OpenSolaris_b135/lib/libefi/common/rdwr_efi.c

Compare this file to the similar file:
Show the results in this format:

/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */

/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <strings.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include <libintl.h>
#include <sys/types.h>
#include <sys/dkio.h>
#include <sys/vtoc.h>
#include <sys/mhd.h>
#include <sys/param.h>
#include <sys/dktp/fdisk.h>
#include <sys/efi_partition.h>
#include <sys/byteorder.h>
#include <sys/ddi.h>

static struct uuid_to_ptag {
	struct uuid	uuid;
} conversion_array[] = {
	{ EFI_UNUSED },
	{ EFI_BOOT },
	{ EFI_ROOT },
	{ EFI_SWAP },
	{ EFI_USR },
	{ EFI_BACKUP },
	{ 0 },			/* STAND is never used */
	{ EFI_VAR },
	{ EFI_HOME },
	{ EFI_ALTSCTR },
	{ 0 },			/* CACHE (cachefs) is never used */
	{ EFI_RESERVED },
	{ EFI_SYSTEM },
	{ EFI_LEGACY_MBR },
	{ EFI_RESV3 },
	{ EFI_RESV4 },
	{ EFI_MSFT_RESV },
	{ EFI_DELL_BASIC },
	{ EFI_DELL_RAID },
	{ EFI_DELL_SWAP },
	{ EFI_DELL_LVM },
	{ EFI_DELL_RESV },
	{ EFI_AAPL_HFS },
	{ EFI_AAPL_UFS }
};

/*
 * Default vtoc information for non-SVr4 partitions
 */
struct dk_map2  default_vtoc_map[NDKMAP] = {
	{	V_ROOT,		0	},		/* a - 0 */
	{	V_SWAP,		V_UNMNT	},		/* b - 1 */
	{	V_BACKUP,	V_UNMNT	},		/* c - 2 */
	{	V_UNASSIGNED,	0	},		/* d - 3 */
	{	V_UNASSIGNED,	0	},		/* e - 4 */
	{	V_UNASSIGNED,	0	},		/* f - 5 */
	{	V_USR,		0	},		/* g - 6 */
	{	V_UNASSIGNED,	0	},		/* h - 7 */

#if defined(_SUNOS_VTOC_16)

#if defined(i386) || defined(__amd64)
	{	V_BOOT,		V_UNMNT	},		/* i - 8 */
	{	V_ALTSCTR,	0	},		/* j - 9 */

#else
#error No VTOC format defined.
#endif			/* defined(i386) */

	{	V_UNASSIGNED,	0	},		/* k - 10 */
	{	V_UNASSIGNED,	0	},		/* l - 11 */
	{	V_UNASSIGNED,	0	},		/* m - 12 */
	{	V_UNASSIGNED,	0	},		/* n - 13 */
	{	V_UNASSIGNED,	0	},		/* o - 14 */
	{	V_UNASSIGNED,	0	},		/* p - 15 */
#endif			/* defined(_SUNOS_VTOC_16) */
};

#ifdef DEBUG
int efi_debug = 1;
#else
int efi_debug = 0;
#endif

extern unsigned int	efi_crc32(const unsigned char *, unsigned int);
static int		efi_read(int, struct dk_gpt *);

static int
read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
{
	struct dk_minfo		disk_info;

	if ((ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info)) == -1)
		return (errno);
	*capacity = disk_info.dki_capacity;
	*lbsize = disk_info.dki_lbsize;
	return (0);
}

/*
 * the number of blocks the EFI label takes up (round up to nearest
 * block)
 */
#define	NBLOCKS(p, l)	(1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
				((l) - 1)) / (l)))
/* number of partitions -- limited by what we can malloc */
#define	MAX_PARTS	((4294967295UL - sizeof (struct dk_gpt)) / \
			    sizeof (struct dk_part))

int
efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
{
	diskaddr_t	capacity;
	uint_t		lbsize;
	uint_t		nblocks;
	size_t		length;
	struct dk_gpt	*vptr;
	struct uuid	uuid;

	if (read_disk_info(fd, &capacity, &lbsize) != 0) {
		if (efi_debug)
			(void) fprintf(stderr,
			    "couldn't read disk information\n");
		return (-1);
	}

	nblocks = NBLOCKS(nparts, lbsize);
	if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
		/* 16K plus one block for the GPT */
		nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
	}

	if (nparts > MAX_PARTS) {
		if (efi_debug) {
			(void) fprintf(stderr,
			"the maximum number of partitions supported is %lu\n",
			    MAX_PARTS);
		}
		return (-1);
	}

	length = sizeof (struct dk_gpt) +
	    sizeof (struct dk_part) * (nparts - 1);

	if ((*vtoc = calloc(length, 1)) == NULL)
		return (-1);

	vptr = *vtoc;

	vptr->efi_version = EFI_VERSION_CURRENT;
	vptr->efi_lbasize = lbsize;
	vptr->efi_nparts = nparts;
	/*
	 * add one block here for the PMBR; on disks with a 512 byte
	 * block size and 128 or fewer partitions, efi_first_u_lba
	 * should work out to "34"
	 */
	vptr->efi_first_u_lba = nblocks + 1;
	vptr->efi_last_lba = capacity - 1;
	vptr->efi_altern_lba = capacity -1;
	vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;

	(void) uuid_generate((uchar_t *)&uuid);
	UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
	return (0);
}

/*
 * Read EFI - return partition number upon success.
 */
int
efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
{
	int			rval;
	uint32_t		nparts;
	int			length;

	/* figure out the number of entries that would fit into 16K */
	nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
	length = (int) sizeof (struct dk_gpt) +
	    (int) sizeof (struct dk_part) * (nparts - 1);
	if ((*vtoc = calloc(length, 1)) == NULL)
		return (VT_ERROR);

	(*vtoc)->efi_nparts = nparts;
	rval = efi_read(fd, *vtoc);

	if ((rval == VT_EINVAL) && (*vtoc)->efi_nparts > nparts) {
		void *tmp;
		length = (int) sizeof (struct dk_gpt) +
		    (int) sizeof (struct dk_part) *
		    ((*vtoc)->efi_nparts - 1);
		nparts = (*vtoc)->efi_nparts;
		if ((tmp = realloc(*vtoc, length)) == NULL) {
			free (*vtoc);
			*vtoc = NULL;
			return (VT_ERROR);
		} else {
			*vtoc = tmp;
			rval = efi_read(fd, *vtoc);
		}
	}

	if (rval < 0) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "read of EFI table failed, rval=%d\n", rval);
		}
		free (*vtoc);
		*vtoc = NULL;
	}

	return (rval);
}

static int
efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
{
	void *data = dk_ioc->dki_data;
	int error;

	dk_ioc->dki_data_64 = (uint64_t)(uintptr_t)data;
	error = ioctl(fd, cmd, (void *)dk_ioc);
	dk_ioc->dki_data = data;

	return (error);
}

static int
check_label(int fd, dk_efi_t *dk_ioc)
{
	efi_gpt_t		*efi;
	uint_t			crc;

	if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
		switch (errno) {
		case EIO:
			return (VT_EIO);
		default:
			return (VT_ERROR);
		}
	}
	efi = dk_ioc->dki_data;
	if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
		if (efi_debug)
			(void) fprintf(stderr,
			    "Bad EFI signature: 0x%llx != 0x%llx\n",
			    (long long)efi->efi_gpt_Signature,
			    (long long)LE_64(EFI_SIGNATURE));
		return (VT_EINVAL);
	}

	/*
	 * check CRC of the header; the size of the header should
	 * never be larger than one block
	 */
	crc = efi->efi_gpt_HeaderCRC32;
	efi->efi_gpt_HeaderCRC32 = 0;

	if (((len_t)LE_32(efi->efi_gpt_HeaderSize) > dk_ioc->dki_length) ||
	    crc != LE_32(efi_crc32((unsigned char *)efi,
	    LE_32(efi->efi_gpt_HeaderSize)))) {
		if (efi_debug)
			(void) fprintf(stderr,
			    "Bad EFI CRC: 0x%x != 0x%x\n",
			    crc,
			    LE_32(efi_crc32((unsigned char *)efi,
			    sizeof (struct efi_gpt))));
		return (VT_EINVAL);
	}

	return (0);
}

static int
efi_read(int fd, struct dk_gpt *vtoc)
{
	int			i, j;
	int			label_len;
	int			rval = 0;
	int			md_flag = 0;
	int			vdc_flag = 0;
	struct dk_minfo		disk_info;
	dk_efi_t		dk_ioc;
	efi_gpt_t		*efi;
	efi_gpe_t		*efi_parts;
	struct dk_cinfo		dki_info;
	uint32_t		user_length;
	boolean_t		legacy_label = B_FALSE;

	/*
	 * get the partition number for this file descriptor.
	 */
	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
		if (efi_debug) {
			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
		}
		switch (errno) {
		case EIO:
			return (VT_EIO);
		case EINVAL:
			return (VT_EINVAL);
		default:
			return (VT_ERROR);
		}
	}
	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
		md_flag++;
	} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
	    (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
		/*
		 * The controller and drive name "vdc" (virtual disk client)
		 * indicates a LDoms virtual disk.
		 */
		vdc_flag++;
	}

	/* get the LBA size */
	if (ioctl(fd, DKIOCGMEDIAINFO, (caddr_t)&disk_info) == -1) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "assuming LBA 512 bytes %d\n",
			    errno);
		}
		disk_info.dki_lbsize = DEV_BSIZE;
	}
	if (disk_info.dki_lbsize == 0) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "efi_read: assuming LBA 512 bytes\n");
		}
		disk_info.dki_lbsize = DEV_BSIZE;
	}
	/*
	 * Read the EFI GPT to figure out how many partitions we need
	 * to deal with.
	 */
	dk_ioc.dki_lba = 1;
	if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
		label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
	} else {
		label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
		    disk_info.dki_lbsize;
		if (label_len % disk_info.dki_lbsize) {
			/* pad to physical sector size */
			label_len += disk_info.dki_lbsize;
			label_len &= ~(disk_info.dki_lbsize - 1);
		}
	}

	if ((dk_ioc.dki_data = calloc(label_len, 1)) == NULL)
		return (VT_ERROR);

	dk_ioc.dki_length = disk_info.dki_lbsize;
	user_length = vtoc->efi_nparts;
	efi = dk_ioc.dki_data;
	if (md_flag) {
		dk_ioc.dki_length = label_len;
		if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
			switch (errno) {
			case EIO:
				return (VT_EIO);
			default:
				return (VT_ERROR);
			}
		}
	} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
		/*
		 * No valid label here; try the alternate. Note that here
		 * we just read GPT header and save it into dk_ioc.data,
		 * Later, we will read GUID partition entry array if we
		 * can get valid GPT header.
		 */

		/*
		 * This is a workaround for legacy systems. In the past, the
		 * last sector of SCSI disk was invisible on x86 platform. At
		 * that time, backup label was saved on the next to the last
		 * sector. It is possible for users to move a disk from previous
		 * solaris system to present system. Here, we attempt to search
		 * legacy backup EFI label first.
		 */
		dk_ioc.dki_lba = disk_info.dki_capacity - 2;
		dk_ioc.dki_length = disk_info.dki_lbsize;
		rval = check_label(fd, &dk_ioc);
		if (rval == VT_EINVAL) {
			/*
			 * we didn't find legacy backup EFI label, try to
			 * search backup EFI label in the last block.
			 */
			dk_ioc.dki_lba = disk_info.dki_capacity - 1;
			dk_ioc.dki_length = disk_info.dki_lbsize;
			rval = check_label(fd, &dk_ioc);
			if (rval == 0) {
				legacy_label = B_TRUE;
				if (efi_debug)
					(void) fprintf(stderr,
					    "efi_read: primary label corrupt; "
					    "using EFI backup label located on"
					    " the last block\n");
			}
		} else {
			if ((efi_debug) && (rval == 0))
				(void) fprintf(stderr, "efi_read: primary label"
				    " corrupt; using legacy EFI backup label "
				    " located on the next to last block\n");
		}

		if (rval == 0) {
			dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
			vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
			vtoc->efi_nparts =
			    LE_32(efi->efi_gpt_NumberOfPartitionEntries);
			/*
			 * Partition tables are between backup GPT header
			 * table and ParitionEntryLBA (the starting LBA of
			 * the GUID partition entries array). Now that we
			 * already got valid GPT header and saved it in
			 * dk_ioc.dki_data, we try to get GUID partition
			 * entry array here.
			 */
			/* LINTED */
			dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
			    + disk_info.dki_lbsize);
			if (legacy_label)
				dk_ioc.dki_length = disk_info.dki_capacity - 1 -
				    dk_ioc.dki_lba;
			else
				dk_ioc.dki_length = disk_info.dki_capacity - 2 -
				    dk_ioc.dki_lba;
			dk_ioc.dki_length *= disk_info.dki_lbsize;
			if (dk_ioc.dki_length >
			    ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
				rval = VT_EINVAL;
			} else {
				/*
				 * read GUID partition entry array
				 */
				rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
			}
		}

	} else if (rval == 0) {

		dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
		/* LINTED */
		dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
		    + disk_info.dki_lbsize);
		dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
		rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);

	} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
		/*
		 * When the device is a LDoms virtual disk, the DKIOCGETEFI
		 * ioctl can fail with EINVAL if the virtual disk backend
		 * is a ZFS volume serviced by a domain running an old version
		 * of Solaris. This is because the DKIOCGETEFI ioctl was
		 * initially incorrectly implemented for a ZFS volume and it
		 * expected the GPT and GPE to be retrieved with a single ioctl.
		 * So we try to read the GPT and the GPE using that old style
		 * ioctl.
		 */
		dk_ioc.dki_lba = 1;
		dk_ioc.dki_length = label_len;
		rval = check_label(fd, &dk_ioc);
	}

	if (rval < 0) {
		free(efi);
		return (rval);
	}

	/* LINTED -- always longlong aligned */
	efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);

	/*
	 * Assemble this into a "dk_gpt" struct for easier
	 * digestibility by applications.
	 */
	vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
	vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
	vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
	vtoc->efi_lbasize = disk_info.dki_lbsize;
	vtoc->efi_last_lba = disk_info.dki_capacity - 1;
	vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
	vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
	vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
	UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);

	/*
	 * If the array the user passed in is too small, set the length
	 * to what it needs to be and return
	 */
	if (user_length < vtoc->efi_nparts) {
		return (VT_EINVAL);
	}

	for (i = 0; i < vtoc->efi_nparts; i++) {

		UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
		    efi_parts[i].efi_gpe_PartitionTypeGUID);

		for (j = 0;
		    j < sizeof (conversion_array)
		    / sizeof (struct uuid_to_ptag); j++) {

			if (bcmp(&vtoc->efi_parts[i].p_guid,
			    &conversion_array[j].uuid,
			    sizeof (struct uuid)) == 0) {
				vtoc->efi_parts[i].p_tag = j;
				break;
			}
		}
		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
			continue;
		vtoc->efi_parts[i].p_flag =
		    LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
		vtoc->efi_parts[i].p_start =
		    LE_64(efi_parts[i].efi_gpe_StartingLBA);
		vtoc->efi_parts[i].p_size =
		    LE_64(efi_parts[i].efi_gpe_EndingLBA) -
		    vtoc->efi_parts[i].p_start + 1;
		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
			vtoc->efi_parts[i].p_name[j] =
			    (uchar_t)LE_16(
			    efi_parts[i].efi_gpe_PartitionName[j]);
		}

		UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
		    efi_parts[i].efi_gpe_UniquePartitionGUID);
	}
	free(efi);

	return (dki_info.dki_partition);
}

/* writes a "protective" MBR */
static int
write_pmbr(int fd, struct dk_gpt *vtoc)
{
	dk_efi_t	dk_ioc;
	struct mboot	mb;
	uchar_t		*cp;
	diskaddr_t	size_in_lba;
	uchar_t		*buf;
	int		len;

	len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
	buf = calloc(len, 1);

	/*
	 * Preserve any boot code and disk signature if the first block is
	 * already an MBR.
	 */
	dk_ioc.dki_lba = 0;
	dk_ioc.dki_length = len;
	/* LINTED -- always longlong aligned */
	dk_ioc.dki_data = (efi_gpt_t *)buf;
	if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
		(void *) memcpy(&mb, buf, sizeof (mb));
		bzero(&mb, sizeof (mb));
		mb.signature = LE_16(MBB_MAGIC);
	} else {
		(void *) memcpy(&mb, buf, sizeof (mb));
		if (mb.signature != LE_16(MBB_MAGIC)) {
			bzero(&mb, sizeof (mb));
			mb.signature = LE_16(MBB_MAGIC);
		}
	}

	bzero(&mb.parts, sizeof (mb.parts));
	cp = (uchar_t *)&mb.parts[0];
	/* bootable or not */
	*cp++ = 0;
	/* beginning CHS; 0xffffff if not representable */
	*cp++ = 0xff;
	*cp++ = 0xff;
	*cp++ = 0xff;
	/* OS type */
	*cp++ = EFI_PMBR;
	/* ending CHS; 0xffffff if not representable */
	*cp++ = 0xff;
	*cp++ = 0xff;
	*cp++ = 0xff;
	/* starting LBA: 1 (little endian format) by EFI definition */
	*cp++ = 0x01;
	*cp++ = 0x00;
	*cp++ = 0x00;
	*cp++ = 0x00;
	/* ending LBA: last block on the disk (little endian format) */
	size_in_lba = vtoc->efi_last_lba;
	if (size_in_lba < 0xffffffff) {
		*cp++ = (size_in_lba & 0x000000ff);
		*cp++ = (size_in_lba & 0x0000ff00) >> 8;
		*cp++ = (size_in_lba & 0x00ff0000) >> 16;
		*cp++ = (size_in_lba & 0xff000000) >> 24;
	} else {
		*cp++ = 0xff;
		*cp++ = 0xff;
		*cp++ = 0xff;
		*cp++ = 0xff;
	}

	(void *) memcpy(buf, &mb, sizeof (mb));
	/* LINTED -- always longlong aligned */
	dk_ioc.dki_data = (efi_gpt_t *)buf;
	dk_ioc.dki_lba = 0;
	dk_ioc.dki_length = len;
	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
		free(buf);
		switch (errno) {
		case EIO:
			return (VT_EIO);
		case EINVAL:
			return (VT_EINVAL);
		default:
			return (VT_ERROR);
		}
	}
	free(buf);
	return (0);
}

/* make sure the user specified something reasonable */
static int
check_input(struct dk_gpt *vtoc)
{
	int			resv_part = -1;
	int			i, j;
	diskaddr_t		istart, jstart, isize, jsize, endsect;

	/*
	 * Sanity-check the input (make sure no partitions overlap)
	 */
	for (i = 0; i < vtoc->efi_nparts; i++) {
		/* It can't be unassigned and have an actual size */
		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
		    (vtoc->efi_parts[i].p_size != 0)) {
			if (efi_debug) {
				(void) fprintf(stderr,
"partition %d is \"unassigned\" but has a size of %llu",
				    i,
				    vtoc->efi_parts[i].p_size);
			}
			return (VT_EINVAL);
		}
		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
			if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
				continue;
			/* we have encountered an unknown uuid */
			vtoc->efi_parts[i].p_tag = 0xff;
		}
		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
			if (resv_part != -1) {
				if (efi_debug) {
					(void) fprintf(stderr,
"found duplicate reserved partition at %d\n",
					    i);
				}
				return (VT_EINVAL);
			}
			resv_part = i;
		}
		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
			if (efi_debug) {
				(void) fprintf(stderr,
				    "Partition %d starts at %llu.  ",
				    i,
				    vtoc->efi_parts[i].p_start);
				(void) fprintf(stderr,
				    "It must be between %llu and %llu.\n",
				    vtoc->efi_first_u_lba,
				    vtoc->efi_last_u_lba);
			}
			return (VT_EINVAL);
		}
		if ((vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size <
		    vtoc->efi_first_u_lba) ||
		    (vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size >
		    vtoc->efi_last_u_lba + 1)) {
			if (efi_debug) {
				(void) fprintf(stderr,
				    "Partition %d ends at %llu.  ",
				    i,
				    vtoc->efi_parts[i].p_start +
				    vtoc->efi_parts[i].p_size);
				(void) fprintf(stderr,
				    "It must be between %llu and %llu.\n",
				    vtoc->efi_first_u_lba,
				    vtoc->efi_last_u_lba);
			}
			return (VT_EINVAL);
		}

		for (j = 0; j < vtoc->efi_nparts; j++) {
			isize = vtoc->efi_parts[i].p_size;
			jsize = vtoc->efi_parts[j].p_size;
			istart = vtoc->efi_parts[i].p_start;
			jstart = vtoc->efi_parts[j].p_start;
			if ((i != j) && (isize != 0) && (jsize != 0)) {
				endsect = jstart + jsize -1;
				if ((jstart <= istart) &&
				    (istart <= endsect)) {
					if (efi_debug) {
						(void) fprintf(stderr,
"Partition %d overlaps partition %d.",
						    i, j);
					}
					return (VT_EINVAL);
				}
			}
		}
	}
	/* just a warning for now */
	if ((resv_part == -1) && efi_debug) {
		(void) fprintf(stderr,
		    "no reserved partition found\n");
	}
	return (0);
}

/*
 * add all the unallocated space to the current label
 */
int
efi_use_whole_disk(int fd)
{
	struct dk_gpt		*efi_label;
	int			rval;
	int			i;
	uint_t			phy_last_slice = 0;
	diskaddr_t		pl_start = 0;
	diskaddr_t		pl_size;

	rval = efi_alloc_and_read(fd, &efi_label);
	if (rval < 0) {
		return (rval);
	}

	/* find the last physically non-zero partition */
	for (i = 0; i < efi_label->efi_nparts - 2; i ++) {
		if (pl_start < efi_label->efi_parts[i].p_start) {
			pl_start = efi_label->efi_parts[i].p_start;
			phy_last_slice = i;
		}
	}
	pl_size = efi_label->efi_parts[phy_last_slice].p_size;

	/*
	 * If alter_lba is 1, we are using the backup label.
	 * Since we can locate the backup label by disk capacity,
	 * there must be no unallocated space.
	 */
	if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
	    >= efi_label->efi_last_lba)) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "efi_use_whole_disk: requested space not found\n");
		}
		efi_free(efi_label);
		return (VT_ENOSPC);
	}

	/*
	 * If there is space between the last physically non-zero partition
	 * and the reserved partition, just add the unallocated space to this
	 * area. Otherwise, the unallocated space is added to the last
	 * physically non-zero partition.
	 */
	if (pl_start + pl_size - 1 == efi_label->efi_last_u_lba -
	    EFI_MIN_RESV_SIZE) {
		efi_label->efi_parts[phy_last_slice].p_size +=
		    efi_label->efi_last_lba - efi_label->efi_altern_lba;
	}

	/*
	 * Move the reserved partition. There is currently no data in
	 * here except fabricated devids (which get generated via
	 * efi_write()). So there is no need to copy data.
	 */
	efi_label->efi_parts[efi_label->efi_nparts - 1].p_start +=
	    efi_label->efi_last_lba - efi_label->efi_altern_lba;
	efi_label->efi_last_u_lba += efi_label->efi_last_lba
	    - efi_label->efi_altern_lba;

	rval = efi_write(fd, efi_label);
	if (rval < 0) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "efi_use_whole_disk:fail to write label, rval=%d\n",
			    rval);
		}
		efi_free(efi_label);
		return (rval);
	}

	efi_free(efi_label);
	return (0);
}


/*
 * write EFI label and backup label
 */
int
efi_write(int fd, struct dk_gpt *vtoc)
{
	dk_efi_t		dk_ioc;
	efi_gpt_t		*efi;
	efi_gpe_t		*efi_parts;
	int			i, j;
	struct dk_cinfo		dki_info;
	int			md_flag = 0;
	int			nblocks;
	diskaddr_t		lba_backup_gpt_hdr;

	if (ioctl(fd, DKIOCINFO, (caddr_t)&dki_info) == -1) {
		if (efi_debug)
			(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
		switch (errno) {
		case EIO:
			return (VT_EIO);
		case EINVAL:
			return (VT_EINVAL);
		default:
			return (VT_ERROR);
		}
	}

	/* check if we are dealing wih a metadevice */
	if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
	    (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
		md_flag = 1;
	}

	if (check_input(vtoc)) {
		/*
		 * not valid; if it's a metadevice just pass it down
		 * because SVM will do its own checking
		 */
		if (md_flag == 0) {
			return (VT_EINVAL);
		}
	}

	dk_ioc.dki_lba = 1;
	if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
		dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
	} else {
		dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
		    vtoc->efi_lbasize) *
		    vtoc->efi_lbasize;
	}

	/*
	 * the number of blocks occupied by GUID partition entry array
	 */
	nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;

	/*
	 * Backup GPT header is located on the block after GUID
	 * partition entry array. Here, we calculate the address
	 * for backup GPT header.
	 */
	lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
	if ((dk_ioc.dki_data = calloc(dk_ioc.dki_length, 1)) == NULL)
		return (VT_ERROR);

	efi = dk_ioc.dki_data;

	/* stuff user's input into EFI struct */
	efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
	efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
	efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt));
	efi->efi_gpt_Reserved1 = 0;
	efi->efi_gpt_MyLBA = LE_64(1ULL);
	efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
	efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
	efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
	efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
	efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
	efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
	UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);

	/* LINTED -- always longlong aligned */
	efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);

	for (i = 0; i < vtoc->efi_nparts; i++) {
		for (j = 0;
		    j < sizeof (conversion_array) /
		    sizeof (struct uuid_to_ptag); j++) {

			if (vtoc->efi_parts[i].p_tag == j) {
				UUID_LE_CONVERT(
				    efi_parts[i].efi_gpe_PartitionTypeGUID,
				    conversion_array[j].uuid);
				break;
			}
		}

		if (j == sizeof (conversion_array) /
		    sizeof (struct uuid_to_ptag)) {
			/*
			 * If we didn't have a matching uuid match, bail here.
			 * Don't write a label with unknown uuid.
			 */
			if (efi_debug) {
				(void) fprintf(stderr,
				    "Unknown uuid for p_tag %d\n",
				    vtoc->efi_parts[i].p_tag);
			}
			return (VT_EINVAL);
		}

		efi_parts[i].efi_gpe_StartingLBA =
		    LE_64(vtoc->efi_parts[i].p_start);
		efi_parts[i].efi_gpe_EndingLBA =
		    LE_64(vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size - 1);
		efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
		    LE_16(vtoc->efi_parts[i].p_flag);
		for (j = 0; j < EFI_PART_NAME_LEN; j++) {
			efi_parts[i].efi_gpe_PartitionName[j] =
			    LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
		}
		if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
		    uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
			(void) uuid_generate((uchar_t *)
			    &vtoc->efi_parts[i].p_uguid);
		}
		bcopy(&vtoc->efi_parts[i].p_uguid,
		    &efi_parts[i].efi_gpe_UniquePartitionGUID,
		    sizeof (uuid_t));
	}
	efi->efi_gpt_PartitionEntryArrayCRC32 =
	    LE_32(efi_crc32((unsigned char *)efi_parts,
	    vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
	efi->efi_gpt_HeaderCRC32 =
	    LE_32(efi_crc32((unsigned char *)efi, sizeof (struct efi_gpt)));

	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
		free(dk_ioc.dki_data);
		switch (errno) {
		case EIO:
			return (VT_EIO);
		case EINVAL:
			return (VT_EINVAL);
		default:
			return (VT_ERROR);
		}
	}
	/* if it's a metadevice we're done */
	if (md_flag) {
		free(dk_ioc.dki_data);
		return (0);
	}

	/* write backup partition array */
	dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
	dk_ioc.dki_length -= vtoc->efi_lbasize;
	/* LINTED */
	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
	    vtoc->efi_lbasize);

	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
		/*
		 * we wrote the primary label okay, so don't fail
		 */
		if (efi_debug) {
			(void) fprintf(stderr,
			    "write of backup partitions to block %llu "
			    "failed, errno %d\n",
			    vtoc->efi_last_u_lba + 1,
			    errno);
		}
	}
	/*
	 * now swap MyLBA and AlternateLBA fields and write backup
	 * partition table header
	 */
	dk_ioc.dki_lba = lba_backup_gpt_hdr;
	dk_ioc.dki_length = vtoc->efi_lbasize;
	/* LINTED */
	dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
	    vtoc->efi_lbasize);
	efi->efi_gpt_AlternateLBA = LE_64(1ULL);
	efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
	efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
	efi->efi_gpt_HeaderCRC32 = 0;
	efi->efi_gpt_HeaderCRC32 =
	    LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
	    sizeof (struct efi_gpt)));

	if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
		if (efi_debug) {
			(void) fprintf(stderr,
			    "write of backup header to block %llu failed, "
			    "errno %d\n",
			    lba_backup_gpt_hdr,
			    errno);
		}
	}
	/* write the PMBR */
	(void) write_pmbr(fd, vtoc);
	free(dk_ioc.dki_data);
	return (0);
}

void
efi_free(struct dk_gpt *ptr)
{
	free(ptr);
}

/*
 * Input: File descriptor
 * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
 * Otherwise 0.
 */
int
efi_type(int fd)
{
	struct vtoc vtoc;
	struct extvtoc extvtoc;

	if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
		if (errno == ENOTSUP)
			return (1);
		else if (errno == ENOTTY) {
			if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
				if (errno == ENOTSUP)
					return (1);
		}
	}
	return (0);
}

void
efi_err_check(struct dk_gpt *vtoc)
{
	int			resv_part = -1;
	int			i, j;
	diskaddr_t		istart, jstart, isize, jsize, endsect;
	int			overlap = 0;

	/*
	 * make sure no partitions overlap
	 */
	for (i = 0; i < vtoc->efi_nparts; i++) {
		/* It can't be unassigned and have an actual size */
		if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
		    (vtoc->efi_parts[i].p_size != 0)) {
			(void) fprintf(stderr,
			    "partition %d is \"unassigned\" but has a size "
			    "of %llu\n", i, vtoc->efi_parts[i].p_size);
		}
		if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
			continue;
		}
		if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
			if (resv_part != -1) {
				(void) fprintf(stderr,
				    "found duplicate reserved partition at "
				    "%d\n", i);
			}
			resv_part = i;
			if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
				(void) fprintf(stderr,
				    "Warning: reserved partition size must "
				    "be %d sectors\n", EFI_MIN_RESV_SIZE);
		}
		if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
		    (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
			(void) fprintf(stderr,
			    "Partition %d starts at %llu\n",
			    i,
			    vtoc->efi_parts[i].p_start);
			(void) fprintf(stderr,
			    "It must be between %llu and %llu.\n",
			    vtoc->efi_first_u_lba,
			    vtoc->efi_last_u_lba);
		}
		if ((vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size <
		    vtoc->efi_first_u_lba) ||
		    (vtoc->efi_parts[i].p_start +
		    vtoc->efi_parts[i].p_size >
		    vtoc->efi_last_u_lba + 1)) {
			(void) fprintf(stderr,
			    "Partition %d ends at %llu\n",
			    i,
			    vtoc->efi_parts[i].p_start +
			    vtoc->efi_parts[i].p_size);
			(void) fprintf(stderr,
			    "It must be between %llu and %llu.\n",
			    vtoc->efi_first_u_lba,
			    vtoc->efi_last_u_lba);
		}

		for (j = 0; j < vtoc->efi_nparts; j++) {
			isize = vtoc->efi_parts[i].p_size;
			jsize = vtoc->efi_parts[j].p_size;
			istart = vtoc->efi_parts[i].p_start;
			jstart = vtoc->efi_parts[j].p_start;
			if ((i != j) && (isize != 0) && (jsize != 0)) {
				endsect = jstart + jsize -1;
				if ((jstart <= istart) &&
				    (istart <= endsect)) {
					if (!overlap) {
					(void) fprintf(stderr,
					    "label error: EFI Labels do not "
					    "support overlapping partitions\n");
					}
					(void) fprintf(stderr,
					    "Partition %d overlaps partition "
					    "%d.\n", i, j);
					overlap = 1;
				}
			}
		}
	}
	/* make sure there is a reserved partition */
	if (resv_part == -1) {
		(void) fprintf(stderr,
		    "no reserved partition found\n");
	}
}

/*
 * We need to get information necessary to construct a *new* efi
 * label type
 */
int
efi_auto_sense(int fd, struct dk_gpt **vtoc)
{

	int	i;

	/*
	 * Now build the default partition table
	 */
	if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
		if (efi_debug) {
			(void) fprintf(stderr, "efi_alloc_and_init failed.\n");
		}
		return (-1);
	}

	for (i = 0; i < min((*vtoc)->efi_nparts, V_NUMPAR); i++) {
		(*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
		(*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
		(*vtoc)->efi_parts[i].p_start = 0;
		(*vtoc)->efi_parts[i].p_size = 0;
	}
	/*
	 * Make constants first
	 * and variable partitions later
	 */

	/* root partition - s0 128 MB */
	(*vtoc)->efi_parts[0].p_start = 34;
	(*vtoc)->efi_parts[0].p_size = 262144;

	/* partition - s1  128 MB */
	(*vtoc)->efi_parts[1].p_start = 262178;
	(*vtoc)->efi_parts[1].p_size = 262144;

	/* partition -s2 is NOT the Backup disk */
	(*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;

	/* partition -s6 /usr partition - HOG */
	(*vtoc)->efi_parts[6].p_start = 524322;
	(*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
	    - (1024 * 16);

	/* efi reserved partition - s9 16K */
	(*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
	(*vtoc)->efi_parts[8].p_size = (1024 * 16);
	(*vtoc)->efi_parts[8].p_tag = V_RESERVED;
	return (0);
}