start_pltexit: /* * In order to call la_pltexit() we must duplicate the * arguments from the 'callers' stack on our stack frame. * * First we check the size of the callers stack and grow * our stack to hold any of the arguments that need * duplicating (these are arguments 6->N), because the * first 6 (0->5) are passed via register windows on sparc. */ /* * The first calculation is to determine how large the * argument passing area might be. Since there is no * way to distinquish between 'argument passing' and * 'local storage' from the previous stack this amount must * cover both. */ ldx [%fp + STACK_BIAS + -(2 * CLONGSIZE)], %l1 ! %l1 = callers ! stack size sub %l1, MINFRAME, %l1 ! %l1 = argument space on ! caller's stack /* * Next we compare the prev. stack size against the audit_argcnt. We * copy at most 'audit_argcnt' arguments. The default arg count is 64. * * NOTE: on sparc we always copy at least six args since these * are in reg-windows and not on the stack. * * NOTE: Also note that we multiply (shift really) the arg count * by 8 which is the 'word size' to calculate the amount * of stack space needed. */ ldx [%l7 + audit_argcnt], %l2 lduw [%l2], %l2 ! %l2 = audit_argcnt cmp %l2, 6 ble,pn %icc, .grow_stack sub %l2, 6, %l2 sllx %l2, CLONGSHIFT, %l2 ! arg count * 8 cmp %l1, %l2 ! ble,a,pn %icc, .grow_stack nop mov %l2, %l1 .grow_stack: /* * When duplicating the stack we skip the first SA(MINFRAME) * bytes. This is the space on the stack reserved for preserving * the register windows and such and do not need to be duplicated * on this new stack frame. We start duplicating at the portion * of the stack reserved for argument's above 6. */ sub %sp, %l1, %sp ! grow our stack by amount required. srax %l1, CLONGSHIFT, %l1 ! %l1 = %l1 / 8 (words to copy) mov SA(MINFRAME), %l2 ! %l2 = index into stack & frame 1: cmp %l1, 0 ble,a,pn %icc, 2f nop add %fp, %l2, %l4 ldx [%l4 + STACK_BIAS], %l3 ! duplicate args from previous add %sp, %l2, %l4 stx %l3, [%l4 + STACK_BIAS] ! stack onto current stack add %l2, CLONGSIZE, %l2 ba,pt %icc, 1b sub %l1, 0x1, %l1 2: mov %i0, %o0 ! copy ins to outs mov %i1, %o1 mov %i2, %o2 mov %i3, %o3 mov %i4, %o4 mov %i5, %o5 call %l0 ! call original routine mov %l5, %g4 ! restore g4 mov %o1, %l2 ! l2 = second 1/2 of return value ! for those those 64 bit operations ! link div64 - yuck... ! %o0 = retval ldx [%fp + STACK_BIAS + -CLONGSIZE], %l1 ldx [%l1 + REFLMP_OFF], %o1 ! %o1 = reflmp ldx [%l1 + DEFLMP_OFF], %o2 ! %o2 = deflmp add %l1, SYMDEF_OFF, %o3 ! %o3 = symp call audit_pltexit lduw [%l1 + SYMNDX_OFF], %o4 ! %o4 = symndx mov %o0, %i0 ! pass on return code mov %l2, %i1 ret restore .size elf_plt_trace, . - elf_plt_trace #endif