V10/cmd/sml/doc/examples/prop.sml
(* propositional calculus *)
datatype truth = TRUE | FALSE
datatype term
= VAR of string
| CON of truth
| NOT of term
| AND of term * term
| OR of term * term
(* (~ p) and q ==> AND(NOT(VAR "p"), VAR "q") *)
(* transform term to conjuctive normal form *)
fun negate (NOT(NOT p)) = negate p
| negate (NOT p) = p
| negate (AND(p,q)) = OR(NOT p, NOT q)
| negate (OR(p,q)) = AND(NOT p, NOT q)
| negate p = NOT p
fun cnf (AND(p,q)) = AND(cnf p, cnf q)
| cnf (NOT(NOT p)) = cnf p
| cnf (NOT(AND(p,q))) = cnf(OR(negate p, negate q))
| cnf (NOT(OR(p,q))) = AND(cnf(NOT p), cnf(NOT q))
| cnf (OR(AND(p,q),r)) = AND(cnf(OR(p,r)),cnf(OR(q,r)))
| cnf (OR(p,AND(q,r))) = AND(cnf(OR(p,q)),cnf(OR(p,r)))
| cnf (OR(NOT p,q)) = cnf(OR(negate p, q))
| cnf (OR(p, NOT q)) = cnf(OR(p, negate q))
| cnf p = p
(* exercise: write a tautology checker.
(hint: use resolution) *)